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Abstract: The precursor prepared by co-precipitation method was sintered at various temperatures to
synthesize crystalline manganese tungstate (MnWO4). Sintered MnWO4 showed the best crystallinity
at a sintering temperature of 800 ◦C. Rare earth ion (Dysprosium; Dy3+) was added when preparing
the precursor to enhance the magnetic and luminescent properties of crystalline MnWO4 based
on these sintering temperature conditions. As the amount of rare earth ions was changed, the
magnetic and luminescent characteristics were enhanced; however, after 0.1 mol.%, the luminescent
characteristics decreased due to the concentration quenching phenomenon. In addition, a composite
was prepared by mixing MnWO4 powder, with enhanced magnetism and luminescence properties
due to the addition of dysprosium, with epoxy. To one of the two prepared composites a magnetic
field was applied to induce alignment of the MnWO4 particles. Aligned particles showed stronger
luminescence than the composite sample prepared with unsorted particles. As a result of this, it
was suggested that it can be used as phosphor and a photosensitizer by utilizing the magnetic and
luminescent properties of the synthesized MnWO4 powder with the addition of rare earth ions.

Keywords: MnWO4; photoluminescence; co-precipitation; magnetic; synthesis

1. Introduction

Recently, metal tungstate (MXO4, M = Ba, Ca, Mn, Sr, X = Mo, W) has attracted a
lot of attention because of its applicability as a multiferroic, light-emitting material, light-
emitting diode, and laser [1,2]. Among tungstate materials, the tetragonal scheelite-like
structure is a comporting phosphor host material and photocatalytic material because the
WO2−

4 group shows a good absorption rate in the ultraviolet (UV) and blue ranges. This
produces a specific emission band through energy transfer from the WO2−

4 group to the
RE ion [3–5]. In particular, manganese tungstate (MnWO4) crystal is a suitable parent
material for doping rare earth and metal ions because of its excellent thermal stability and
high energy transfer efficiency from tungsten ions to activator ions; also, rare earth and
metal ions are generated by energy transfer between 4f-4f shells [6]. This material has the
advantage of generating a high emission intensity with a narrow band gap and a variety of
emission wavelengths [7]. The kind and positional symmetry of the activator ions doped
in the thermally and chemically stable parent grid are important factors in implementing
various types of electrochemical, laser, multiferroic, and display devices [8,9]. The diversity
of the MnWO4 depends on the type and concentration of activator ions, the sintering
temperature, the size of the crystal grain, and the synthesis conditions. Martinez et al.
proposed that MWO4 (M = Ni, Co, Mn, Cu) can be synthesized using the dissolution-
precipitation method and applied to the photocatalytic evaluation field through structural
and UV absorbance characteristics analysis [10]. Li et al. synthesized MnWO4 nanoparticles
using co-precipitation and suggested that electrochemical capacitive performance could
be investigated by galvanostatic charge/discharge (GV), cycle electrochemical impedance
spectroscopy (EIS), and cyclic voltammetry (CV) [11]. It has been reported that by changing
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the amount of and type of rare earth ions added by changing the structure and luminescence
properties of BaWO4, it is possible to synthesize a phosphor with good crystallinity and
capable of implementing various colors using the co-precipitation method [10]. In addition,
the BaWO4:Ln3+ (Ln = Eu, Tb, and Dy) powders synthesized via a solid-state reaction,
which showed green, yellow, and red emissions [12]. As in the previous literature, various
synthesis methods and application cases of tungstate materials have been reported. In
this study, the MnWO4 precursor was prepared using the co-precipitation method and the
optimum synthesis temperature was investigated by varying the sintering temperature.
In addition, it was suggested that magnetic and luminescent properties can be realized
through the addition of rare earth ions, and that MnWO4 can be applied as a fluorescent
and photosensitizing material.

2. Materials and Methods
2.1. Synthesis of MnWO4 and Rare Earth Doped with MnWO4

Materials: manganese (II) nitrate (Mn(NO3)2·xH2O), sodium tungstate (Na2WO4),
dysprosium (III) nitrate (Dy(NO3)3·xH2O, Dy3+), and Allied epoxy set were used in this
study.

