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Abstract

Biclustering techniques have become very popular in cancer genetics studies, as they are tools that are expected to connect
phenotypes to genotypes, i.e. to identify subgroups of cancer patients based on the fact that they share similar gene
expression patterns as well as to identify subgroups of genes that are specific to these subtypes of cancer and therefore
could serve as biomarkers. In this paper we propose a new approach for identifying such relationships or biclusters between
patients and gene expression profiles. This method, named biDCG, rests on two key concepts. First, it uses a new clustering
technique, DCG-tree [Fushing et al, PLos One, 8, e56259 (2013)] that generates ultrametric topological spaces that capture
the geometries of both the patient data set and the gene data set. Second, it optimizes the definitions of bicluster
membership through an iterative two-way reclustering procedure in which patients and genes are reclustered in turn,
based respectively on subsets of genes and patients defined in the previous round. We have validated biDCG on simulated
and real data. Based on the simulated data we have shown that biDCG compares favorably to other biclustering techniques
applied to cancer genomics data. The results on the real data sets have shown that biDCG is able to retrieve relevant
biological information.
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Introduction

Before the ‘‘-omics’’ revolutions, cancer detection and diagnosis

relied mostly on changes in phenotypes. Clinicians would identify

and categorize cancer cells based on differences in appearance

under a microscope compared to equivalent normal cells, namely

according to their pathology. The advents of genomics and

proteomics at the end of last century however have opened the

doors to molecular diagnostics of cancer by providing the tools to

study directly all the genes and proteins in a cell [1–7]. By studying

gene expression patterns in different types of cells (normal, pre-

cancerous, and cancerous with difference types and at different

stages), molecular diagnostics aim at uncovering ‘‘molecular

signatures’’, i.e. those expression patterns that are specific to a

pathology. DNA microarrays, also called ‘‘gene chips’’ or ‘‘DNA

chips’’, make success of this approach possible as they allow

researchers to monitor the expression of thousands to hundreds of

thousand genes at once [8,9]. A large number of studies have been

published over the last decade that attempt to classify and explain

several human diseases on the basis of gene expression data

obtained on groups of diseased and healthy subjects. Interestingly,

while the technologies behind the DNA chips used in these studies

are now quite mature, the methods for processing [10] and

analyzing the data they generate have not yet converged to a

consensus approach and there are still many new techniques that

are proposed. In this paper, we are concerned with the latter.

A set of objects O, each characterized by some measured

features D, is typically analyzed using clustering, a data analysis

technique that performs grouping such that objects in the same

group are more similar than objects in the other groups, where

similarity is defined by comparisons of the features. As such,

clustering techniques are at the core of many data science

disciplines, including pattern recognition, knowledge discovery,

and classification; their applications to studying data derived from

DNA microarray experiments seem therefore quite natural.

Microarray data however are somewhat special in that this

clustering analysis can usually be performed in two ways [11,12].

Let us consider for example a microarray experiment designed to

differentiate different cancer types. In such an experiment the

expression levels of Ng genes are recorded over Ns samples, i.e.

tissues extracted from a large group of healthy and diseased

subjects, leading to an expression matrix of size Ng|Ns. A typical

experiment would have Ng in the order of several thousands and

Ns in the order of tens to hundreds. A first approach to analyze

these expression patterns is to consider the Ns samples as objects

and the Ng genes as features. Clustering would then regroup

samples based on the similarities of their gene expression patterns,

hopefully leading to groups that can be identified with cancer
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types, with one additional group for the healthy subjects.

Conversely, the Ng genes can be considered as the objects with

the Ns samples becoming the features. Clustering would then

identify subsets of genes with similar expression patterns in the

different cells under study, with each subset hopefully involving

genes that are biologically related to the same mechanistic

pathway. Many methods have been developed that allow for the

two-way analysis of such data matrices, most of whom specifically

for microarray data. These methods are usually referred to as

biclustering, or co-clustering. It is beyond the scope of this paper to

provide an complete overview of these methods and we refer the

readers to this non exhaustive list of excellent reviews and

comparison studies [13–27]. In the following, we restrict ourselves

to describing techniques relevant to our new method.

The first approaches for analyzing microarray data either

clustered genes only based on expression patterns [11], or

clustered genes and samples independently, with the expression

data matrix being subsequently reorganized according to the

corresponding trees [12]. While the latter approach showed

promising results in separating cancerous from non cancerous

tissues as well as for identifying organization in gene expression in

these tissues, it does not take into account correlations between

genes and samples. For example, it would not reveal if a gene is

involved in more than one biological process. In addition, it

clusters the samples based on the expression patterns of all genes,

while only a few may be relevant to a specific subgroup; the other

genes would then be seen as noise that would affect the quality of

the clustering results. Ideally, clustering microarray data amounts

to identifying sub matrices of the expression matrices, i.e. subsets

of rows which exhibit similar behavior for a subset of columns.

These submatrices are usually referred to as ‘‘biclusters’’. Finding

the biclusters in an expression matrix usually depends on a merit

function that evaluates the quality of these biclusters. Several

methods have been developed to solve this NP-hard problem.

These methods can be divided into two somewhat opposite

groups: those that directly re-organize the rows and columns of the

matrix to increase local coherence between samples and genes

[13,21], thereby revealing biclusters, and those that instead narrow

down the samples and genes to directly identify stable biclusters, as

implemented in the coupled two way clustering (CTWC) method

[28–30] and in the interrelated two-way clustering (ITWC)

method [31]. The new method described in this paper falls in

the latter category.

