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Genome wide association analyses 
to understand genetic basis 
of flowering and plant height 
under three levels of nitrogen 
application in Brassica juncea (L.) 
Czern & Coss
Javed Akhatar, Anna Goyal, Navneet Kaur, Chhaya Atri, Meenakshi Mittal, 
Mohini Prabha Singh, Rimaljeet Kaur, Indu Rialch & Surinder S. Banga *

Timely transition to flowering, maturity and plant height are important for agronomic adaptation 
and productivity of Indian mustard (B. juncea), which is a major edible oilseed crop of low input 
ecologies in Indian subcontinent. Breeding manipulation for these traits is difficult because of the 
involvement of multiple interacting genetic and environmental factors. Here, we report a genetic 
analysis of these traits using a population comprising 92 diverse genotypes of mustard. These 
genotypes were evaluated under deficient (N75), normal (N100) or excess (N125) conditions of 
nitrogen (N) application. Lower N availability induced early flowering and maturity in most genotypes, 
while high N conditions delayed both. A genotyping-by-sequencing approach helped to identify 
406,888 SNP markers and undertake genome wide association studies (GWAS). 282 significant 
marker-trait associations (MTA’s) were identified. We detected strong interactions between GWAS 
loci and nitrogen levels. Though some trait associated SNPs were detected repeatedly across fertility 
gradients, majority were identified under deficient or normal levels of N applications. Annotation of 
the genomic region (s) within ± 50 kb of the peak SNPs facilitated prediction of 30 candidate genes 
belonging to light perception, circadian, floral meristem identity, flowering regulation, gibberellic 
acid pathways and plant development. These included over one copy each of AGL24, AP1, FVE, FRI, 
GID1A and GNC. FLC and CO were predicted on chromosomes A02 and B08 respectively. CDF1, CO, 
FLC, AGL24, GNC and FAF2 appeared to influence the variation for plant height. Our findings may 
help in improving phenotypic plasticity of mustard across fertility gradients through marker-assisted 
breeding strategies.

Indian mustard (Brassica juncea: AABB; 2n = 36) is an oilseed crop with adaptations all over the globe. It is a 
facultative long day (LD) plant which flowers early under long day length conditions and late during short days 
(SD). East European germplasms are adapted to LD conditions, while most Chinese winter type mustards are 
naturally biennial. Indian germplasms are winter annuals with a very short vegetative phase. However, flowering 
time variations exist within these geographic groups. Days to flowering can range from 20 to 145 days during 
Indian winters. Flowering along with the plant height are the key determinants of productivity. These are geneti-
cally complex but interrelated traits which directly or indirectly affect ecological and agronomic adaptations in 
plants. Both these traits are also influenced by Nitrogen (N) nutrition. Timely transition to flowering is central 
to the reproductive fitness as it enables reproductive phase to coincide with the conditions favourable for fruit 
development. Initiation of flowering requires a well-choreographed interplay of many genetic and epigenetic 
factors which function in concert with photoperiod, temperature, nutrient and moisture availability in the  soil1,2. 
A prolonged exposure to low temperatures (vernalization) is essential for flowering in temperate plants, which 
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respond to increasing day length conditions. In contrast, tropical plants flower at the onset of short days. This 
adaptive strategy prevents precocious flowering and damage to the reproductive structures. Over one hundred 
flowering genes are known in Arabidopsis3–6. Each of which interacts differently with the environment. FLOWER-
ING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) are regulatory pivots. 
These genes initiate transition to flowering by increasing the expression of meristem identity genes: APETALA 
1 (AP1), LEAFY (LFY) and CAULIFLOWER (CAL). Upstream of FT and SOC1, in the flowering pathway, are 
FLOWERING LOCUS C (FLC) and CONSTANS (CO), which control floral integrators (FT and FD). Both acts 
differently; a stronger expression of FLC represses FT and SOC1. In comparison, CO promotes expression of FT 
and SOC1. Expression of floral integrators is regulated by flowering pathways, which sense environmental and 
developmental cues, including gibberellin levels. FRIGIDA (FRI) is a regulator of FLC  expression7,8. FLC func-
tions in a dosage-dependent manner and delays  flowering9. Mutation in FRI reduces FLC expression and leads to 
early  flowering10. Winter annuals possess functional copies of both FRI and FLC, whereas summer annuals show 
mutations in either FRI or FLC or  both11,12. Allelic differences at these loci account for the maximum flowering 
time variation in Arabidopsis13. Many other genes associated with the photoperiod, vernalization, gibberellins 
and the autonomous pathways are also known.

Quantitative trait loci (QTLs) with large flowering effects have been mapped to different genomic regions 
in B. rapa14, B. napus15–17, B. oleracea18, B. nigra19 and B. juncea20. A very important flowering gene, BrFLC2 
co-localized with a flowering time QTL detected on B. rapa linkage group  R0221. Forty-two small effects, but 
statistically significant QTLs were identified in a multi-environment  study17. Some of these QTLs were later 
validated by other  investigators22,23. However, majority of such studies used data for days to initiation of flower-
ing as an indicator for  maturity14,20,24–26. Genetic analysis with a doubled haploid (DH) population of B. napus, 
developed from parents differing for vernalisation  responses27, led to the identification of flowering time QTLs in 
chromosomes A02, A03, A07, and C06. These included homologues of known Arabidopsis flowering genes: VER-
NALISATION INSENSITIVE 3, AP1, FLC, FLT, CURLY LEAF, SHORT VEGETATIVE PHASE, GA3-OXIDASE 
and LEAFY. Upadhyay et al.28 have reported 17 significant marker trait associations (MTA’s) for six quantitative 
characters, including days to flowering and plant height in B. juncea. These explained 3.0–33.2 percent of the 
phenotypic variations. Availability of high-density linkage maps in B. juncea29–31 have also facilitated identifica-
tion of QTLs linked to flowering time and plant height in both A- and B-genome  chromosomes32. GWAS is an 
excellent alternative to biparental mapping populations as it is scalable and can detect linkage disequilibrium 
(LD) between molecular markers and the gene candidates. For the present studies, we used an SNP genotyped 
association panel of mustard to investigate genetic factors controlling variation for flowering phenology and 
plant height in response to external nitrogen (N) application. Phenotyping was carried out by measuring seven 
flowering related traits at three levels of N application and repeated over two crop seasons. Extensive variation 
was recorded for flowering time, maturity and plant height. Genotypes × nitrogen interactions were highly 
significant. Genotypes generally flowered and matured earlier at N75 as compared to N100 and N125. Genome 
wide association studies (GWAS) identified 282 single nucleotide polymorphism (SNP) markers that were associ-
ated with the test traits. Annotation of associated genomic regions predicted the role of several important genes 
related to the light perception, circadian pathway, floral meristem identity, flowering regulation, gibberellic acid 
pathway and general plant development. We were able to predict multiple copies of as many as six flowering 
genes. These outcomes emphasized the robustness of our strategy of multiple layers (N-levels in present context) 
of evaluating the same set of germplasm.

