
INTRODUCTION

Tumor cells often potentially undergo uncontrolled and unlim-
ited evolution which is dependent on the availability of some 
metabolites in the context of tumor microcosm for survival 
[1,2]. Several nutrients [3-5] have been documented to pro-
mote tumor growth through complex metabolic pathways that 
are modulated by environmental factors, lifestyle changes, 
genetic predispositions, cellular interactions, and metabolic 
manipulations [6-8].
 The significance of branched-chain amino acids (BCAAs) 
has been documented in multiple chronic diseases [9-13]. 
Whether the pathophysiology of BCAA metabolism in chronic 
diseases is potentially associated with cancer biology is yet to 
be clearly understood. The vitality of such association cannot 
be underestimated in proposing novel strategies for tumor 
management and treatment to improve the quality of life and 
wellbeing of populations. This short review summarizes role 
for BCAA metabolism in tumor development and progression.

THE BIOCHEMISTRY OF BCAAS

BCAAs including isoleucine, leucine and valine (Fig. 1) are 
essential amino acids synthesized in low quantities, and they 
constitute approximately 35% of all essential amino acids 
[14]. BCAAs regulate protein metabolism via multiple path-
ways, primarily those involving the mTOR [15]. They are the 
mostly hydrophobic amino acids with a vital role in proteins’ 
structural and membrane integrity [16]. BCAAs have unique 
similarities that are most often studied together (dietary con-
sumption, combustion, and metabolism). However, they differ 
significantly in terms of morphology, hydrophobicity and bio-
logical effects [17].
 BCAAs are abundantly synthesized in bacteria, plants, 
and fungi but not in animals [18]. Similar enzymes synthe-
size valine and isoleucine, but leucine is usually produced 
from α-ketoisovaleric acid, a transamination precursor of 
valine [19]. Also, carbon elements in valine and leucine are 
derived from pyruvate, but isoleucine carbons are derived 
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from the relatively rare threonine, reflecting the conserved 
protein abundance ratio [18]. Similarly, valine and isoleucine 
are more rampant in β-sheets, but leucine features more in 
the α-helices [20]. In mammals, BCAAs are primarily catab-
olized in the hepatic tissues or skeletal muscles [21-23] by 
branched-chain aminotransferases (BCATs) to branched-
chain α-keto-acids (BCKAs) [24].

THE PHYSIOLOGY OF BCAAS

Under normal conditions, there is a precise balance between 
the intake and expenditure of BCAAs [22]. Diet is likely the 
only significant source of BCAAs, even though gut microbiota 
could synthesize BCAAs in relatively minimal and insignifi-
cant amounts [25]. Most BCAAs are lost through oxidative 
catabolism in the body, but the amount of BCAAs in urine is 
usually negligible to juxtapose the loss. Average circulating 
levels of BCAAs in the fasting state, i.e. approximately 200 
μM of valine, 100 μM of leucine, and 60 μM of isoleucine [23], 
are usually well maintained within hours after feeding [26-
28]. BCAAs (derived from the diet or released from protein 
breakdown that appears in the circulation) are released into 
tissues where they can be oxidized or incorporated into newly 
synthesized proteins [23,29,30].
 BCAA intake and utilization are likely to vary depending on 
age and sex differences of individuals as observed in protein 
intake. The usual daily minimum requirement of protein intake 
to maintain muscle mass is 0.8 g/kg/day, though recent rec-
ommendations for a healthy diet are higher [31]. The average 
protein intake among males is 1.7 g/kg/day, which is equiva-
lent to 88, 145, and 66 mg/kg/day intakes of valine, leucine, 
and isoleucine, respectively. However, protein intake is lower 
among females and declines with age [32].
 Most of the BCAAs (Fig. 2) in the circulatory pool are 
reincorporated into newly synthesized proteins, typically ac-
counting for 7,090% of disposal in the fasting state [33-35]. 
Protein synthesis requires an anabolic signal for amino acid 
assembly into new proteins [23]. Importantly, leucine plays 
the role in an anabolic signal transduction [36]. In skeletal 
muscles, oral administration of leucine (but not isoleucine or 
valine) stimulates protein synthesis [37,38]. Many of these 
effects are likely to be initiated by hormonal (e.g., insulin or 
insulin-like growth factor [IGF]-I) and amino acid signals pri-
marily mediated by mTOR [39]. Hence, whole-body BCAA 
metabolism reflects a balance among the complex network of 
protein intake, protein synthesis cycle, breakdown and oxida-