First, two beakers ‘A’ and ‘B’ were prepared. In beaker ‘A’, 1 mmol of Mn(NO3)2·xH2O
was added to 50 mL of distilled water (D.I water) and stirred until completely dissolved. In
beaker ‘B’, 50 mL of distilled water was added with the same moles of Na2WO4 and stirred
until dissolved. When reagents in both beakers had dissolved, beaker ‘B’ solution was
slowly poured into stirring beaker ‘A’ and stirred for about 30 min. After that, powder was
obtained using a centrifuge, and the precursor was prepared by rinsing with D.I water twice
to remove the remaining sodium. The prepared precursors were dried in an 80 ◦C oven for
about 18 h. The dried precursors were heat-treated at various sintering temperatures (80,
400, 600, 800, 900, and 1000 ◦C) and then structural characteristics were investigated. In
addition, to synthesize MnWO4 having magnetic and luminescent properties in the same
manner, MnWO4:Dy3+ powder was synthesized by varying the amount of Dy(NO3)3·xH2O
added to beaker ‘A’ when preparing the precursor, as shown in Figure 1.
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Figure 1. Schematic of MnWO4 powder synthesis experimental procedure.

2.2. Chraraterization

The structural properties of the MnWO4 and MnWO4:Dy3+ powders were obtained
by X-ray diffraction analysis (XRD; Rigaku Ultima IV, Tokyo, Japan). Raman spectra
were obtained using a Raman spectrometer (LabRam-HR 800, Horiba Jobin-Yvon, France),
equipped with a 514 nm laser as excitation source. The magnetic properties of the samples
were measured using a vibrating sample magnetometer with MnWO4 and MnWO4:Dy3+

samples after magnetization with 6 T pulsing magnetic field. The chemical composition
and oxidation state of the synthesized phosphors were investigated by X-ray photoelec-
tron spectroscopy (XPS, ESCALAB 250XI, Waltham, MA, USA). The peak position of the
insulating samples was calibrated using a C1 of 285 eV. The surface morphology and
microstructure were observed by field emission scanning electron microscopy (FE-SEM,
SU-8220, Hitachi, Tokyo, Japan) and transmission electron microscopy (TEM, JEM 2100F,
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JEOL, Japan). Photoluminescence spectra were obtained through a photomultiplier tube
operating at 250 V, a fluorescence spectrophotometer (Scinco, FS-2, Seoul, Korea), and an
optical microscope (OM, BX53M, OLYMPUS, Shinjuku, Japan).

2.3. Fabrication of MnWO4:Dy3+ Epoxy Composite

A composite was prepared by mixing with epoxy to find changes in the luminescence
properties of MnWO4 particles aligned by magnetic field influence. An epoxy resin and
a hardener were prepared at a weight ratio of 10:1, and 3 wt.% of MnWO4:Dy3+ powder
was added and stirred for 1 h. The mixture was poured into a mold and air bubbles were
removed in a vacuum desiccator for 1 h. After that, one specimen was hardened as is; the
other specimen was hardened by generating a magnetic field by installing magnets on both
sides of the mold to align the MnWO4:Dy3+ particles.

3. Results and Discussion
3.1. Crystallinity of MnWO4 According to Various Sintering Temperatures

The precursor prepared by co-precipitation method was heat-treated at various tem-
peratures to determine the crystallinity and structure of the synthesized MnWO4, followed
by XRD analysis, with results as shown in Figure 2a. A clear XRD pattern could not be
confirmed at relatively low heat treatment temperature, but it was found that MnWO4
could be synthesized even at low temperature. At the heat treatment temperature of
600 ◦C, crystalline MnWO4 was confirmed, as in the results of the International Center
for Diffraction Data (ICDD 01-080-0133, monoclinic, P2/c) reference. In particular, main
peaks of the (111), (011), (002), and (130) phases were identified [13]. In addition, as the
sintering temperature increased, the full width at half maximum (FWHM) of the main
peaks decreased and showed a tendency to decrease significantly at 800 ◦C (Figure 2b).
As a result of this, it is thought that the increase of the sintering temperature increases the
crystallinity of MnWO4 [14]. However, there was no significant change after the sintering
temperature of 800 ◦C and, for energy saving, the optimum sintering temperature was
determined to be 800 ◦C.
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3.2. Crystallinity, and Magnetic and Chemical State of MnWO4 Doped with Dy3+ Ions