Results
About 148 million clean GBS reads (56.7 Gb) were used to develop SNP genotypes for the diversity set. Various 
filtration steps narrowed the number to 16,250,575 SNPs with the base quality of 30. The SNPs with minor allele 
frequency (MAF) < 0.05 were deleted to reduce false positives. After quality control and imputation only 406,888 
SNPs remained, with an overall missing rate of 20%. Final data set was then transformed to numeric values for 
population structure with minimal remaining missing data filled using the genotypic means of the lines. SNPs 
were counted at 1 Mb window size for the called genotypes along the pseudo-chromosome as displayed in Sup-
plementary Fig. S1. A-genome harboured higher number of SNPs (212,979) as compared to B-genome (193,909). 
Number of SNPs per chromosome ranged from 13,267 (Chr. A10) to 40,509 (Chr. B05).

Population structure and linkage disequilibrium. The genetic components of the diversity set were 
established by using STRU CTU RE (K = 1 to 10). The value of Evanno’s ΔK peaked at K = 3. Structure (Fig. 1) 
included 61 lines in group one (G1), 12 in group two (G2) and 10 in group three (G3). Nine genotypes were 
admixtures. G1 comprised most mustard varieties grown in India with probability level higher than 0.5. All 
resynthesized genotypes with determinate inflorescence were included in G2. In contrast, most of exotic inbred 
lines fell in the group G3. Genetic distance kinship matrix provided estimates of the relatedness among indi-
viduals (K model). These allowed splitting of 92 inbred lines into three major groups (Supplementary Fig. S2). 
Maximum numbers of inbred lines fell in G1 (39) followed by G2 (34) and G3 (19). G1 and G2 showed relatively 
lower within group relatedness. Group 3 depicted maximum genetic relatedness with a range from -1.0 to -3.0 
among inbred lines. Pairwise LD was estimated as r2 between selected set of 66,835 SNP marker genotypes in the 
association panel (Fig. 2). Average r2 was used as a function of inter-marker distance to estimate the LD decay in 
the population. Extent of LD was first evaluated for each adjacent SNP pairs. Estimates of mean r2 between 0 and 
1000 kb inter-marker distance indicated that average r2 started at about 0.40 for very close markers (< 10 kb), and 
decayed to approximately 0.21 for SNPs as distant as 200 Kb. The mean r2 dropped below 0.1 when inter-marker 
distance increased beyond 1 Mb. 
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Analysis of the phenotypic data. High phenotypic variations were observed for flowering time {DFI 
(days to flower initiation), DFL (days to fifty percent flowering), DCF (days to complete flowering)}, MRT (days 
to maturity), GDD (growing degree days), HTU (helio-thermal unit), PTU (photo-thermal units) and PH (plant 
height) at three levels of N application (Fig. 3a). Analysis of variance for the design indicated strong genotypic 
and genotype × environment (N-levels and years) interactions (Supplementary Table S1). Distribution of the 
phenotypic variations was largely normal during year 1 (Y1) and year 2 (Y2). However, the distribution of vari-
ation was somewhat skewed during Y2 for DCF and PH. Trait coefficients of variation in the diversity panel and 
across different sub-groups within diversity panel are presented in Fig. 3b. Flowering traits had higher coeffi-
cient of variation as compared to maturity and plant height. Impact of N-level and crop season on coefficient of 
variation was also apparent. DFI ranged from 44.54 to 73.31 days across nitrogen levels during Y1 and 41.00 to 
81.00 days during Y2. Germplasm lines generally flowered earlier at N75 as compared to N100 and N125. RLM-
619-AB, M-305, DJ-108 DT-2 were consistently early flowering genotypes. DFL ranged from 49.29 to 79.80 days 
during the Y1 as compared to 45.50 to 89.00 days during the Y2 (Table 1, Fig. 3a). DCF varied from 103.00 to 
138.19 days and 75.50 to 132.50 during the Y1 and Y2 respectively. MRT ranged between 138.00 to 173.19 days 
(Av. 154.92 days) during Y1. This was in contrast to 110.50–167.50 days (Av. 145.72 days) during the Y2. DJ-55, 
MLM-19, CSR-957 and EC-56–4647 were earliest to mature. GDD ranged from 446.85 to 792.00 degree days 
during the Y1 and from 456.95 to 811.50 degree days during the Y2 (Fig.  4a). PTU varied from 4392.10 to 
7970.90 units and 4640.15 to 8303.00 units during the Y1 and Y2, respectively. HTU averaged at 2887.08 units 
(2367.25 to 3934.50) for the Y1 and 2997.50 units (2360.60 to 4013.00) units for Y2. Coefficients of variations 
were higher for GDD and PTU as compared to HTU (Fig. 4b). PH varied between 173.28 and 254.37 cm during 
the Y1 with mean value of 217.92 cm, which was almost at par with the values recorded during the Y2 (Fig. 3a). 
As is expected for functionally and developmentally related traits, strong phenotypic correlations were observed 
among the traits investigated. DFI, DFL, GDD, HTU, PTU and PH were strongly correlated in across years and 
N-levels (Supplementary Fig. S3).  

Figure 1.  Population structure analysis suggesting three population groups in Brassica juncea association 
panel at ΔK = 3. Group 1 primarily included mustard varieties grown in India, while all resynthesized B. juncea 
genotypes with determinate inflorescence fell in the group 2. Exotic mustard genotypes formed group 3.

Figure 2.  Linkage disequilibrium plotted over genetic distance, with r2 dropping below 0.1 at inter-marker 
distance beyond 1 Mb.
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GWAS studies. GWAS was conducted to identify marker trait associations (MTA’s) based on the multi-
environment phenotyping data (Table 2) using GAPIT3. An ideal model is expected to show a fair degree of 
uniformity between the observed and expected p-values in the plot. We compared p values [observed − log10 
(p-value)] and their expected ranked values [expected − log10 (p-value)] through quantile–quantile (QQ) plots 
to test the predictability of applied GWAS models, over all environments (Supplementary Fig. S4). An arbitrary 
threshold value of –log 10 (p-value ≥ 3.0) allowed detection of 282 MTA’s (Supplementary Fig. S5). Genomic 
regions around the identified SNPs were further annotated to decipher trait related genes. Thirty-eight MTA’s led 
to prediction of genes involved in light perception pathway. Phenotypic variation explained ranged from 10.69 to 
20.23%. Of these, 11 MTA’s were detected for chromosome A02 in the genomic region 36,472,064–36,487,130 bp. 
These MTA’s explained variation for GDD, PTU and PH at N75 and N100 levels of nitrogen application. Annota-
tion predicted CYCLING DOF FACTOR 1 (CDF1)-AT5G62430 in the vicinity. 10 MTA’s involving chromosome 
A08 were found associated with FD-AT4G35900 at N100 for DFL. CONSTANS (CO)-AT5G15840 was envisaged 
on chromosome B08. CRY1 (CRYPTOCHROME 1)-AT4G08920 was predicted through 15 MTA’s, identified 
in the region 338,948–346,586 on B03. These MTA’s involved two flowering traits (DFI, DFL) and were com-
mon across three levels of N application. Two Circadian pathway genes, CKB4-AT2G44680 and AT1G22770-GI 
(GIGANTEA) were envisioned for DFL at N75 for chromosomes A05 and A09, respectively. These associations 
explained 9.79–11.79% of phenotypic variation for flowering traits.