The main rationale behind CTWC and ITWC is noise

reduction. By acknowledging that data in the expression matrix

are ultimately organized in biclusters (allowing for some data to be

outside), they proceed by iteratively constructing subgroups of

genes and samples with better signal to noise ratio. Reducing the

gene dimension is expected to improve the accuracy of class

discovery among the samples, which in turn is expected to guide

better grouping of genes. Our approach differs as it is designed to

dynamically validate biclusters by looking for consistency in the

two-way clustering of the data. Starting with a class C of samples,

we cluster the genes by restricting their features to the subgroup C.

For each cluster of genes G, we recluster all samples, limiting their

features to the subgroup G. If a resulting cluster of samples

contains exclusively members of the input class C, the couple (C,

G) is deemed to be a bicluster; the procedure is then iterated until

all stable biclusters are identified.

The key to the success of any of the biclustering methods

mentioned above, including our own, is the quality of the

clustering algorithm they use. In principle biclustering can be

adapted with any one-way clustering method; in practice however,

all methods have been optimized with a specific technique,

including Hierarchical clustering used by Eisen et al [11], a variant

of the deterministic annealing algorithm used by Alon et al [12],

the k-means and fuzzy C-mean algorithms used in variants of the

ITWC method [31,32], and the super magnetic clustering

algorithm (SPC) [33,34] used in CTWC [28]. Our procedure is

based on our own new clustering method, referred to as the Data

Cloud Geometry (DCG) [35] and its extension that collect the

information generated by DCG to generate an ultrametric

topological space, which is equivalent to a hierarchical tree, the

DCG-tree [36]. This new procedure has two main features that

are keys to its success. Firstly, it derives from the empirical

similarity measurements a hierarchy of clustering configurations

that captures the geometric structure of the data. This hierarchy is

then transformed into an ultrametric space, which is less sensitive

to noise in the data [36]. Secondly, it has a built-in mechanism for

self-correcting clustering membership across different tree levels.

These two key features make DCG well suited for two-way

analyses of microarray data. We note that DCG-tree is similar in

spirit to SPC; its implementation however is simpler and it is more

effective computationally. It has been applied to analyze fMRI

data [37], as well as to study binary networks [38].

We have applied our biclustering technique based on DCG-

tree, which we refer to as biDCG, to simulated as well as real data,

the latter derived from experiments on lung cancer [39]. We use

these results to illustrate some of the key features of the method,

including its robustness with respect to measurement errors and its

ability to detect robust biclusters.

This paper is organized as follows. The next section introduces

our approach and describes its implementation. The following

section presents the results of its applications on simulated and real

data. We then conclude with a discussion of future work.

Methods

biDCG: Motivation and algorithm
Let us consider a DNA microarray experiment in which the

expressions of the same Ng genes have been monitored over a set

of Ns samples. The resulting data are organized in an expression

matrix E such that Ei, j is the intensity (level of expression)

associated with gene i in sample j. Our goal is to identify partitions

of the genes and samples that map with co-regulated families of

genes and sub-classes of samples (such as healthy and diseased

subjects in the case of cancer-related experiments), respectively.

The main difficulties relate to correlations between these

partitions, due to the fact that a few genes may be involved in

more than one biological process. In addition, a biological process

specific to one sample sub-class may only involve a small subset of

the genes, in which case the expression levels of the other genes

included in the study constitute noise. To circumvent these

problems, we align our approach with the concept of coupled

biclustering, whose goal is to identify in the expression matrix E

subsets of rows (genes) which exhibit similar behavior for a subset

of columns (samples). The complete procedure, which we refer to

as biDCG, includes five main steps, namely:

step 1: For a given subclass S of the samples, construct the

DCG-tree on all genes. The features Ei, j representing the gene i

are restricted to the samples j belonging to S.

step 2: Choose a candidate subgroup G of the genes from a

clustering configuration on one level of the computed DCG-tree

in Step 1. Construct a DCG-tree for all samples, restricting the

features Ei, j representing a sample j to the genes i belonging to

G.

Iterative Clustering of DNA Microarray Data
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step 3: Check whether the computed DCG-tree in Step 2

contains a tree branch that only include samples from S, with

the rest of the samples being on different and separate branches.

If this is true, the pair (S,G) is identified as a bicluster of the

expression matrix E. Repeat the Step 2 and 3 for all other

subgroups of genes identified in step 1.

step 4: Switch to a different subclass S’, and repeat steps 1 to 3.

step 5: All biclusters (S,G) are collected and represented via a

specially constructed heat map.

The subclasses of sample considered in step 1 may come from

prior knowledge (in which case the clustering is supervised), or

from an initial partitioning of the samples using DCG (unsuper-

vised clustering). As described, biDCG is unsupervised and non-

parametric in nature. We note that the selection of initial row/

column partitioning is not expected to affect the final results, i.e.

the definitions of the biclusters: this was observed experimentally

on all test cases included in the Results section. The only

differences we noticed were the number of iterations needed to

reach the stable pattern. Step 3 of this procedure is really a built-in

mechanism for assessing the validity of a regrouping of the genes.