To observe changes in the characteristics of MnWO4 with the addition of rare earth
materials, precursors were prepared by changing the amounts of dysprosium ions (Dy3+;
0.05, 0.1, 0.25, 0.5, 0.7, 1, 1.25 mol.%) added in the process of preparing the precursor by
the same experimental method. The prepared precursor was sintered at 800 ◦C. When
the added amount of Dy3+ ions was small (0.1 mol.%), the main peaks of the (−111),
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(011), (002), and (130) phases of the FWHM tended to increase. This is thought to be a
phenomenon caused by the addition to the lattice of rare earth ions with relatively large
ionic radii. In addition, when the amount of added rare earth material was 0.25 mol.%,
the FWHM decreased (Figure 3b), which is thought to have the effect of enhancing the
crystallinity [15]. However, as the amount of rare earth ions increased, the FWHM and
secondary phase were found. The secondary phase (Figure 3a, black diamond symbol) was
identified as a dysprosium oxide phase. When the added amount of rare earth ions was
0.25 mol.% or more, the crystallinity of MnWO4 decreased and a secondary phase formed;
the critical doping concentration was considered to be 0.25 mol.%.

Materials 2021, 14, x FOR PEER REVIEW 4 of 10 
 

 

the same experimental method. The prepared precursor was sintered at 800 °C. When the 
added amount of Dy3+ ions was small (0.1 mol.%), the main peaks of the (−111), (011), 
(002), and (130) phases of the FWHM tended to increase. This is thought to be a phenom-
enon caused by the addition to the lattice of rare earth ions with relatively large ionic radii. 
In addition, when the amount of added rare earth material was 0.25 mol.%, the FWHM 
decreased (Figure 3b), which is thought to have the effect of enhancing the crystallinity 
[15]. However, as the amount of rare earth ions increased, the FWHM and secondary 
phase were found. The secondary phase (Figure 3a, black diamond symbol) was identified 
as a dysprosium oxide phase. When the added amount of rare earth ions was 0.25 mol.% 
or more, the crystallinity of MnWO4 decreased and a secondary phase formed; the critical 
doping concentration was considered to be 0.25 mol.%.  

 
Figure 3. (a) XRD patterns of MnWO4:Dy3+ and (b) change of FWHM. 

Raman analysis was performed to double check the XRD data obtained for Dy3+ ion-
doped crystalline MnWO4. The vibration bands of MnWO4 shown in Figure 4a show six 
Raman active modes at 200, 320, 391, 539, 691, and 878 cm−1, This may be due to the ν(Ag), 
r(Bg), δ(Ag), symmetric Ag, (W2O4)n chain, νas(Bg) of the Mn cation, and the symmetric Ag 
oscillations of the two terminal WO groups, respectively. There is crystalline MnWO4, 
which correlates accurately with the literature [16]. The very strong band appearing at 878 
cm-1 corresponds to the strong symmetrical stretching of the WO2 group in MnWO4. The 
bands at 769 and 691 cm−1 indicate the existence of weak asymmetric and symmetric ten-
sile vibration modes of W–O–W bonds [17]. The peak at 539 cm−1 is attributed to the tensile 
vibration of Mn–O [18]. The band at 391 cm−1 indicates that there is a symmetric stretch of 
W–O–W [19]. The band at 320 cm−1 checked the moderate shear of WO2 and W–O–W [20]. 
The weak vibrating band appears at 251 cm−1, indicating the bending mode of [WO6]6 and 
the twisting vibrating mode of the WO2 group [21]. The two vibrating bands at 158 and 
121 cm−1 are translational modes of tungsten [22]. In Raman analysis, no significant change 
was observed between the MnWO4:Dy3+ and MnWO4 samples. To identify changes in the 
magnetic properties according to the amount of Dy3+ added to the synthesized crystalline 
MnWO4, vibrating sample magnetometer (VSM) analysis was performed (Figure 4b). 

In addition, it was shown that the magnetic properties increased as the amount of 
added Dy3+ ions increased. Due to its 4f orbital, the Dy3+ ion is a prototype of a highly 
correlated electronic system. It is partially occupied by the f shell, and the 4f orbital is split 
into seven non-degenerate orbitals. According to Hund’s law, the magnetic moments are 
caused by the 4f and 5d orbitals, which are consistent with the magnetic moments of the 
corresponding Dy3+ ions [23].  

Figure 3. (a) XRD patterns of MnWO4:Dy3+ and (b) change of FWHM.