Four f loral meristem identity genes: AGL24 (AGAMOUS-LIKE 24)–AT4G24540, AP1 
(APETALA1)–AT1G69120, AP2 (APETALA2)–AT4G36920 and JMJ14 (JUMONJI 14)–AT4G20400 were pre-
dicted. SNPs associated with these genes explained 2.63–13.19 percent of the phenotypic variation observed for 
flowering and derived traits. SNPs annotating three copies of AGL24-AT4G24540 were located in genomic regions 
on A02 (34,934,199–34,934,540), A03 (33,169,034–33,177,336) and B02 (59,088,464; 64,496,077–64,499,514). 

Figure 3.  (a) Phenotypic variations for days to flowering initiation (DFI), days to 50% flowering (DFL), days 
to complete flowering (DCF), days to maturity (MRT) and plant height (PH) in Brassica juncea association 
panel; (b) coefficient of variations for flowering traits as compared to the days to maturity and plant height.
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AP1-AT1G69120 was envisaged close to the genomic region harboring 13 SNPs associated for HTU and PTU. 
This gene was envisaged close (0.04 kb) to the peak SNP on the chromosome A02. Other copy of the same gene 
was predicted on chromosome B02. AP2-AT4G36920 and JMJ14-AT4G20400 were identified for DFL on chro-
mosomes B02 and B03 respectively. GWAS led to the prediction of 15 genes involved with flowering regulation. 
Majority of these MTA’s were associated with A-genome. KHZ1-KHZ2-AT5G06770, FLOR1-AT3G12145, FLC-
AT5G10140 and FLM (FLOWERING LOCUS M)—AT1G77080 were envisaged on chromosome A02. KHZ1-
KHZ2-AT5G06770 and FLOR1-AT3G12145 appeared to influence variation for GDD, HTU and PTU. These 
genes were envisaged at the distances of 2.56 and 2.99 kb from the respective peak SNPs. FLOWERING LOCUS 
C (FLC)-AT5G10140 was predicted at a distance of 10.61 kb from the SNP A02_1762477. FLM-AT1G77080 was 
annotated in vicinity of 28 SNPs associated with DFL, GDD, HTU and PTU. A distance of 0.82 kb separated 
FLM from the peak SNP. FLOWERING LOCUS D (FLD)-AT3G10390 appeared close (0.94 kb) to the SNPs 
located on chromosome A03 (19,913,046–19,923,910). AGL6 (AGAMOUS-LIKE 6) and SOC1 (SUPPRESSOR 
OF OVEREXPRESSION OF CO1) also known as AGL20 (AGAMOUS-LIKE 20) were detected on chromosome 
A05. Associated SNPs were detected for DCF and MRT at N75. AT2G32950-COP1 was predicted < 2 kb away 
from peak SNP (N75) present on chromosome A05 (7,544,327–754,699). AT1G68050-FKF1 (A07) could explain 
variation for DFI at N100. We predicted two copies of FT (FLOWERING LOCUS T)-AT1G65480 on the chromo-
somes A07 and B06. These explained variation for DFL and MRT at N100. ARP6-AT3G33520 was envisioned on 
chromosomes A08 for its role in the heredity of DCF. One copy each of FVE was recognized on chromosomes 
A09 and B04 at respective distances of 3.43 kb and 0.66 kb from the peak SNPs. Two copies of AT4G00650-
FRIGIDA (FRI), an important flowering regulator, were recognized on chromosomes A10 and B08. Six SNPs on 
B06 (8,515,215–8,524,113) were found associated at the distance of 46.85 kb from MAF5-AT5G65080. HAM1 
(HISTONE ACETYLTRANSFERASE OF THE MYST FAMILY 1)—AT5G64610 was also predicted at a distance 
of 0.61 kb from key SNP on chromosome B07. A gibberellin pathway gene, AT3G05120-GID1A (GA INSENSI-
TIVE DWARF 1A) seemed to influence variation for DFI, DFL and DCF at N75 and N125 levels of N application. 
Another gibberellin pathway gene, AT4G02780-GA1 (GA REQUIRING 1), was recognized on chromosomes B03. 
ATGA3ox3 (ARABIDOPSIS THALIANA GIBBERELLIN 3-OXIDASE), also predicted on chromosome B03, was 
significant contributor to variation observed for DFL trait at N100 level. Three genes involved in development 
processes of plants were envisaged: AT5G56860-GNC (GATA NITRATE-INDUCIBLE CARBON-METABOLISM-
INVOLVED), ATBPC2-AT1G14685, FAF2 (FANTASTIC FOUR 2)–AT1G03170 and ATJ3 (ARABIDOPSIS THALI-
ANA DNAJ HOMOLOGUE 3)-AT3G44110. The chlorophyll biosynthetic gene AT5G56860-GNC was significant 

Table 1.  Basic descriptive statistics of flowering traits in B. juncea diversity fix foundation set (BjDFFS) during 
2015–16 and 2016–17. P pooled. **Significant at 1% level. *Significant at 5% probability level. Analysis of 
variance for the design was used for the test of significance.

Traits Year

Mean ± standard error Range C.V Significance

N75 N100 N125

N75 N100 N125

N75 N100 N125 N75 N100 N125Min Max Min Max Min Max

Days to 
flower  
initiation 
(DFI)

1 56.97 ± 0.49 59.00 ± 0.53 61.62 ± 0.54 44.54 69.39 48.35 69.92 50.42 73.31 8.24 8.57 8.38 ** ** **

2 54.39 ± 0.63 58.05 ± 0.83 58.38 ± 0.85 41.50 68.50 41.00 77.50 43.00 81.00 11.06 13.72 14.05 - - -

P 55.68 ± 0.41 58.48 ± 0.50 60.00 ± 0.51 46.78 64.37 47.43 69.52 49.43 71.09 7.00 8.17 8.18 ** ** **

Days 
to 50% 
flowering 
(DFL)

1 63.13 ± 0.64 63.56 ± 0.67 65.94 ± 0.58 49.29 78.83 51.90 78.00 53.11 79.80 9.72 10.19 8.40 ** ** **

2 60.56 ± 0.82 62.87 ± 0.96 62.72 ± 0.84 46.00 79.50 45.50 89.00 47.00 81.00 12.92 14.59 12.84 - - -

P 61.85 ± 0.53 63.14 ± 0.62 64.36 ± 0.51 51.65 74.07 50.72 75.65 53.84 76.06 8.27 9.36 7.59 ** ** **

Days to 
complete 
flowering 
(DCF)

1 120.84 ± 0.49 113.60 ± 0.45 125.33 ± 0.61 110.12 131.53 103.00 122.00 113.41 138.19 3.92 3.84 4.66 ** ** **