Step 4 is the actual iterative engine of the algorithm. It is stopped

when all subclasses S of the samples and all gene subgroups G
identified in relation to S have been analyzed, leading to stable

biclusters. The representation obtained in step 5 corresponds to a

standard heat map (i.e. a colored matrix H whose element H(i,j)
is a square colored upon the intensity Ei,j , i.e. the level of

expression associated with gene i in sample j) whose rows and

columns have been re-organized to identify the bicluster. Namely,

to draw a bicluster Bk that groups a subset of genes Gk and

samples Sk, the heat map is reordered so the Gk rows and Sk

columns appear together. We note finally that the roles of genes

and samples can be reversed, i.e. step 1 would start with a

subgroup of the genes G, and steps 2 and 3 would cycle through

subclasses S of samples.

The DCG-tree clustering procedure
A large and complex collection of data, usually called a data

cloud, naturally embeds multi-scale characteristics and features,

generically termed geometry. Understanding this geometry is the

foundation for extracting knowledge from data. We have recently

developed a new methodology, called data cloud geometry-tree

(DCG-tree) to resolve this challenge [35,36]. We believe that this

DCG-tree procedure is well suited to biclustering as (i), it

automatically derives a hierarchy of clustering configurations that

captures the geometric structure of the data and therefore does not

rely on external parameters, and (ii), it includes a built-in

mechanism for self-correcting clustering membership across

different tree levels, making it less sensitive to noise. A full

description of the DCG-tree method and algorithm is provided in

the original papers [35,36]. We provide a brief outline below as it

is essential to understanding the success of biDCG.

Starting from a set of data points and an empirical measure d
that defines the distances between these data points, our goal is to

derive a multi-scale partitioning of these data that illustrates their

geometry. The main idea of the DCG method is to embed this

geometry into a ferromagnetic potential landscape; its implemen-

tation is then based on two key observations. Firstly, it is observed

that the empirical distance measure d imposes a weighted graph

onto the collection of data points (renamed ‘‘nodes’’ in this

context). By equating the weight on an edge with a ferromagnetic

potential, this weighted graph is seen as equivalent to a potential

landscape, typically characterized by many wells with various

depths. Secondly, it is possible to explore this landscape and

therefore define its geometry by using the popular dynamic Monte

Carlo approach. A random walk as a function of ‘‘time’’ will

identify the many wells of the potential, as well as the probability

of jumping from one well to another. An additional advantage of

using dynamic Monte Carlo is that it provides a different

dimension to explore the geometry of the landscape, characterized

with its temperature parameter T . To benefit from the latter, we

define the ferromagnetic field such that it places the potential

wij~e{dij=T on link eij between nodes i and j on the graph, where

T is a parameter mimicking temperature. At a high temperature

T , a Markovian walk on the energy landscape will transition from

any node to most of the other nodes with more or less equal

probabilities. At a low temperature however, the Markov chain

tends to get trapped in potential wells for various periods of time

depending on the sizes of the well before it can escape. These two

observations led to the following two-device algorithm, named

Data Cloud Geometry or DCG, for deriving the underlying multi-

scale geometry of a data cloud. At a given temperature T , a

regulated random walk on the equivalent ferromagnetic landscape

as a function of ‘‘time’’ detects information about the number of

clusters and the corresponding cluster membership of individual

data points. By repeating this procedure at different temperatures,

the DCG algorithm derives the geometric hierarchy of the data

cloud as follows [35]. First, a range of values for the temperature is

defined according to the distribution of experimental distances

between the nodes. If computing time is not an issue, then ideally a

relatively dense set of initial temperatures is defined within this

range. In practice however, a ‘‘reasonable’’ set of temperature is

chosen, where reasonable is defined by the computing resources

available. For each temperature T , the number N(T) of clusters is

then estimated from the corresponding regulated random walk.

The plot N(T) as a function of T reveals a set of critical

temperatures [36]. We note that in fact the identification of these

critical temperatures is a key feature of DCG and it is an integrand

part of its data-driven discovery feature, as these temperatures

correspond to major phase-transitions in the data-clustering

dynamics. The critical temperatures are then taken as energy

barrier heights to define an ultrametric topology onto the data

cloud as it is a system at a ground state. This topology provides

measurable and natural distances between clusters. The ultra-

metric topological space can then be summarized as a hierarchical

tree, the DCG-tree [36].

There are two main advantages that result from using DCG-

tree for biclustering. Firstly, the DCG method is designed to

replace the empirical distance measure with an effective ultra-

metric distance that reflects the underlying structure of the data.

This is achieved through the characterization of the field potential

built on the links in the data. This ultrametric is much less sensitive

to measurement errors. Secondly, the DCG-tree has a built-in

mechanism to revise previous clustering decisions.

Computing distances between vectors of gene
expression data

At any step in the biclustering procedure described above, an

‘‘object’’ Oi is represented with a vector of expression patterns Xi

limited to a subset of ‘‘features’’ S extracted from the expression

matrix E, i.e. Xi~ Ei,k Dk[Sf g. Note that Oi can be a patient, in

which case the features are the expression levels of a set of genes

for that patient, or Oi can be a gene, in which case the features are

the expression levels of that genes over a set of patients. The

simplest measure of similarity between two expression vectors Xi

and Xj is obtained by computing the Euclidean distance between

the two vectors:

Iterative Clustering of DNA Microarray Data
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d(Xi,Xj)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
k[S

Ei, k{Ej, k

� �2

s

This is the distance measure we will use for the synthetic data in

the applications described below. For real data, the Pearson

correlation coefficient is usually preferred to the Euclidean

distance as it captures the similarity of the expression profiles

and ignores differences between the intensities [11,28]. The use of

Pearson’s correlation coefficient however relates to a possible

linear relationship between two expression profiles; we prefer a less

restrictive constraint and use instead the Spearman’s correlation

coefficient to measure the similarity between two profiles, as the

latter only measures the relevance of a monotonic relationship

between the two profiles. The Spearman’s correlation coefficient

SP(Xi,Xj) is computed as follows. First, the expression value Ei,k

for an object Oi is converted into its rank ri,k within the vector Xi.

