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Electrocochleography (ECochG) is a potential clinically valuable technique for predicting

speech perception outcomes in cochlear implant (CI) recipients, among other uses.

Current analysis is limited by an inability to quantify hair cell and neural contributions

which are mixed in the ongoing part of the response to low frequency tones. Here, we

used a model based on source properties to account for recorded waveform shapes

and to separate the combined signal into its components. The model for the cochlear

microphonic (CM) was a sinusoid with parameters for independent saturation of the

peaks and the troughs of the responses. The model for the auditory nerve neurophonic

(ANN) was the convolution of a unit potential and population cycle histogram with

a parameter for spread of excitation. Phases of the ANN and CM were additional

parameters. The average cycle from the ongoing response was the input, and adaptive

fitting identified CM and ANN parameters that best reproduced the waveform shape. Test

datasets were responses recorded from the round windows of CI recipients, from the

round window of gerbils before and after application of neurotoxins, and with simulated

signals where each parameter could be manipulated in isolation. Waveforms recorded

from 284 CI recipients had a variety of morphologies that the model fit with an average r2

of 0.97± 0.058 (standard deviation). With simulated signals, small systematic differences

between outputs and inputs were seen with some variable combinations, but in general

there were limited interactions among the parameters. In gerbils, the CM reported was

relatively unaffected by the neurotoxins. In contrast, the ANN was strongly reduced and

the reduction was limited to frequencies of 1,000Hz and lower, consistent with the range

of strong neural phase-locking. Across human CI subjects, the ANN contribution was

variable, ranging from nearly none to larger than the CM. Development of this model

could provide a means to isolate hair cell and neural activity that are mixed in the ongoing

response to low-frequency tones. This tool can help characterize the residual physiology

across CI subjects, and can be useful in other clinical settings where a description of the

cochlear physiology is desirable.
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computational modeling, modeling and simulations

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2017.00592
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2017.00592&domain=pdf&date_stamp=2017-10-23
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:douglas_fitzpatrick@med.unc.edu
https://doi.org/10.3389/fnins.2017.00592
https://www.frontiersin.org/articles/10.3389/fnins.2017.00592/full
http://loop.frontiersin.org/people/383228/overview
http://loop.frontiersin.org/people/383517/overview
http://loop.frontiersin.org/people/10063/overview


Fontenot et al. Computational Model of Electrocochleography Signal

INTRODUCTION

Electrocochleography is the recording of electrical potentials
produced by the cochlea in response to stimulation. It has
been extensively used to evaluate peripheral auditory system
physiology, and is used clinically to identify hydrops in Meniere’s
patients and other retrocochlear pathologies (Schmidt et al.,
1974; Gibson and Beagley, 1976). It has also drawn interest for
the study of auditory neuropathy spectrum disorder (ANSD,
Santarelli, 2010; Rance and Starr, 2015). Recently, ECochG
has been used to account for speech perception outcomes
in cochlear implant (CI) recipients (Fitzpatrick et al., 2014;
McClellan et al., 2014; Formeister et al., 2015) and is showing
promise for detecting intraoperative trauma in CI patients
(Adunka et al., 2010; Mandala et al., 2012; Radeloff et al., 2012;
Calloway et al., 2014; Campbell et al., 2015; Dalbert et al., 2015,
2016; Bester et al., 2017). Liberman and colleagues, among others,
have investigated various aspects of ECocG for detecting evidence
of cochlear synaptopathy, or hidden hearing loss (Liberman
et al., 2016). Analysis of the hair cell and neural contributions to
ECochG responses recorded in CI recipients is the main objective
of this study.

The responses from the cochlea to sounds consist of several
distinct signals which overlap in time. The compound action
potential (CAP) occurs near the onset of the response to stimuli
with fast rise times, and has a purely neural source produced
by the synchronous action potential produced to onsets of
sound. The alternating-current (AC) component of the ECochG
response is a mixture of the cochlear microphonic (CM) and
auditory nerve neurophonic (ANN). The CM is produced by
transducer current through stereocilia of hair cells in response
to basilar membrane movement, and is thus phase-locked to all
tone frequencies. The ANN is the evoked potential correlate of
phase-locked responses in neural fibers, which is strong only to
frequencies below ∼2,000Hz. The direct current (DC) response
to tones is the summating potential (SP) which is derived from
a complex mixture of hair cell (Davis et al., 1958; Dallos, 1973;
Zheng et al., 1997; Durrant et al., 1998) and neural (van Emst
et al., 1995; Sellick et al., 2003; Forgues et al., 2014) sources.