Raman analysis was performed to double check the XRD data obtained for Dy3+ ion-
doped crystalline MnWO4. The vibration bands of MnWO4 shown in Figure 4a show six
Raman active modes at 200, 320, 391, 539, 691, and 878 cm−1, This may be due to the ν(Ag),
r(Bg), δ(Ag), symmetric Ag, (W2O4)n chain, νas(Bg) of the Mn cation, and the symmetric
Ag oscillations of the two terminal WO groups, respectively. There is crystalline MnWO4,
which correlates accurately with the literature [16]. The very strong band appearing at
878 cm-1 corresponds to the strong symmetrical stretching of the WO2 group in MnWO4.
The bands at 769 and 691 cm−1 indicate the existence of weak asymmetric and symmetric
tensile vibration modes of W–O–W bonds [17]. The peak at 539 cm−1 is attributed to the
tensile vibration of Mn–O [18]. The band at 391 cm−1 indicates that there is a symmetric
stretch of W–O–W [19]. The band at 320 cm−1 checked the moderate shear of WO2 and
W–O–W [20]. The weak vibrating band appears at 251 cm−1, indicating the bending mode
of [WO6]6 and the twisting vibrating mode of the WO2 group [21]. The two vibrating
bands at 158 and 121 cm−1 are translational modes of tungsten [22]. In Raman analysis,
no significant change was observed between the MnWO4:Dy3+ and MnWO4 samples. To
identify changes in the magnetic properties according to the amount of Dy3+ added to
the synthesized crystalline MnWO4, vibrating sample magnetometer (VSM) analysis was
performed (Figure 4b).

In addition, it was shown that the magnetic properties increased as the amount of
added Dy3+ ions increased. Due to its 4f orbital, the Dy3+ ion is a prototype of a highly
correlated electronic system. It is partially occupied by the f shell, and the 4f orbital is split
into seven non-degenerate orbitals. According to Hund’s law, the magnetic moments are
caused by the 4f and 5d orbitals, which are consistent with the magnetic moments of the
corresponding Dy3+ ions [23].
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Figure 4. (a) Raman shift of MnWO4 and MnWO4:Dy3+, (b) magnetization properties of MnWO4:Dy3+ performed at room
temperature, and (c) scale of M(10 kOe) vs. Dy3+ ions content.

To determine MnWO4:Dy3+ samples of binding energy, oxidation, and chemical state,
XPS analysis was performed on MnWO4:Dy3+ (Figure 5). Results show Mn 2p; two peaks
can be observed corresponding to Mn 2p3/2 and Mn 2p1/2 at 641 eV and 653 eV, respectively.
This indicates that the Mn present in the sample is in +2 oxidation state [24]. The XPS
spectrum of W 4f is shown in Figure 5b. It has two peaks, corresponding to W 4f7/2 and W
4f5/2 at 34.88 and 36.98 eV, respectively. The W 4f7/2 and W 4f5/2 doublets’ spin-orbit is at
2.1 eV, and the oxidation state of W can be specified as +6 [25]. The O 1s peak shows a main
component with a central energy of 530 eV and a lower binding energy, which monitored
to the formation of O2 oxide-coupled manganese and tungsten elements (Mn–O–W), as
shown in Figure 5c. In Figure 5e, the RE3+ 3d spectrum can be observed for the MnWO4
sample doped with RE3 +. The Dy3+ 3d spectrum is visible at 1317 eV and 1335 eV; these can
be assigned to the RE3+ 3d5/2 and 3d3/2 states, respectively, based on the Dy–O bond [26].
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Figure 5. XPS data of MnWO4:Dy3+: (a) survey, (b) W 4f, (c) O 1s, (d) Mn 2p, and (e) Dy 3d.
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3.3. Luminescence and Morphology Properties of MnWO4 Doped with Dy3+ Ions

The photoluminescence excitation (PLE) and photoluminescence (PL) spectra of
MnWO4: Dy3+ powder synthesized with activator Dy3+ ions of different doping con-
centrations were obtained. The excitation spectrum monitored at 575 nm consists of peaks
in the range of 200 to 400 nm. The PLE spectrum almost covers the ultraviolet region.
The excitation band is wide in the range of 270–300 nm to 286 nm, corresponding to the
Dy3+-O2− charge transfer band (CTB) in the matrix crystal [27,28]. When the concentration
of Dy3+ increased from 0.05 to 0.25 mol.%, the intensity of all excitation bands increased
rapidly, reaching a maximum at 0.1 mol.%, and then decreased significantly within the
Dy3+ concentration range of 0.5 to 1.25 mol.%, as shown in Figure 6a. For MnWO4: Dy3+