Second, SP(Xi,Xj) is identified to the Pearson’s correlation

coefficient of the ranks:

SP(Xi,Xj)~

DSD
P

k[Sri,krj,k{
P

k[Sri,kð Þ
P

k[Srj,k

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DSD
P

k[Sr2
i,k{

P
k[Sri,kð Þ2

h i
DSD
P

k[Sr2
j,k{

P
k[Srj,k

� �2
h ir

Results and Discussion

We applied the new iterative re-clustering algorithm biDCG on

collections of synthetic and real data sets. The published synthetic

data sets have been specifically designed to assess the performances

of biclustering techniques [19]; biDCG was used on these sets in

an unsupervised way. The real data sets were extracted from

published cancer studies [39]. We used these data sets to highlight

the ability of biDCG to recover information from data for which

satisfactory biological explanation is available. All these experi-

ments (on synthetic and on real data) were performed in an

unsupervised way, i.e. without prior knowledge.

Assessing robustness of biDCG in presence of noise:
Synthetic data 1

The first synthetic data we consider were designed by Prelić et al
[19], following a setting originally proposed by Ihmels et al [40], to

study the effects of noise in expression matrices with non-

overlapping biclusters on the performance of biclustering methods.

In this setting, biclusters represent transcription modules; these

modules are defined by a set G of genes regulated by a set T of

common transcription factors and a set C of conditions in which

these transcription factors are active. The sizes of G, T , and C are

defined as n, t, and m, respectively. The transcription modules are

defined by two matrices:

i) An activation matrix A of size t|m with aij~1 if and only

if transcription factor i is active in condition j;

ii) A regulation matrix R of size t|n with rij~1 if and only if

transcription factor i regulates gene j.

In the first scenario considered here, t~10 non-overlapping

transcription modules, each extending over 10 genes and 5

conditions, emerge. Each gene is regulated by exactly one

transcription factor and in each condition only one transcription

factor is active. The corresponding data sets are expression

matrices E of size n|m with n~100 and m~50 that contain 10

implanted non overlapping biclusters. Two types of expression

matrices are considered:

i) Constant biclusters. The matrix E is set according to:

Ei, j~ max
1ƒkƒt

rkiakj

i.e. E is a binary matrix whose elements contained in

biclusters are set to 1.

ii) Additive biclusters. The matrix E is set according to:

Ei, j~
mz(j{1) if max1ƒkƒt rkiakj=0

U 0,m{1½ � otherwise

(

where U a,b½ � is a uniformly, randomly chosen integer in the

interval a,b½ �). In the resulting matrix, all elements contained

in biclusters have a value greater than m, while the remaining

elements contain random integer numbers in the range

0,m{1½ �.

We note that experiments including the constant biclusters are

designed to assess the performance of a biclustering method in

identifying subsets of genes with constant expression values within

a subset of conditions, according to the terminology introduced by

Madeira and Oliveira [16]. In contrast, the additive biclusters are

used as a basis to assess the performance of a biclustering method

to identify biclusters with coherent values and coherent evolutions.

Noise is simulated by adding random values from a normal

distribution to each element of the resulting expression matrices E.

We have considered two levels of noise (i.e. the standard deviation

of the normal distribution) for each type of matrices, namely 0.05

and 0.25 for constant biclusters, and 0 and 0.1 for additive

biclusters. Note that the latter matrices always contain noise

through the function U , even when the white noise added has a

standard deviation of 0.

If there exist a genuine bicluster in a data set, it is expected that

this bicluster will be identified as a block in the heatmap after

proper permutations on the rows and columns. Figure 1 illustrates

that this is indeed observed when applying the biDCG procedure

on the two types of expression matrices described above, for two

levels of noise. In all cases biDCG recovers correctly the 10

implanted biclusters. We note that the starting conditions (i.e.

whether the rows or the columns are considered first) have no

impact on the results: for all cases illustrated in Figure 1, the two

possible starting conditions led to the same biclusters.

To quantify how the performances of biDCG are affected by

the presence noise, we use the scores proposed by Prelić and co-

workers [19] to measure the performance of our biclustering

method. Let Bi denote the set of implanted biclusters and B the

output of biDCG. The average bicluster relevance R(B,Bi) reflects

the extent with which the generated biclusters represent true

biclusters. In contrast, the average module recovery R(Bi,B)
quantifies how well each of the true biclusters is recovered by the

biclustering algorithm. A full description of these scores is available

in the Supplemental Material of reference [19]. Results for

different noise levels for the two types of expression matrices (i.e.

with constant or with additive biclusters) are given in Figure 2. For

each noise value, 10 different data matrices have been generated

from the original gene expression matrix E. The performance of
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biDCG is averaged over these 10 input matrices. We observe that

biDCG is only marginally affected by the presence of noise and

recovers more than 98% of all actual biclusters for all noise levels

up to 0.1, for both the constant and additive test cases. While all

biclusters are correctly recovered at even higher noise levels (up to

0.4) in the constant bicluster case, we observe significantly reduced

performance in the additive case for noise levels above 0.1 (for

example at a noise level of 0.4, biDCG only recovers 56% of all

actual additive biclusters). The poorer performances in the

additive case are most likely a consequence of the fact that

background noise and biclusters with low expression levels are not

clearly separated in the presence of high levels of noise. At even

higher noise level (0.4 to 0.6), the performance of biDCG for

constant biclusters case is significantly reduced, as reported by

both the relevance and recovery scores.