tion of BCAAs, etc.

THE PATHOPHYSIOLOGY OF BCAA 
METABOLISM IN MULTIPLE CANCERS

Since BCAAs are essential amino acids, they are also utilized 
by cancer cells: derived either from circulation or surrounding 
tissues. Alterations in circulating BCAAs levels in patients 
diagnosed with cancer have long been noted in observational 
studies [40-43]. A retrospective metabolomic study demon-
strated that elevated plasma BCAA levels are associated 
with more than a two-fold increase in the risk of pancreatic 
cancer independent of the intermediate development of di-
abetes [40]. Similarly, mice bearing Kras-driven pancreatic 
tumors displayed higher plasma levels of BCAAs before the 
manifestation of subclinical cancers [40]. Interestingly, the 
same appears not true for other tumors, even when driven by 
the same mutations in Kras [44]. It remains unclear whether 
these alterations in systemic BCAAs metabolism contribute 
to tumor growth or metastasis.
 Leucine is a well-described mTOR agonist [45]. In addition, 
Sestrin2 was identified as a direct intracellular leucine sensor 
and an mTOR complex 1 (mTORC1) regulator [46,47]. Many 
studies on BCAA metabolism in tumor manifestations have 
focused on BCAT1. The expression of BCAT1 is altered in 
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Figure 1. Chemical structures of 
branchedchain amino acids.

Figure 2. Relationship between BCAAs oxidation and diet. 
Intracellular BCAA oxidation is dependent on a constellation process 
manipulated by several states of dietary availability; after a meal, 
fasting, starvation and severe starvation. BCAAs oxidation increases 
after a meal but falls in a fasting state. BCAA oxidation increases in 
the liver during starvation and is primarily driven by gluconeogenic 
precursors in the TCA cycle. In severe starvation, BCAAs oxidation 
falls, likely to preserve essential amino acids for other metabolic 
functions critical for functional survival in the cytosol. BCAA, branched-
chain amino acid; TCA, tricarboxylic acid.
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numerous cancers (Fig. 3) and correlates with poor tumor 
outcomes [48-51]. BCAT1 expression in glioblastoma, an 
aggressive type of cancer that can occur in the brain or spinal 
cord, is specific to those carrying wild-type isocitrate dehydro-
genase 1 (IDH1) and 2 (IDH2) [52]. Mutations in either IDH1 
or IDH2 can suppress BCAT1 through DNA methylation and 
epigenetic silencing [52]. By means of depleting α-ketoglu-
tarate, the mutation in IDH generates the oncometabolite, 
2-hydroxyglutarate that potently inhibits α-ketoglutarate-de-
pendent dioxygenases, including histone demethylases [53] 
and ultimately promotes growth of cancer (stem) cells via 
hypoxia-inducible factor-1α stabilization and by altering the 
epigenetic mechanism [54]. Conversely, 2-hydroxyglutarate 
can limit the supply of glutamate by inhibiting 2-oxogluta-