2 116.31 ± 1.11 101.19 ± 1.21 162.02 ± 0.10 103.50 125.25 75.50 123.50 81.00 132.50 4.29 11.44 9.15 - - -

P 115.75 ± 0.41 109.89 ± 0.77 108.96 ± 0.47 106.63 123.00 92.37 125.22 98.98 120.23 3.36 6.79 4.18 - - -

Days to 
maturity 
(MRT)

1 155.84 ± 0.49 148.60 ± 0.46 160.33 ± 0.61 145.12 166.53 138.0 157.00 148.41 173.19 3.04 2.94 3.64 ** - **

2 148.44 ± 0.51 136.19 ± 1.21 152.53 ± 0.92 138.50 160.25 110.50 158.50 116.00 167.50 3.28 8.50 5.78 - - **

P 150.75 ± 0.46 144.89 ± 0.78 144.70 ± 0.56 141.63 158.00 127.37 160.22 133.98 169.00 2.58 5.15 3.17 - - -

Growing 
degree 
days 
(GDD)

1 573.75 ± 16.10 587.62 ± 16.15 606.19 ± 20.65 446.85 677.80 476.50 751.45 484.90 792.00 3.97 3.89 4.82 ** ** **

2 584.25 ± 17.24 614.20 ± 31.58 615.95 ± 24.31 456.95 691.30 480.75 777.85 501.70 811.50 4.17 7.27 5.58 ** ** **

P 579.00 ± 20.60 587.62 ± 16.15 611.07 ± 22.66 512.40 653.40 476.50 751.45 528.50 738.75 7.12 3.89 7.42 ** ** **

Photo-
thermal 
unit 
(HTU)

1 5681.68 ± 166.37 5823.59 ± 165.71 6015.06 ± 212.67 4392.10 6758.25 4691.15 7533.50 4775.85 7970.90 4.14 4.02 5.00 ** ** **

2 5930.92 ± 177.26 6239.79 ± 329.61 6257.40 ± 250.94 4640.15 7032.45 4880.30 7948.05 5091.80 8303.00 4.23 7.47 5.67 ** ** **

P 5806.30 ± 211.21 5823.59 ± 165.71 6136.23 ± 234.17 5055.10 6642.63 4691.15 7533.50 5218.52 7525.60 7.28 4.02 7.63 ** ** **

Helio-
thermal 
unit 
(PTU)

1 2848.08 ± 89.86 2879.31 ± 56.88 2933.86 ± 78.68 2367.25 3245.70 2572.15 3690.80 2598.70 3934.50 4.46 2.79 3.79 ** ** **

2 2914.45 ± 69.38 3033.91 ± 154.71 3044.14 ± 105.61 2360.60 3349.20 2483.05 3810.60 2640.90 4013.00 3.37 7.21 4.91 ** ** **

P 2881.27 ± 78.68 2879.31 ± 56.88 2989.00 ± 94.93 2612.77 3198.58 2572.15 3690.80 2731.50 3557.18 5.46 2.79 6.35 ** ** **

Plant 
height 
(PH)

1 210.29 ± 1.39 216.37 ± 1.23 227.11 ± 1.27 173.28 249.87 187.17 243.15 201.02 254.37 6.36 5.47 5.38 ** ** **

2 207.57 ± 1.69 206.51 ± 1.37 215.93 ± 1.83 176.40 244.00 165.15 235.80 161.90 260.90 7.82 6.35 8.12 - * -

P 208.81 ± 1.10 211.37 ± 1.02 221.58 ± 1.04 181.48 232.91 182.52 235.93 198.26 247.41 5.06 4.61 4.50 ** - **
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for PH on A03 (5,286,505–5,290,395) at N75 and N100 levels of N application. The same gene was detected for 
DFI trait close to the SNP B08_14118234 (5.71 kb) at N100. Only one SNP, B03_115277 was identified 0.06 kb 
away from FAF2 or FTM5 (FLORAL TRANSITION AT THE MERISTEM 5) which is responsible for regulating 
shoot meristem size in A. thaliana. Similarly, ATJ3-AT3G44110 was detected at B05. We also estimated LD blocks 
for adjacent SNPs present within 1 Mb of the predicted genes (Table 3). 43 significant SNP blocks were identified. 
Of these, 41 (95%) were located within the LD blocks. SNPs within LD block had LD (r2) values > 0.20. Size of 
these LD blocks ranged from 0.01 to 225.16 kb. Longest LD block (225.16 kb) was identified on chromosome 
A02 from 34,557,898 to 34,783,055 bp for gene AP1-AT1G69120. It also included the maximum number of SNPs 
(366). In contrast, numbers of significant SNPs (78) were located in terminal region of chromosome A02 from 
1,202,251 to 1,217,865 bp within the LD block of 23.75 kb.

Discussion
Days to flowering, maturity and plant height have been the major targets of selection during domestication due to 
their importance for the reproductive success, uniform ripening and ease of harvesting. Breeding for these traits 
is important even now as new cultivars must fit into newly emerging cropping systems and geographic niches. 
Optimum transition to flowering is also important to correct climate change-induced “phenological mismatches” 
that are creeping into many crops and their current ecosystems. However, phenological alterations are difficult to 
accomplish due to the complex genetics and strong genotype × environmental interactions. These hinder selec-
tion gains. N is an important external cue as it is both a plant nutrient and a signalling  molecule33. N availability 
affects plant phenotypes by genome-wide changes in the expression pattern(s) of the genes associated with differ-
ent metabolic  processes34–36. Testing of genotypes at three levels of N application in the current studies produced 
highly significant G × Y, G × N and G × N × Y interactions. This was an expected as phenotypic expression of a 
genotype is only one among many phenotypic manifestations’ realizable under different environments. Although 
the test genotypes varied for their individual responses, most flowered and matured earlier at N75 in comparison 
to N100 and N125. Lower N availability induces early  flowering37–39, while high N delays  it40. Genotype-specific 
flowering time variations in response to the applied N have been observed earlier in A. thaliana41. Population 
structure and kinship analysis allowed clustering of germplasm into three broad groups. Most of the resynthesized 
and exotic (largely east European) genotypes fell in to the groups distinct from the one harbouring indigenous B. 
juncea lines with some admixing. This kind of population structure suggested an independent evolution of Indian 
and east European genotypes. Admixing may have resulted from extensive inter-varietal hybridizations practised 
by earlier and present-day plant breeders. We used GWAS, an LD based method, to investigate trait genetics. 
The resolution with which a QTL can be mapped depends upon the speed of LD decay, which is the outcome of 
multiple genetic recombination’s across the  genome42,43. Mustard is a self-pollinated crop, with varying amount 

Figure 4.  (a) Phenotypic variations for growing degree days (GDD), photo-thermal units (PTU) and Helios 
thermal unit (HTU) at initiation of flowering in the B. juncea diversity panel; (b) coefficient of variations for 
GDD, PTU and HTU.
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Table 2.  Genome wide association studies to predict candidate genes associated with flowering, maturity and 
plant height. Chr chromosome, NSNPs number of associated significant SNPs, Dis. (kb) distance of annotated 
gene from nearest significant associated SNPs with the trait, R2 phenotypic variation explained in percentage.