For comparison, we show on Figure 2 the performances of

Bimax [19] on the same synthetic data. Bimax, which stands for

Binary Inclusion MAXimal biclustering algorithm, uses a fast

divide and conquer approach. Expression levels in the gene

expression matrix E are first converted to 0 or 1 based to a preset

cutoff. The corresponding binary matrix is then divided into two

sub matrices U and V by identifying regions that contains a high

density of 0 s or 1 s (after row and column rearrangements). The

matrices U and V are then sub-divided recursively until no more

sub-divisions can be found. The biclusters are then identified with

the sub matrices that do no contain only 0 s (see [19] for a full

description of the method). While Bimax has known limitations,

such as the drawback of possibly missing some good biclusters by

early splits, its simplicity and overall successes maintain it as the

method of choice for comparison against new biclustering

techniques (see for example [27,41,42]). Cleary, biDCG outper-

forms Bimax for both constant and additive clusters at high noise

levels. Interestingly, both methods are more robust with respect to

noise on the constant clusters than on the additive clusters. The

poorer performances on additive clusters are most likely due to the

fact that biDCG and Bimax have difficulties when background

Figure 1. Performance of biDCG on synthetic data representing non-overlapping biclusters. Panels A) and C) show the re-ordered heat
maps computed with biDCG based on synthetic expression matrices representing 10 constant non-overlapping biclusters with noise levels 0.05 and
0.25, respectively, while panels (B) and (D) show similar results for additive biclusters with noise levels of 0 and 0.1, respectively. See text for the
definition of ‘‘constant’’ and ‘‘additive’’ biclusters.
doi:10.1371/journal.pone.0102445.g001
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noise and biclusters are not well separated. The same argument

was already mentioned by Prelic and co-workers [19]. Finally we

note that since the synthetic data used here are the same as the

data used in the comparative studies of Prelic and al., a

comparison of Figure 2 in this paper with Figure 2 of reference

[19] indicates that biDCG compares well with other biclustering

techniques such as ISA [40], Samba [43], CC [44], OPSM [45],

xMotif [46], and Hierarchical Clustering.

Assessing robustness of biDCG in presence of overlaps:
Synthetic data 2

The second artificial scenario is designed to study the behavior

of biDCG with respect to increased interaction complexity. It is a

repeat of the scenario 1 described above, with the main difference

that a single gene may be activated by (dz1) transcription factors

and in each condition (dz1) transcription factors can be active,

where d is defined as the overlap level (d was set to 0 in scenario 1).

This increase in regulation complexity leads to overlaps of the

implanted transcription modules, i.e. of the biclusters. The

corresponding datasets are expression matrices E of size n|m

with n~100 and m~100zd that contain 10 possibly overlapping

biclusters. We still consider the two types of expression matrices

used in scenario 1, namely those with constant biclusters and those

with additive biclusters. All experiments are performed in the

absence of additional white noise; note that by construction the

matrices mimicking additive biclusters do contain noise.

Figure 3 depicts the recovery level and relevance of the

biclusters found by biDCG and Bimax on the data matrices

generated for scenario 2 for different overlap levels. biDCG

performs well at all overlap levels as it recovers all hidden modules.

As such, it performs as well as Bimax. Since the data used are were

generated the same way than the data generated by Prelić and co-

workers, we can also say that it compares favorably to the other

biclustering techniques they have tested, as observed when

comparing Figure 3 in this paper with Figure 2 of reference

[19]). In particular biDCG performs significantly better than

Figure 2. Effects of noise on the relevance and recovery levels of biclusters identified by biDCG and Bimax. The biclustering
techniques biDCG and Bimax [19] were applied on synthetic expression matrices designed to represent 10 biclusters, either constant (left panels, A
and C), or additive (right panels, B and D). In both cases, the average relevance (i.e. the extent with which a generated bicluster represent a true
bicluster) and the average recovery levels (i.e. the extent with which true biclusters are recovered) are plotted as a function of the noise level added
to the expression matrices.
doi:10.1371/journal.pone.0102445.g002
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traditional hierarchical clustering methods, highlighting the

advantage of an explicit biclustering technique.

One of the key features of biDCG is to iteratively refine the

definitions of the clusters along the subject and feature dimensions,

based on the dual relationships found between their subgroups (the

biclusters). This iterative procedure greatly improves the perfor-

mance of biDCG, as illustrated in Figure 4. We considered two

expression matrices used in the analysis described above, one for

constant and one for additive clusters, both with a large overlap

level (d~8). Naive analyses of these two matrices using DCG (i.e.

without iterative refinements of the biclusters) lead to inexact

identification of the transcription modules. For example, DCG

identified 11 biclusters for the constant clusters (shown as white

boxes in Figure 4A), while the matrix was generated with only 10

transcription modules. Iterative refinements of the biclusters

however lead to modifications of the cluster definition and

repositioning of the biclusters whose converged positions match

with the actual transcription modules for both the constant and

additive cluster cases (Figure 4).