rate-dependent transaminases such as BCAT1 and BCAT2, 
thereby promoting dependence on glutaminase for glutamate 
biosynthesis [55] and conferring vulnerability to repression of 
cancer cell proliferation by glutaminase inhibitors [56]. Also, 
BCAT1 overexpression can promote mTORC1 activity in 
breast cancer through complex mechanisms [57].
 Mammalian lethal giant larvae homolog 2 (LLGL2) is a 
scaffolding protein that plays a role in regulating the mobi-
lization of apical-basal polarity in epithelial cells and solute 
carrier family 7 member 5 (SLC7A5) [58]. LLGL2 has been 
implicated in leucine uptake and proliferation of estrogen-sen-
sitive breast cancer cells under excessive leucine stress [59]. 
However, data from epidemiologic studies alluding to the 
significance of dietary and plasma BCAAs in breast cancer 
manifestation are divergent [43,60]. 
 Compared to healthy controls, a negative differential fold 
difference of plasma valine and leucine has been reported 
among colorectal cancer (CRC) patients in China [61]. Simi-
larly, plasma leucine and valine concentrations were inversely 
related to odds of CRC among Japanese adults, particularly 
males [42]. In another study among CRC patients, BCAAs 
were unrelated to CRC-specific survival, but 2-ethylhydracryl-
ic acid, a BCAA metabolite, was significantly associated with 
reduced CRC-related mortality [62]. Likewise, another BCAA 
metabolite, leucyl-leucine was inversely associated with CRC 
occurrence in a study on metabolomic profiling in the United 
States [63]. The mechanisms responsible for this associa-
tion are yet to be clearly understood, but manipulating the 
IGF-I expression might be a plausible route. First, IGF-I can 
promote colon carcinogenesis by facilitating the formation of 
premalignant lesions such as β-catenin accumulated crypt 
and aberrant crypt foci [64-66]. However, lower expression of 
IGF-I has been reported in BCAA-supplemented C57BL/KsJ-
DB/db mice treated with azoxymethane [67]. Second, BCAA 
turnover was higher in primary colon carcinoma tissues than 
normal colon mucosa [68]. Third, an ex vivo/in vitro report 
[69] demonstrated that isoleucine, in a mouse liver metastatic 
colon cancer model, partly exerted antiangiogenic effects via 
the mTOR pathway by inhibiting (VEGF) synthesis. In line 
with these observations, two recent epidemiological reports 
from Italy [70] and the United States [71] found a modest 
inverse relationship between dietary BCAA intake and CRC. 
In another study, branched-chain α-keto acid dehydrogenase 
(BCKDH) expression has been linked to CRC tumorigenesis 
via the mitogen-activated protein kinase (MAPK) pathway ex 
vivo [72].
 Some reports have itemized the role of BCAA in pancreatic 
cancer. For example, elevated BCAA uptake was related to 
progression of pancreatic ductal adenocarcinoma (PDAC)  
[73]. Also, BCKDH knockdown inhibited lipogenesis and re-
duced the proliferation of PDAC cells. Similarly, the elevated 
levels of circulating BCAAs are considered an early event in 
human pancreatic adenocarcinoma development [40]. Fur-
thermore, evidence for the autochthonous (and not Kras-driv-