Pathway Predicted gene Associated traits N-level Chr SNP position NSNPs Dis. (kb) R2 (%) Gene function

Light perception

CDF1-AT5G62430
GDD, PTU N75, N100

A02
36,472,064–36,472,185 6 14.33 14.31 Regulates light percep-

tion and signallingPH N75 36,486,270–36,487,130 5 0.03 19.18

FD-AT4G35900 DFL N100 A08 18,952,302–18,955,620 10 38.68 10.69
Regulates light percep-
tion and signalling and 
flowering transition

CO-AT5G15840 PH N125 B08 9,748,710–9,748,737 2 43.93 13.95
Regulates light percep-
tion, signalling and 
flowering time

CRY1-AT4G08920 DFI, DFL N75, N100, N125 B03 338,948–346,586 15 2.01 20.23 Regulates light percep-
tion and signalling

Circadian pathway

CKB4-AT2G44680 DFL N75 A05 2,937,409–2,945,567 5 16.89 9.79 Regulation of circadian 
clock

GI-AT1G22770 DFL N75 A09 39,780,608–39,780,959 3 56.1 11.79
Regulation of circadian 
rhythm and photoperi-
odic flowering

Floral meristem iden-
tity genes

AGL24-AT4G24540

GDD N100 A02 34,934,199–34,934,540 6 26.26 12.76
Regulates Flower devel-
opment and meristem 
identity and mediates 
floral transition in 
response to vernaliza-
tion

GDD, HTU, PTU N125 A03 33,169,034–33,177,336 4 12.43 3.65

DCF, MRT N125

B02

59,088,464 1 24.51 10.57

PH N75 64,496,077–64,496,528 3 3.5 19.27

DFI, DFL N100 64,497,529–64,499,514 3 0.21 13.19

AP1-AT1G69120
PTU N75 A02 34,755,893–34,758,537 5 0.04 11.48 Regulates flower devel-

opment and meristem 
identityHTU N100

B02
59,351,856–59,353,415 8 25.11 12.22

AP2-AT4G36920 DFL N75 66,542,016–66,546,535 6 28.89 9.8 Promotes early floral 
meristem identity

JMJ14-AT4G20400 DFL N100 B03 10,133,662–10,134,104 2 6.84 12.33 Inhibit the floral transi-
tion

Flowering regulation

KHZ1-KHZ2-
AT5G06770 GDD, HTU, PTU N125

A02

1,202,251–1,217,865 78 2.56 3.27 Regulates floral transi-
tion redundantly

FLOR1-AT3G12145 GDD, HTU, PTU N125 1,202,251–1,217,865 78 2.96 3.27

FLC-AT5G10140 PH N100 1,762,477 1 20.82 10.61 Represses floral transi-
tion

FLM-AT1G77080
DFL N125 37,090,239–37,093,082 23 38.02 15.59 Prevents premature 

floweringGDD, HTU, PTU N100 37,133,361–37,136,964 5 0.82 14.10

FLD-AT3G10390 GDD,HTU N75 A03 19,913,046–19,923,910 8 0.94 3.12 Up-regulation of FLC 
expression

AGL6-AT2G45650 DCF, MRT N75

A05

3,354,215 1 13.69 20.63 Regulates flowering 
timeSOC1-AT2G45660 DCF, MRT N75 3,354,890–3,357,582 3 17.80 18.57

COP1-AT2G32950 DCF, MRT N75 7,544,327–7,546,996 24 1.91 18.94 Repressor of photomor-
phogenesis

FKF1-AT1G68050 DFI

N100
A07

1,786,248 1 15.08 13.82 Regulates transition to 
flowering

FT-AT1G65480
MRT 33,488,659 1 21.21 12.46 Promotes the transition 

from vegetative growth 
to floweringDFL B06 6,716,803–6,718,200 5 33.81 12.23

ARP6-AT3G33520 DCF N75, N100 A08 52,619–52,842 10 25.97 17.18 Regulates flowering and 
FLC gene

FVE-AT2G19520 PH
N125 A09 10,079,474 1 3.43 15.75

Regulates flowering
N100 B04 16,336,556–16,341,785 7 0.66 10.19

FRI-AT4G00650
MRT N125 A10 6,054,217–6,054,243 2 39.16 15.52

DCF, PH N75 B08 16,066,635 1 30.42 16.04

MAF5-AT5G65080 DCF N125 B06 8,515,215–8,524,113 6 46.85 12.47 Prevents premature 
flowering

HAM1-AT5G64610 DCF, MRT N75 B07 11,563,802–11,564,171 5 0.61 16.43 Essential for gameto-
phyte development

Gibberellin pathway

GID1A-AT3G05120
DFI N75 A05 30,987,755–30,990,279 3 0.42 16.51 Functions as soluble 

gibberellin receptorDFL, DCF N75, N125 B02 62,297,219–62,297,220 2 35.29 10.61

GA1-AT4G02780 DCF, MRT N100 B02 46,682,290 1 43.96 13.04 Gibberellin biosynthesis

DFI N100 B08 14,118,234 1 5.71 11.71

FAF2-AT1G03170 DFI N125 B03 115,277 1 0.06 17.53 Regulates shoot meris-
tem size

ATJ3-AT3G44110 DFL N100 B05 49,722,910 1 45.77 11.8 Plant development
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Table 3.  LD block estimation for SNPs within 1 Mb regions of predicted genes associated with flowering 
and plant height traits. Chr chromosome, GWAS-SNPs significant SNPs identified in GWAS study, SNP block 
coordinates of identified significant SNPs in base pair, NASNPs number of associated SNPs, LD block estimated 
LD blocks for SNPs within 1 Mb region, block size (kb) distanced spanned by block in kb, NSNPB number of 
SNPs in LD block.