powder, the emission spectrum under 286 nm excitation shows two main emission bands at
480 and 575 nm, corresponding to the 4F9/2→ 6H15/2 magnetic dipole (MD) transition and
the transition of the electric dipole (ED) of 4F9/2 → 6H13/2, respectively. [29] The emission
intensity at 575 nm (ED) is very obvious. This result shows that when Dy3+ concentration
is 0.1 mol.%, the position of the Dy3+ ion in the MnWO4 host lattice shifts from a non-
antisymmetric position to an antisymmetric position. Among all the emission transitions of
Dy3+, the strongest yellow emission originated from the 4F9/2 → 6H13/2 ED transition. As
the concentration of Dy3+ ions increased from 0.5 to 1.25 mol.%, the intensity of the main
4F9/2 → 6H13/2 transition rapidly decreased due to the concentration quenching effect
(Figure 6c), mainly due to non-radiant energy transfer between Dy3+ activator ions. The
critical distance Rc between the Dy3+ activator ions can be calculated using the following
equation presented by Blasse [30],

Rc = 2(3V/4π χcZ)1/3 (1)

where V is the volume of the unit cell, Xc is the critical concentration (Dy3+ ions), and Z is
the number of host cations in the unit cell. For the MnWO4 host, V = 146.299 Å3, xc = 0.1
and Z = 2. Therefore, Rc was estimated to be about 11.65 Å. It is well known that there are
three types of interactions in which electric multipolar interaction is involved in the energy
transfer: dipole–dipole, dipole–quadrupole, and quadrupole–quadrupole interactions.
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Figure 6. Luminescence properties of MnWO4:Dy3+: (a) PLE spectra under 575 nm, (b) PL spectra under 286 nm, and (c)
integrated PL intensity.

To observe the shape and morphology of the synthesized MnWO4:Dy3+ particles, FE-
SEM and TEM analyses were performed and results are shown in Figure 7. MnWO4:Dy3+

was generally clustered in the shape of a long, round column in the vertical direction; the
size was about 4 µm in length and about 2 µm in width. In high-resolution analysis using
TEM, the interplanar distance of the (−111) phase was observed to be about 0.213 nm.
This was similar to the value calculated from the XRD data (d(−111) spacing; 0.299 nm). In
addition, Mn, W, O, and Dy were detected in EDX component analysis; components of
synthesized MnWO4:Dy3+ were confirmed.
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3.4. MnWO4:Dy3+ Particle Aligned in Epoxy Composite by Magnetic Field

As can be seen in Figure 8a, the synthesized MnWO4:Dy3+ powder was dispersed
in ethanol and then a magnet was installed. It was confirmed that the powders moved
in the direction of the magnet and can be used as a paramagnetic material. In addition,
movements of particles in the mixture made with epoxy polymer were observed through
an optical microscope according to the presence or absence of a magnetic field (Figure 8b).
MnWO4:Dy3+ particles were confirmed to align in the direction of the magnetic field.
Using these characteristics, we made an epoxy composite and investigated changes in
luminescence characteristics according to alignment of particles according to presence or
absence of magnetic field (Figure 8c). The composite in which the particles were aligned
by exposure to the magnetic field showed a strong luminescence intensity of about 10%
(Figure 8d). This is thought to be a phenomenon that occurs because the energy transfer of
the aligned particles works slightly more efficiently than in particles in which light energy
introduced from the outside is agglomerated. It seems that, utilizing these characteristics,
this material can be applied to fields such as display and medical engineering.
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Figure 8. (a) Photograph of MnWO4:Dy3+ powder moved to magnet in ethanol, (b) OM images of MnWO4:Dy3+ particle
behavior with magnetic field, (c) PL spectra, and (d) integrated PL intensity with magnetic field.

4. Conclusions

We propose that MnWO4 powder synthesis is possible in an easy way. After prepar-
ing the MnWO4 precursor using the co-precipitation method, the crystallinity change of
MnWO4 according to various synthesis temperatures was observed. The best crystallinity
was exhibited when the heat treatment temperature was 800 ◦C. At this time, dysprosium, a
rare earth ion, was added to enhance light emission and magnetic properties to synthesize
MnWO4:Dy3+. According to the amount of Dy3+ ions added, the magnetic properties
were enhanced and the luminescence properties were enhanced. When producing an
epoxy composite using these properties, it was found that the luminescent properties were
enhanced by about 10% as the particles were aligned in the magnetic field direction. It
was suggested that the synthesized MnWO4:Dy3+ powder can be used as a paramagnetic
material and can be applied to display and medical industries.
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