There are several cases where it would be useful to separate
the CM from the ANN in the ongoing portion of the response
to tones. These include a non-invasive way to estimate the
upper limit of phase locking (Verschooten and Joris, 2014;
Verschooten et al., 2015); as a screen for low frequency hearing
loss (Lichtenhan et al., 2013, 2014); and to determine the
proportions of hair cell and neural activity in the responses of
CI recipients, which are most reliably elicited by low frequency
stimuli (Choudhury et al., 2012). Historically, the ANN was
considered the principal source of the 2nd harmonic (Henry,
1995; Lichtenhan et al., 2013; Chertoff et al., 2015). However,
asymmetries of the transduction process also produce even
harmonics in the CM (Teich et al., 1989; Santos-Sacchi, 1993;
Forgues et al., 2014). The periodicity of both the CM and
the ANN reflect the stimulus frequency, thus, both potentials
contribute to the magnitude of the first harmonic peak (Snyder
and Schreiner, 1984; Forgues et al., 2014; Verschooten et al.,
2015). Masking has been used to recover the proportion of the

neural response removed by adaptation, based on the idea that
only neural signals show such adaptation (Snyder and Schreiner,
1984; Sparacino et al., 2000; Verschooten et al., 2015). However,
this approach only quantifies the neural proportion that adapts
to the masker, and cannot quantify the total amount of neural
response within the signal.

The approach presented here uses discrete analytic models
of the expected ANN and CM waveforms in order to separate
them in the combined signal, as would be acquired in a clinical
setting. By varying the proportions of expected CM and ANN,
and the phases between them, we can determine the best
fit for the parameters to match the recorded waveforms. To
validate the approach we first show that the model is able to
fit the complex waveforms recorded from human CI subjects.
We then examine the parametric performance of the model
using artificially mixed signals, and show results from animals
before and after application of the neurotoxins kainic acid (KA),
tetrodotoxin (TTX), and ouabain (OA) to the round window.
Finally, the model is used to examine the CM and ANN in
responses from CI recipients.

METHODS

Three data sets were used in the experimental design: human CI
recipients, gerbils, and simulated signals created by varying the
parameters of interest.

Human CI Recipients
All adult and pediatric patients who were scheduled for CI
at University of North Carolina Hospitals in 2011–2017 were
eligible to be enrolled in the study. Thus, the sample population
(N = 285) includes the heterogeneity of conditions leading to a
recommendation for a CI. Non-native English speakers, children
of non-native speakers, and those undergoing revision surgery or
with severe inner ear malformations (cochlear atresia, etc.) were
excluded. The recordings in human CI recipients were carried
out in accordance with the recommendations of Declaration of
Helsinki guidelines as reviewed and approved by the Institutional
Review Board at University of North Carolina. All subjects gave
written informed consent in accordance with the Declaration
of Helsinki. Parental consents were obtained for all pediatric
subjects and assent was obtained for pediatric subjects at least 7
years old.

The recording procedures for pediatric and adult CI recipients
have been previously described (Choudhury et al., 2012;
McClellan et al., 2014; Formeister et al., 2015). A Biologic
Navigator PRO (NatusMedical Inc., San Carlos, CA) was used for
acoustic stimulation and ECochG recordings. The stimuli were
delivered through an in-ear foam insert attached to a speaker
(Etymotic ER3b) by a sound tube. Stimuli were alternating phase
tone bursts from 250 to 4,000Hz presented at 90 dB nHL (from
108 to 114 dB peak SPL for 250–2 kHz, 95 dB for 4 kHz). Rise/fall
times were 1ms or 1 cycle, whichever was longer. Calibration of

sound levels was by a ¼
′′
microphone and measuring amplifier

(Bruel and Kjaer, Nærum, Denmark). Distortion at these sound
levels for the second harmonic was from −37 to −67 dB
compared to the fundaments for frequencies of 1–2 kHz, but was
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−26 dB for 4 kHz. The third harmonic was <−40 dB compared
to the fundamental for all frequencies.

A standard transmastoid facial recess approach was used to
surgically access the round window. The recording used surface
electrodes on the forehead contralateral mastoid as ground and
reference electrode, respectively. The active electrode a stainless-
steel monopolar probe (Neurosign; Magstim Co., Wales, UK)
placed in the round window niche. The ECochG recordings were
obtained immediately before CI insertion. Recording epochs
were 512 points each, from 32ms for 250–1,000Hz (16,000Hz
sampling rate) to 10.66ms for 2,000 and 4,000Hz (48,000Hz
sampling rate). Filter settings were 10Hz high-pass and low
passes were 5,000Hz for 250–1,000Hz, and 15,000Hz for 2 and
4 kHz.

Recordings in Gerbils
The experiments with gerbils (Meriones unguiculatus) were
carried out in accordance with the standards of the National
Institutes of Health and Committee on Care and Use of
Laboratory Animals. All procedures were reviewed and approved
by the Institutional Animal Care and Use Committee (IACUC) at
the University of North Carolina.