We note that the test cases presented above relate to biclusters

overlapping over the diagonal of the heat map matrix. In situation

where overlaps would occur off-diagonal, we expect biDCG to still

recover the actual biclusters. The biDCG procedure iterates

alternatively in the row and column directions; as long as the non-

overlapping parts are not too small, biDCG is expected to identify

the differences among all involving row and column vectors of any

overlapping region, leading to their resolution.

Analyzing different types of lung tumors: Real dataset A
Synthetic data sets are inherently biased as they rely on an

artificial model with usually well behaved noise. As such, they

cannot fully reflect the actual behavior of an algorithm on a real

biological dataset. Therefore, we tested biDCG on a real,

published dataset of gene expression patterns for cancer affected

and healthy patients [39]. This dataset comes from a study that

includes data on 203 patients, out of which 186 were affected by

five types of lung cancer, namely adenocarcinoma (AD, 127

patients), squamous cell lung carcinomas (SQ, 21 patients),

pulmonary carcinoids (COID, 20 patients), small cell lung

carcinomas (SCLC, 6 patients), and other adenocarcinomas (12

patients that were suspected to suffer from extra pulmonary

metastases based on clinical history), and 17 healthy patients with

normal lungs (NL). The original study included expression data for

3,312 genes [39]; out of those 1543 were selected as being the most

Figure 3. Effects of overlaps on the relevance and recovery levels of biclusters identified by biDCG and Bimax. The biclustering
techniques biDCG and Bimax [19] were applied on synthetic expression matrices designed to represent 10 biclusters, either constant (left panels, A
and C), or additive (right panels, B and D). In both cases, the average relevance (i.e. the extent with which a generated bicluster represent a true
bicluster) and the average recovery level (i.e. the extent with which true biclusters are recovered) are plotted as a function of the overlap level
introduced in the expression matrices.
doi:10.1371/journal.pone.0102445.g003
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informative [23]. We note that in this data set, the AD patients

represent a very large majority, likely containing many subtypes.

This heterogeneity may have adverse effects on the clustering

procedures as it could blur the geometric structure of the data. To

alleviate this problem, we divided this dataset into two subgroups,

following the partition already considered in the original study

[39]. Namely, we considered a dataset A containing all patients

except those affected by AD, each characterized with the the

expressions of all 1543 genes mentioned above, and a dataset B

that contains 65 AD patients characterized with the expressions of

a reduced set of 675 genes. Results for the latter are presented in

the following subsection; here we focus on dataset A.

Using the Spearman’s correlation coefficient between the

expression vectors covering all 1543 genes mentioned above as a

distance measure between two patients, we computed first a DCG

analysis for all patients in dataset A. The corresponding tree is

shown in Figure 5B; a similar tree was already presented in our

previous work [36]. At the lower level, it contains 5 clusters, four of

which are pure, i.e. each of these four clusters only includes

patients with one specific type of lung cancer. We will refer to

these four pure clusters as SQ, COID, SCLC, and NL, even

though they do not match exactly the actual patient types, i.e.

there is a 0.94 relevance score for the clusters identified, and a 0.94

recovery score for the actual patient subgroups (see Methods for a

definition of these scores).

The only mixed cluster includes three patients with SQ and one

patient with SCLC. At a higher level in the tree, the patients are

divided into two conglomerate clusters, one with COID and

SCLC subtypes, the other including patients with SQ and NL.

The merging of the two subtypes COID and SCLC into one

conglomerate cluster indicates that patients with these two types of

cancers are ‘‘closer’’ to each other than to patients with either SQ

or NL cancer types. We should note however that the concept of

close relates here to the use of the Spearman’s correlation

coefficient; another distance measure may have led to other

conglomerate clustering.

We performed a full biDCG analysis in which we included all

non-AD patients from the original 203 patients, and all 1543

relevant genes. The final heat map is shown in Figure 5A. Our

primary focus is on the three categories NL, COID and SQ, as the

smallest category, SCLC contains only 6 patients. biDCG

identified a total of 7 biclusters (or dual relationships) for these

three categories, one for the SQ patients, three for the healthy

patients (NL), and three for the COID patients. Each of these

biclusters defines a set of genes that is most pertinent to one type of

patients. To illustrate the relevance of the information produced

by biDCG, we generated DCG trees over all patients, including

only subsets of genes identified within the biclusters. DCG trees

based on subsets relevant to SQ (SQ_A), COID (COID_A), and

NL (NL_A) are shown in Figure 5C, D, and E, respectively.

The DCG tree based on the SQ_A gene subset is expected to

provide a good separation of the SQ patients. Indeed, as observed

in Figure 5C, these patients are now part of the same cluster, while

they were divided into two clusters in the DCG tree based on all

genes (see discussion above). The three other types of patients

remain reasonably well partitioned within this SQ-specific tree,

although there are more outliers than in the DCG tree based on all

genes. In the DCG tree based on the COID_A gene subset

(Figure 5D), all COID patients remain regrouped. Interestingly,

one SCLC patient is now regrouped with these patients. Again the

three other types of patients remain well regrouped. The DCG

tree based on the NL_A gene subset maintains all healthy patients

together in the same cluster. Interestingly, there is more mixing of

the other patients within this tree, indicating that genes that can

act as signature of patients free of cancer would not be good

signatures of lung cancer type.