Chr Predicted gene

GWAS-SNPs LD block estimation

SNP block NASNPs LD block Block size (kb) NSNPB

A02

KHZ1-KHZ2-AT5G06770 1,202,251–1,217,865 78 1,202,251–1,226,004 23.75 116

FLOR1-AT3G12145 1,202,251–1,217,865 78 1,202,251–1,226,004 23.75 116

FLC-AT5G10140 1,762,477 1 1,751,245–1,788,639 37.40 48

AP1-AT1G69120 34,755,893–34,758,537 5 34,557,898–34,783,055 225.16 366

AGL24-AT4G24540 34,934,199–34,934,540 6 34,934,048–34,942,039 7.99 44

CDF1-AT5G62430

36,472,064–36,472,185 6 36,461,389–36,486,270 24.88 23

36,486,270–36,487,130 5
36,461,389–36,486,270 24.88 23

36,486,488–36,495,138 8.65 27

FLM-AT1G77080
37,090,239–37,093,082 23

37,086,932–37,091,727 4.80 46

37,091,896–37,133,361 41.47 81

37,133,361–37,136,964 5 37,135,994–37,136,964 0.97 4

FLD-AT3G10390 19,913,046–19,923,910 8 19,887,999–19,956,139 68.14 51

AGL24-AT4G24540 33,169,034–33,177,336 4 33,168,278–33,179,337 11.06 19

A05

CKB4-AT2G44680 2,937,409–2,945,567 5
2,736,655–2,937,429 200.78 20

2,944,442–2,952,048 7.61 8

AGL6-AT2G45650 3,354,215 1 3,301,121–3,356,339 55.22 11

SOC1-AT2G45660 3,354,890–3,357,582 3
3,301,121–3,356,339 55.22 11

3,357,582–3,357,639 0.06 3

COP1-AT2G32950 7,544,327–7,546,996 24
7,437,216–7,445,302 8.09 14

7,451,045–7,480,422 29.38 19

GID1A-AT3G05120 30,987,755–30,990,279 3 30,987,755–30,990,279 2.53 3

A07
FKF1-AT1G68050 1,786,248 1 1,764,823–1,822,282 57.46 54

FT-AT1G65480 33,488,659 1 33,403,301–33,535,523 132.22 7

A08

ARP6-AT3G33520 52,619–52,842 10 12,259–146,533 134.28 156

FD-AT4G35900 18,952,302–18,955,620 10

18,952,302–18,952,343 0.04 2

18,952,388–18,952,521 0.13 2

18,954,147–18,954,150 0.01 2

18,954,994–18,966,049 11.06 17

A09
FVE-AT2G19520 10,079,474 1 10,075,137–10,091,939 16.80 51

GI-AT1G22770 39,780,608–39,780,959 3 39,761,855–39,825,243 63.39 97

A10 FRI-AT4G00650 6,054,217–6,054,243 2 6,016,556–6,054,243 37.69 63

B02

AP1-AT1G69120 59,351,856–59,353,415 8

59,351,856–59,352,264 0.41 7

59,352,392–59,353,135 0.74 6

59,353,276–59,353,285 0.01 3

GID1A-AT3G05120 62,297,219–62,297,220 2 62,280,062–62,302,328 22.27 119

AGL24-AT4G24540
64,496,077–64,496,528 3 64,487,988–64,555,102 67.12 77

64,497,529–64,499,514 3 64,487,988–64,555,102 67.12 77

AP2-AT4G36920 66,542,016–66,546,535 6 66,496,080–66,562,989 66.91 105

B03

FAF2-AT1G03170 115,277 1 115,081–254,900 139.82 80

CRY1-AT4G08920 338,948–346,586 15 289,286–343,540 54.26 72

JMJ14-AT4G20400 10,133,662–10,134,104 2 10,129,276–10,153,357 24.08 67

B04 FVE-AT2G19520 16,336,556–16,341,785 7 16,258,914–16,407,739 148.83 74

B05 ATJ3-AT3G44110 49,722,910 1 49,689,123–49,735,541 46.42 46

B06

FT-AT1G65480 6,716,803–6,718,200 5 6,716,803–6,736,028 19.23 39

MAF5-AT5G65080 8,515,215–8,524,113 6
8,481,230–8,519,496 38.27 19

8,524,113–8,650,692 126.58 135

B07 HAM1-AT5G64610 11,563,802–11,564,171 5 11,464,372–11,564,320 99.95 94

B08

CO-AT5G15840 9,748,710–9,748,737 2 9,743,391–9,767,625 24.24 43

GNC-AT5G56860 14,118,234 1 14,064,467–14,154,003 89.54 84

FRI-AT4G00650 16,066,635 1 16,065,157–16,070,876 5.72 18
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of cross pollination. LD was distributed unevenly among chromosomes and two sub-genomes in our test panel. 
It decayed to approximately 0.21 for SNPs at a distance of 0.20 Mb. Mean r2 also dropped below 0.1 beyond 1 
Mb inter-marker distance. A rapid LD decay in our association panel confirmed its suitability for conducting 
GWAS. There is no past report about LD decay estimated using a large number of biallelic markers in B. juncea. 
However, present outcomes are consistent with those in related allotetraploids of B. napus44 and B. carinata45.

A large number of SNPs were identified as significant for association with flowering, maturity, plant height 
and derived traits. These SNPs differed for their chromosome locations and effects over N-levels. Identified SNPs 
explained significant proportions of the phenotypic variations recorded for the evaluated traits. In silico annota-
tion within a threshold window of genes within 100 kb (50-kb upstream and 50-kb downstream) of the peak 
SNP allowed prediction of 30 candidate genes belonging to light perception, circadian pathway, floral meristem 
identity, flowering regulation, gibberellic acid pathways and plant development. This threshold window was 
selected on the basis of low levels of overall LD (200 kb) in our association panel. Majority of identified genes 
were predicted from the associations found significant at N75 and N100. Nitrate availability is known to alter the 
expression of major genes belonging to photoperiod (e.g. CO, CRY1) and circadian pathways in Arabidopsis46. 
Photoperiod pathway also interacts with the gibberellin acid and autonomous pathways to modulate nitrate-regu-
lated floral  transition47. Nitrates repress flowering time via gibberellin  pathway48. Loss of function or overexpres-
sion of many genes in these pathways cause major flowering time  changes46,47,49. The annotated genes included 
more than one copy each of six important flowering genes (AGL24, AP1, FVE, FRI, GIDIA and GNC). Multiple 
copies of each of the flowering genes are expected as Brassicas are ancient  polyploids50. The resultant functional 
redundancy can impact phenotypic diversity if multiple gene copies act in an additive or dosage-dependent 
 manner51. FD, predicted on chromosome A08, encodes a bZIP transcription factor which is a positive regulator 
of flowering. It promotes flowering following interaction with FT52. CRY1 was detected on chromosome B03 at 
all three levels of N application. It is one of the two key factors involved in N-regulated flowering time control 
in Arabidopsis thaliana, other being ferredoxin-NADP+-oxidoreductase. Loss-of-function mutants of CRY1 are 
insensitive to N  availability46. CRY1 also acts through N signal pathway to regulate flowering output genes CO 
and GI. These are upregulated if plants are grown under limiting nitrate  conditions46. CO was envisioned on 
chromosome B08. Overexpression of CO and FLC eliminates the influence of nitrates on  flowering47. Circadian 
clock controlled flowering pathway is the timekeeper of photoperiodism where GI promotes the expression of 
flowering-time genes, CO and FT53 as well. AP1 and AP2 were predicted close to the SNPs identified significant 
at N75 on chromosomes A02 and B02 respectively. Two more copies of AP1 were envisaged on the chromosomes 
A09 and B02 at N100. AP1, AP2 and AGL24 regulate initial stages of flower development and redundantly act to 
control floral meristem  identity54. AGL24 is upregulated in the inflorescence apex during floral  transition55. Three 
copies of this gene were predicted on chromosomes A02, A03, and B02. Associated SNPs were identified at N100 
and N125 but not under N deficiency (N75). Another gene JMJ14 was predicted on chromosome A07, in vicin-
ity of SNPs found significant at N125. It encodes a histone H3K4 demethylase which prevents early flowering 
through repression of the floral integrators FT, AP1, SOC1 and LFY during the vegetative growth  phase56. FT, 
predicted on A07 and B06, is the core of photoperiodic flowering pathway and it is present downstream of the GI 
and CO57. SOC1/AGL20 was predicted on the chromosome A05 for the traits DCF and MRT under N deficient 
conditions. It integrates signals from the photoperiod, vernalization and autonomous floral induction  pathways58. 
SOC1 is upregulated under N  deficiency38.