Figure 3. A model of BCAA metabolism in tumor manifestation. 
Cancer cel ls are l ikely to obtain BCAAs from the tumor 
microenvironment or protein degradation as essential amino acids. 
BCAAs play distinct roles in cancer cells. Thus, BCAAs can activate 
the mTORC1 signalling, which stimulates protein translation, growth, 
and survival. They also serve as building blocks in protein synthesis 
and can be metabolized into BCKAs in the cytosol by BCAT1 and/
or mitochondria by BCAT2, a process involving the conversion of 
α-KG to glutamate. BCAAs are also used as indirect nitrogen sources 
for nucleotide and non-essential amino acid biosynthesis via the 
glutamate-glutamine axis, and further catabolized to yield acetyl-CoA 
and succinyl-CoA that feed into the TCA cycle, thereby contributing 
to energy production. The acetyl-CoA levels have an impact on the 
epigenetic changes of cells. It can influence diverse cellular processes, 
such as gene expression, cell-cycle progression and DNA repair. In 
some cancers such as chronic myeloid leukemia, BCAT1 is thought to 
convert BCKAs back to BCAAs. mTORC1, mTOR complex 1; BCAAs, 
branched-chain amino acids; BCAT, branched-chain aminotransferase; 
α-KG, α-ketoglutarate; BCKAs, branched-chain α-keto acids; TCA, 
tricarboxylic acid; BCKDH, branched-chain α-keto acid dehydrogenase; 
R-CoAs, branched-chain acyl-CoAs.
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en) tumor manifestation localized to the pancreas associated 
with elevated BCAA has been reported [40]. These results 
consistently suggest that BCAAs are associated with PDAC.
 In chronic myelogenous leukemia (CML) blast crisis, 
BCAT1 overexpression resulted in increased intracellular 
concentrations of BCAAs by aminating branched-chain α-ke-
to acids (BCKAs) to BCAAs [74]. In this study, inhibition of 
BCAT1 expression reduced mTORC1 activity, presumably by 
reducing intracellular BCAA concentrations. Importantly, from 
a therapeutic standpoint, BCAT1 knockdown in a CML mouse 
model improved survival, while the use of the BCAT1 inhibitor 
gabapentin suppressed colony formation of CML in human 
patients [74]. The most well known epigenetic mechanism of 
BCAT1 expression is the mutation of IDH. Another epigene-
tic mechanism involving the disruptor of telomeric silencing 
1-like (DOT1L) histone methyltransferase was proposed by 
Oktyabri and colleagues [75]. DOT1L activates BCAT1 gene 
expression through histone H3 lysine79 methylation of the 
coding region [75]. In leukemias driven by genetic mutation 
of the mixed-lineage leukemia 1 (MLL1) gene, DOT1L main-
tains an open chromatin state and gene transcription [75].
 The cancer-specific expression of BCAT1 is likely to be a 
promising target for therapeutic interventions in cancer treat-
ment. However, the biological functions of BCAT1 in cancer 
are not well understood, but may be dependent on the can-
cer tissue of origin [44,76]. Accumulating evidence supports 
the vital and multifaceted role of BCAT1 in the development 
and progression of multiple types of cancer, likely via various 
multiple mechanisms unique to each cancer type. 
 BCAA oxidation increases after feeding (Fig. 2). Converse-
ly, briefly restricting food reduces oxidation of BCAAs, caus-
ing the elevation of their plasma levels. If fasting continues 
into starvation, BCAAs oxidation increases, providing gluco-
neogenic precursors to the liver. BCAAs oxidation rates fall 
again in severe starvation, presumably to conserve essential 
amino acids [77-79].

CONCLUSION

BCAAs are essential amino acids, and they are likely to be 
supplied to cancer cells from the tumor microenvironment 
or through protein degradation. They play prominent roles in 
tumor development and progression. The most well-defined 
mechanism of the BCAA and cancer association is the activa-
tion of the mTORC1 signalling. Also, BCAAs serve as build-
ing blocks in protein synthesis and are indirect sources of 
nitrogen supply for nucleotide (and non-essential amino acid) 
biosynthesis via the glutamate-glutamine axis. Aside from the 
mTOR pathway, other potential pathways within the frame-
work of glucose and lipid metabolism might be a promising 
route in understanding the significance of BCAAs in cancer.

FUTURE DIRECTIONS

First, further epidemiological studies on the significance of di-
etary BCAAs in tumor development and progression in popu-
lations are needed to significantly improve our understanding 
of the role of dietary factors in cancer. Second, molecular 
studies exploring the profiles of interaction between dietary 
and intracellular plasma BCAAs in the context of tumor man-
ifestation would be worthwhile. Third, whether BCAAs are 
potential epigenetic markers that can manipulate genetic pre-
disposition to tumorigenesis is yet to be understood. Also, the 
differential roles of cytosolic BCAT1 and mitochondrial BCAT2 
by cancer types cannot be underestimated in expanding our 
understanding of this topic.
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