We note also that the iterative refinement of the biclusters

performed within biDCG lead to an improved definition of the

patient subgroups, as the relevance score for the clusters identified

increase from 0.94 to 0.96, with the same improvement for the

recovery score for the actual patient subgroups.

Figure 4. Iterative refinements of the biclusters identified by biDCG. The biclustering method biDCG was applied on two synthetic
expression matrices designed to represent 10 biclusters, either constant (left panel, A), or additive (right panel, B), both with overlap of 8 between the
biclusters (see text for details). The initial biclusters (shown as white boxes) defined by simple applications of DCG on the whole matrix do not match
correctly with the biclusters that were implanted; for example, DCG identified 11 biclusters in the constant cluster case (panel A). Iterative refinements
of the biclusters however lead to the correct identification of all 10 reference biclusters, as shown as green sub matrices.
doi:10.1371/journal.pone.0102445.g004
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B) DCG tree based on all genes

Figure 5. BiDCG analysis of lung cancer data. The set of patients described in Bhattacharjee et al. [39] include 21 patients with squamous cell
lung carcinomas (SQ), 20 patients with pulmonary carcinoids (COID), 6 patients with small cell lung carcinomas (SCLC), and 17 healthy patients with
normal lungs (NL). Gene expression patterns over 1543 relevant genes were collected for each patient. The biDCG procedure applied to these data
identified 7 biclusters, marked in white on the specially constructed heat map shown in panel A. Bicluster SQ_A for example identifies a set of genes,
named also SQ_A, that best identifies patients with SQ lung cancers. Similarly, the three subsets of genes NL_A, NL_B, and NL_C can be thought as
containing signature genes for healthy patients, while the subsets of genes COID_A, COID_B, and COID_C contain genes that identify best COID
patients. Panel B shows the DCG tree on all patients based on all genes, while panels C, D, and E show the equivalent DCG trees based on the gene
subsets SQ_A, COID_A, and NL_A, respectively. The color coding for the DCG trees is: purple, SQ, red, NL, green SCLC, and blue, COID.
doi:10.1371/journal.pone.0102445.g005
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The dual relationships or biclusters defined above identify a set

of genes that can be considered as markers for a certain

phenotype, should it be healthy or with a specific type of lung

cancer in the case considered here. The question arises as to the

biological relevance of these putative markers. Ideally, the gene

markers identified for a phenotype should be connected to this

phenotype through experimental evidence. In practice however,

such data on the direct relationship between a gene and a disease

is often not available. As an ersatz to such knowledge, it is possible

to test a group of genes for possible enrichment in a given

characteristic, which would indicate that these genes form an

homogeneous group and share (at least one) similar function. We

correspondingly tested the set of genes identified as markers for

SCLC, SQ, COID and NL against the Gene Ontology (GO) [47]

using two software packages designed to assess such gene clusters,

namely the Gene Ontology AnaLyzer (GOAL) [48] and gene

annotation tool associated with the Database for Annotation,

Visualization and Integrated Discovery (DAVID) [49]. Note that

DAVID includes more reference terms than GOAL, as it extends

beyond the Gene Ontology [49]. In this analysis, a group of gene is

considered ‘‘enriched’’ if at least one reference term from GO (or

another library considered by DAVID) is enriched with a P-value

better than 0.05 (where the Benjamini and Hochberg multiple test

correction has been applied [50]). Results are given in Table 1. We

found that all gene subgroups associated to SCLC, SQ, COID,

and NL patients, respectively, are considered enriched by DAVID,

with only the three subgroups COID_A, COID_C, and NL

confirmed enriched by GOAL. The differences between GOAL

and DAVID may only be a reflection of the different set of

reference terms they include. It remains that these results hint that

the biDCG method identified biclusters where the genes

corresponding to one patient subgroup have at least one

statistically significant common biological characteristics.

Analyzing different subtypes of a specific lung tumor
type: Real dataset B

The gene expression data from Bhattacharjee et al. [39] also

contained information about 65 patients suffering from lung

adenocarcinoma (AD). In their paper Bhattacharjee et al. [39]

performed a clustering analysis of these patients plus the 17

healthy patients using the probabilistic model-based clustering

method implemented in AUTOCLASS [51]. They identified five

subgroups of AD patients that they could relate to phenotypes:

four subclasses of primary lung adenocarcinomas (clusters C1 to

C4), and one subclass corresponding with patients with normal

lung but putative colon cancer metastases (cluster CM). The DCG

tree based on the AD patients also identifies five main clusters that

match with the clusters defined above, plus one cluster comprised

of mixed patients that originally included patients from the four

subclasses of primary lung adenocarcinomas identified by

Bhattacharjee et al. [39]. We refer to these five clusters as C19,

C29, C39, C49, and CM9, based on their degree of overlaps with

the original subgroups. We note however that in the DCG

analysis, there are some overlaps between subclasses C19 and

CM9. These overlaps, as well as the smaller clusters observed by

DCG may correspond to the smaller, less stable groups identified

in the original study by Bhattacharjee et al. [39]. These differences

translate into relatively poor relevance and recovery scores of 0.62

and 0.69, respectively.