We predicted FLC1 (A02) and FT (A07, B06) at N100. FLC is important for the initiation timing of flowering. 
Three FLC homologs are known in Brassica50,59. It represses FT and SOC1, to prevent the conversion of apical 
meristem into the reproductive  structures60. Significant downregulation of FLC and upregulation of FT, LFY, 
and AP1 has been reported under N deficient  conditions37. Another predicted gene ATJ3 (B03) acts downstream 
of various floral pathways and mediates the transcriptional regulation of FT and SOC1, during switch to flower-
ing via a known flowering repressor SVP61. FRI up regulates the expression of FLC to accelerate the transition to 
flowering after the  vernalization62. A copy each of this gene was identified on chromosomes A10 and B08 under 
N75 and N125. FVE is a key regulator of the autonomous pathway that reduces FLC expression. A similar gene 
ARP6 that encodes actin-related protein, a putative component of a chromatin-remodelling complex, is required 
for both histone acetylation and methylation of the FLC chromatin in Arabidopsis and controls its  expression63. 
HAM1, identified on B07, affects the flowering time by epigenetic modification of FLC64. Other flowering genes, 
FLOR1, FLR1 and FTM4 were identified on chromosome A02. FLOR1, predicted under high N conditions, 
interacts with the MADS box transcription factor AGAMOUS to delay flowering. Its role is partially redundant 
with SOC1 and FUL65. MAF1 or FLM, which is related to FLC was identified on A02. It acts as the negative 
regulator of flowering. FLD located on A03, plays a key role in regulating the reproductive competence of the 
shoot by repressing FLC66. AGL6, present on A05, act as a floral promoter with roles in inhibition of FLC/MAF 
genes and promotion of FT67. COP1 modulates the circadian rhythm and flowering. It encodes a RING-finger E3 
ubiquitin ligase which along with SUPPRESSOR of phyA-105 (SPA) proteins, represses photoperiodic flowering 
by regulating proteasome-mediated degradation of CONSTANS (CO)68. MAF5/AGL68 also regulates the flower-
ing time during the vernalization. Nitrates are known to modulate the expression of TEM1. This gene control 
floral transition by repressing FT and GA-dependent flowering pathways by regulating GA3ox1 and GA3ox269. 
FKF1, a flavin-binding kelch repeat F box protein was identified on chromosome A07 under variable N levels. 
It is clock-controlled gene that regulates transition to  flowering70. It is repressed by nitrate and is involved in the 
induction of CO and FT71. Mahmood et al.72 had identified a stable QTL for flowering traits on linkage group 
B06. This QTL simultaneously influenced flowering, maturity and plant height. Ramchiary et al.30 also reported 
QTLs for plant height on chromosomes, A01, A02 and B06 in B. juncea. GA is important for promoting flowering 
under non-inductive photoperiod  conditions73. This pathway is affected by N availability. Low N increases GA 
concentration while high N reduces  it38. GA1 was envisaged on chromosomes A09 and B02 at all three levels of 
N application. GID1A, a positive regulator of flowering and a stable soluble gibberellin  receptor74, was predicted 
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on A05 and B02 for the traits DFI, DFL and DCF under N75 and N125. GID1A is a soluble gibberellin (GA) 
receptor and is involved in GA signaling that controls root growth, seed germination and flower development. 
ATGA3ox3 identified on chromosomes A08 and B03 catalyses the final step in the synthesis of bioactive gibberel-
lins (GAs). The gene is expressed in stamen filaments, anthers, and flower receptacles to promote their  growth75. 
GATA transcription factors GNC (GATA, NITRATE-INDUCIBLE CARBON-METABOLISM INVOLVED) and 
GNL/CGA1 (GNC-LIKE/CYTOKININ-RESPONSIVE GATA FACTOR1) prevent flowering by directly repress-
ing SOC1 expression in Arabidopsis gene SOC176. One copy each of GNC was predicted on chromosomes A03 
and B08 respectively. These may explain part of variation recorded for DFI and PH at N75 and N100. GNC has 
a major role in the chlorophyll biosynthesis and it is upregulated by N and repressed by GA  signalling77. Plant 
height is a major yield component in mustard. Though plant height is positively associated with yield, tall plants 
are more prone to lodging, especially as they approach maturity. Lodging can strongly reduce yield and impair 
grain quality. Genotypes with reduced height can withstand lodging better and are more suitable for mechani-
cal harvesting. In the present studies, 18 SNPs on A09 in the genomic region of 52,234,633–52,238,177 were 
significantly associated with both plant height and flowering time. As described earlier, majority of the associated 
SNPs were located within the LD blocks. Identification of a fairly number of SNPs in high LD is important as 
any SNP can be used as a tag SNP. However, the tag SNPs are required to be selected independently if associated 
SNPs are present in more than one group with little intergroup LD.

Summarising, we used multiple phenotypic data (DFI, DFL, DCF, MRT, GDD, HTU, PTU, and PH) and mul-
tilayer evaluation to detect a large number of MTA’s showing low to moderate contributions to respective trait 
variations. Most of the associated SNPs were distributed around key flowering genes: CRY1, CO, SOC1/AGL20, 
AGL6, AGL24, GI, AP1, AP2, FLC, FT, ARP6, FVE, ATGA3OX3, FLOR1, GID1A, etc. Majority of these were 
located within a distance of 25 kb from respective peak SNPs. Broadly, our results are consistent with flowering 
QTLs reported earlier for chromosomes A02, A03, A05, A06, A08, A09, B02, B03, B06, B07 and B08 in B. juncea 
24,30,32,72. The information on marker-trait associations and validation of candidate genes predicted during our 
studies may promote marker aid breeding (MAB) in Indian mustard.