We performed a full biDCG analysis in which we included all

65 AD patients and all 675 relevant genes. The final heat map is

shown in Figure 6. biDCG identified a total of 7 biclusters, two for

each of the two patient subgroups C19 and CM9, and one for each

of the patient subgroups C29, C39, and C49. In parallel, biDCG

leads to a modification of the memberships within the five clusters

C19, C29, C39, C49, and CM9, leading to relevance and recovery

scores of 0.81 compared to the subclasses defined in [39]. The

improved match between the two sets of subclasses is a good

indication that biDCG is capturing relevant information from the

data, as these subclasses were carefully validated in the original

study.

We assessed the biological relevance of the biclusters identified

by biDCG using GOAL [48] and DAVID [49], using the same

protocol described above for dataset A. Results are given in

Table 2. We found that all biclusters are significantly enriched by

at least one biological category according to either GOAL or

DAVID, and for most biclusters by both (the only three exceptions

are C19_B and CM9_B that are only found enriched by DAVID,

and reversely C39_A that is found to be enriched by GOAL only).

Just like for dataset A, these results place emphasis on the fact that

biDCG is able to retrieve biologically relevant information. Finally

we note that biDCG finds the highest proportion of enriched

biclusters on these two real data sets when compared to other

biclustering techniques such as Bimax [19], Plaid [52], CC [44],

and xMotif [46], as illustrated in Table 3.

Concluding remarks
Biclustering techniques have become very popular in cancer

genetics studies, as they are tools that are expected to connect

phenotypes to genotypes, i.e. to identify subgroups of cancer

Table 1. Dataset A: biclusters significantly enriched by any GO Biological Process category.

Bicluster a # of genes # of enriched terms b # of enriched terms c

av0:05 (GOAL) av0:05 (DAVID)

SQ_A 38 0 10

COID_A 134 1 1

COID_B 101 0 8

COID_C 98 1 1

NL d 365 80 29

SCLC 35 0 5

aBiclusters identified by biDCG, as marked on Figure 5.
bNumber of GO terms enriched in the gene set, with a significance level better than 0.05: GOAL [48] results.
cNumber of functional terms enriched in the gene set, with a significance level better than 0.05: DAVID [49] results.
dWe regrouped all genes from NL_A, NL_B, and NL_C, as those correspond to healthy patients.
doi:10.1371/journal.pone.0102445.t001
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patients based on the fact that they share similar gene expression

patterns as well as to identify subgroups of genes that are specific to

these subtypes of cancer and therefore could serve as biomarkers.

The relationships between such patient subgroups and gene

subgroups are referred to as bicluters. Biclustering techniques are

not yet fully mature and there are still many new such techniques

that are developed. The recent literature on this topic makes no

secrets of their limitations and problems. Some of these problems

relate to the treatment of noise, to the absence of a unifying

definition of the merit function that evaluates the quality of

biclusters, as well as to the choice of the clustering techniques used

to reveal these biclusters.

In this paper we proposed a new approach for identifying

biclusters in gene expression matrices that is designed to alleviate

at least some of these problems. This method, biDCG, rests on two

key concepts. First, it is important to capture the geometry of the

data (where data relates indifferently to the cancer patients or the

genes whose expressions are assessed), i.e. to identify robustly their

substructures. We use our own new clustering method, DCG-tree

that generates an ultrametric topological space on the data [36]. It

has two main features that are keys to the success of biDCG. First,

the ultrametric space is less sensitive to noise in the data, and

second, it has a built-in mechanism for self-correcting clustering

membership across different tree levels [36]. The second key

concept is that biDCG optimizes the definitions of bicluster

membership through an iterative reclustering procedure that is

designed to identify consistent and robust relationships between

patients and gene expression. We have validated biDCG both on

simulated and real data. Based on the simulated data we have

shown that biDCG compares favorably to other biclustering

techniques applied to cancer genomics data. The results on the

real data sets have shown that biDCG is able to retrieve relevant

biological information.

There is still much room for improvement within biDCG. For

example, while DCG has a built-in mechanism to convert the

metric used to compare gene expression data into a ultrametric,

the quality of this conversion cannot be dissociated from the

quality of the original metric. We have used the Spearman’s

correlation coefficient for this purpose. Its usage for comparing

gene expression profiles of two patients is quite intuitive. It

Figure 6. BiDCG analysis of lung cancer data for patients with adenocarcinoma (AD). We consider 65 patients with AD from the dataset
described in Bhattacharjee et al. [39]. Gene expressions of 675 relevant genes are available for each patient. The biDCG procedure applied to these
data identified 7 biclusters, marked in white on the specially constructed heat map. Each of these biclusters identifies a set of genes that can serve as
signature for a specific type of patients, a so-called dual relationship.
doi:10.1371/journal.pone.0102445.g006
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captures similar shapes of the expression profiles, ignoring

differences in magnitude. Its usage however to compare the

expression of two genes over a range of patients is less intuitive.

This issue was already discussed [28]; we believe it still needs to be

revisited. In addition, the final heat map currently generated by

biDCG provides a visual representation of the biclusters that are

identified. It does not provide any visual information however on

the strength and relevance of the bicluster memberships. We also

note that it is not fully clear which clusters identified by biDCG are

meaningful. We have used GOAL and DAVID to assess the

relevance of the biclusters, based on the idea that an enrichment in

a GO term within a gene group is likely to indicate that these

genes relate to a similar biological function. While our results are

insofar interesting in that respect, the problem of selecting the

most relevant biclusters still need to be considered for further

analysis. We plan to work on these issues in future studies.
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