Methods
Plant material and phenotyping. Association panel comprised 92 germplasm lines maintained for seven 
generations of selfing as per single seed descent method. The panel included advanced breeding lines (BL) or cul-
tivars (CV), germplasm from east Europe, Australia (EM), derived resynthesized B. juncea (DJ), resynthesized 
determinate mustard (DTM), introgression lines (IL). All the genotypes included in the association panel had 
very high (> 90%) and euploid chromosome number expected for B. juncea (2n = 36;AABB). The details informa-
tion about the genotypes included in the association panel is available  elsewhere78. The trials were conducted at 
the farms of Punjab Agricultural University at Ludhiana (30.9010° N, 75.8573° E) for two crop seasons (2015–16 
and 2016–17, hereafter designated as year 1 and year 2 respectively) in alpha lattice design with two replications 
and three levels of nitrogen (N) {low dose (N75, with added N @ 75 kg/ha), standard dose (N100, with added 
N @100 kg/ha) and high dose (N125, with added N @ 125 kg/ha.)}. Urea (46% N) was applied in two splits, half 
at the time of seeding and the second half, 22 days after sowing. We raised each genotype in a plot of four rows, 
each row measuring two meters in length. The rows were spaced 30 cm apart. The crop was sown during second 
fortnight of October and it was harvested during second week of April every year. The crop was flood irrigated 
at three times during the growing season. Standard agronomic practices were followed for the other crop inputs. 
Days to flowering were counted three times: between sowing of the crop till the commencement of flowering 
(DFI), when 50% of plants had started to flower (DFL) and culmination of flowering (DCF). We counted days 
from seeding when crop had attained physiological maturity (DM). Physiological maturity was reached when 90 
percent of pods had turned light brown. Plant height (PH) was measured in centimetres from base of the plant 
till the tip of the main shoot at maturity. We also estimated growing degree days (GDD), referred to as sum of 
mean daily temperatures (°C) above a defined temperature threshold of 5°C79.

The growing degree day value for a given day was considered zero, if the average temperature fell below the 
temperature threshold or the base temperature (5 °C).

We computed Helio-thermal unit (HTU) and photo-thermal units (PTU). HTU is the product of GDD and 
corresponding actual sunshine hours of that day and PTU is the product of GDD and corresponding day  length80.

GDD, PTU and HTT values were computed at the initiation of flowering.
The agro-meteorological data for everyday temperature, sunshine hours and day length were sourced from 

the Department of Climate Change & Agricultural Meteorology, Punjab Agricultural University, Ludhiana, 
Punjab, India.

Analysis of phenotypic variation. Analysis of variance (ANOVA) was implemented to test significance 
of variation owing to genotypes, nitrogen levels, crop seasons and their interactions. GLM (generalized linear 
model) was implemented in alpha lattice  design81. The analysis was carried out using SAS version 9.4. Basic 
equation was:

GDD
(

◦C day
)

= {(Tmaximum + Tminimum)/2} − Tbase.

PTU
(

◦C day hours
)

= GDD × day length.

HTU
(

◦C day hours
)

= GDD × Actual bright sunshine hours.
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where yijk denotes values for the observed traits for ith treatment in the k-the blocks within j-th replicate (super-
blocks), ti is the fixed effects of the ith treatment (i = 1,2,….,t); rj is the effects of jth replicate (superblocks) 
(j = 1,2,….,r); bjk is the effects of the kth incomplete blocks within the jth replicate (k = 1,2,…s) and eijk is an 
experiment error associated with the observation of the ith treatment in the k-th incomplete block within j-th 
complete replicate.

Correlation analysis. Pearson correlation coefficients were first estimated and these were plotted by 
R-package “corrplot”.

SNP genotyping and genome wide association analysis (GWAS). The diversity set was genotyped 
by sequencing (GBS)82. Total genomic DNA was extracted from young leaves of 92 genotypes using a standard 
CTAB method with minor modifications. DNA samples were quantified by visual comparison to λ-DNA stand-
ards on ethidium bromide-stained agarose gels. The purity and concentration of the samples was checked with 
spectrophotometer readings at 260 and 280 nms. High quality DNA samples were genotyped by sequencing 
(GBS) on the ILLUMINA HiSeq platform, which was outsourced to Novogene (HK) Company Limited, Hong-
kong. Bioinformatic analyses were conducted with publicly available software’s. The reference genome of B. jun-
cea v1.5 was used for alignment of whole genome sequence (25x) of a commercial B. juncea genotype, PBR357 
with the software "bowtie2". SNP calling was implemented in NGSEP-GBS  pipeline83. Total SNPs were replaced 
in B. juncea genome reference using a perl script, pseudomaker.pl implemented in the SEG-Map to construct 
mock-up pseudomolecule reference. All 92 inbred lines of the diversity set were then aligned on pseudomol-
ecule genome reference and SNPs were identified with NGSEP-GBS pipeline. We improved the SNP density of 
through imputation, using a mustard reference SNP set with 570,764 high quality SNPs. This reference set was 
developed through re-sequencing (10–12 Χ genome coverage) of a mustard germplasm core set comprising 96 
genotypes. Software minimac2 was used for  imputation84. A total 406,888 SNPs were retained for GWAS after 
filtration. The filtration parameters were MAF > 0.05 and maximum heterozygosity < 10%. A sub-set of 66,835 
SNP set, available with stringent filtration (MAF > 0.10) and prior to imputation, was used to determine popula-
tion structure and linkage disequilibrium. Software’s PGDSpider v2.1.1.3 and ‘GAPIT’85 were used for convert-
ing SNP genotypes into the structure and numeric formats, respectively.

Population structure and linkage disequilibrium. Population structure was developed with the soft-
ware STRU CTU RE 2.3.4. and 1–10 subgroups (K). Ten runs for each K were performed by a model assuming 
admixture and correlated allele frequencies. The run length was 10,000 period followed by Markov Chain Monte 
Carlo (MCMC) repetitions, set to 1,00,000 replications. The optimum number of subgroups (K) was selected on 
the basis of the log probabilities LnP(D) and ad hoc statistic ∆K  method86. Second order rate of change of the 
likelihood function for K was determined using Structure  Harvester87. Linkage disequilibrium (LD) was esti-
mated with TASSEL v5.088 based on squared allele frequency correlations (r2) between all pairs of SNP markers.

Association mapping. Phenotypic data was normalized by Johnson transformation as implemented in 
Minitab v16.0. We used software  GAPIT389 for trait-SNP association analysis. Q–Q plots aided the recogni-
tion of best GWAS model among five algorithms (GLM, MLM, FarmCPU, MLMM and Blink) implemented 
in GAPIT3. SNP-trait associations were classified as significant on the basis of an arbitrarily chosen threshold 
of –log10 (P) ≥ 3.0. Bonferroni threshold or a P value adjusted by a false discovery rate of 0.05 was considered 
too restrictive stringent. Pairwise LD values for the trait associated SNPs were estimated within 1 Mb window 
using the software Plink1.09 (https ://www.cog-genom ics.org/plink 2) with parameters: -noweb -all -blocks -no-
pheno-req -ld-window-kb 1000.

In silico analysis for candidate gene identification. 50-kb flanking regions surrounding the peak 
SNPs were scanned to predict candidate genes. The predicted gene and its orthologous sequences were then 
annotated by BLAST analysis against the Arabidopsis thaliana database using Blast2GO v5.0  tool90. Functions of 
the possible candidate genes were checked in the literature to determine their relevance for the trait in question.

Data availability
Sequencing data for the test genotypes is available at National Center for Biotechnology Information (https 
://datav iew.ncbi.nlm.nih.gov/objec t/PRJNA 63920 9?revie wer=gb2fl bo53a 3kcv2 ts2bf slphh c) as Bio-Project 
PRJNA639209. Supply of germplasm resources will require approval of Biodiversity Authority of India.
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