Gerbils with clean middle ears had ECochG recordings using
the same equipment as in the human recordings. Anesthesia,
surgery, and ECochG recording procedures have been previously
described (Forgues et al., 2014). Animals were sedated using
sodium pentobarbital (10 mg/kg, i.p.) and anesthetized with
urethane (1.5 g/kg, i.p.), Atropine was used to control respiratory
secretions. The animal was maintained at 38◦C using a heating
pad. Needle electrodes were placed at the base of the tail and
contralateral neck muscles for the ground and reference inputs,
respectively. A sealed sound tube was then placed within the
external auditory canal. A sealed sound tube was then placed
within the external auditory canal. After surgical exposure of the
round window, the Neurosign electrode was placed inside the
niche. Tone bursts of 250–8,000Hz over levels from 30 to 80 dB
SPL were presented with the same stimulus/recording conditions
as for the humans. Additional frequencies in some cases included
375 and 8,000Hz; both had second and third harmonic distortion
levels of <−50 dB compared to the fundamental.

The neurotoxins KA, TTX, and OA were used to obtain
signals with diminished neural contribution. Different substances
were used because the material was available from other
experiments, and because the use of multiple compounds
can help avoid the possibility of one or the other having
unexpected actions on hair cells in addition to nerve fibers.
KA is a glutamate analog and destroys the nerve terminals by
excitotoxicity; TTX blocks sodium channels and thus removes
the spiking component of the neural response, and OA inhibits
the sodium pump also blocking the nerve from firing as well
as further depolarizing, but without physically removing the
nerve terminal. Six animals were used for each substance.
The neurotoxins were applied for 1 h to the round window
following baseline ECochG recordings. The toxins were dissolved
in lactated Ringer’s solutions for KA, and artificial perilymph
for TTX and OA. The solutions were warmed to 38◦C before
use. The KA (Sigma USA #K0250) was 60 or 100mM; the TTX

was 15µM (Tocris Bioscience, #1069) and the OA (Calbiochem,
#4995) was 1 or 10mM. After application the solutions was
wicked from the round window and replaced with vehicle alone.
The ECochG recording series was then performed again.

Signal Analysis
Figure 1A depicts a typical ECochG response to a 500Hz
condensation-phase tone burst with the ongoing portion
highlighted (green area). Within this region, the CM and ANN
are mixed together, with both following the amplitude changes
in the tone. Each cycle of the ongoing portion of the response
was combined to produce an “average cycle” (Figure 1B). The
mixture of the CM and ANN affect the distortions in the
response, compared to the sinusoidal stimulus (dashed green
line). This average cycle became the input that the model
attempted to fit.

The time waveforms were analyzed with using fast Fourier
Transforms (FFTs) and the magnitude peaks to the stimulus
frequency and its harmonics were considered significant if they
exceeded the noise by more than three standard deviations, as
measured from three bins on either side of the peaks. Typically,
the minimum detectable signal was ∼20 nV after 500 repetitions
(−34 dB re 1 µV).

For the human CI subjects, evidence of neural activity from
CI recipients was graded based on a visual assessment of the
response, including evaluation for the presence of a CAP and
ANN across the frequency range (Riggs et al., 2017). Briefly, a
CAP was typically detected as a negative deflection within the
first few ms of the response (although some were delayed as long
as 10ms, see Scott et al., 2016; Abbas et al., 2017). The ANN was
determined to be present when the average cycle deviated from a
possible shape attributable to the CM alone, as further described
below. The CAP and ANN were each scored over the range of 0–
2, so the range of “nerve scores” was from 0 to 4. A zero for the
CAP or ANN indicated no conclusive evidence of presence; one
indicated present but small (in the case of the CAP), or with clear
but relatively minor distortions in the average cycle (in the case of
the ANN); while two indicated large (in the case of CAP) or with
strong distortions (for the ANN). The shapes of the average cycle
that indicated the presence of the ANN was strongly influenced
by the animal work reported in part here. For examples of human
CI cases with each nerve score, see Riggs et al. (2017). It was the
need for an objective means of determining the presence of the
ANN that prompted the development of themodel reported here.
The nerve score is useful as an independent means of assessing
neural activity (see Figure 11).

The Conceptual Basis of the Model
The conceptual basis for the individual contributions of CM and
ANN used in the model are depicted in Figure 2. The source
of the CM is the transducer current through mechanosensitive
channels in the stereocilia of hair cells. The input-output function
of the current flow is typically modeled as an asymmetrically
saturating second-order Boltzmann function (Santos-Sacchi,
1993; Sirjani et al., 2004; Ramamoorthy et al., 2007). To a low
intensity stimulus (Figure 2A), the hair cell movement is within
the linear range of the function producing a sinusoidal CM. To a
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FIGURE 1 | Electrocochleography (ECochG) response to a tone burst from a human CI subject. (A) A Human ECochG response to a 500Hz tone burst presented in

condensation phase. The ongoing portion is highlighted (green area). The CAP is shown in red. (B) Each cycle in the ongoing response (dashed lines) and the

“average cycle” (solid line). The presence of the ANN causes distortions in the response compared to a reference sinusoid (dotted line).

moderate intensity stimulus (Figure 2B), the hair cell movement
can saturate in one direction producing a partially rectified signal,
depending on the degree of distance of the operating point, or
proportion of open channels at rest, from the midpoint of the
function. For a high intensity stimulus, the movement saturates
in both directions of the CM waveform (Figure 2C). Thus, the
CM can be represented as a sinusoid at the stimulus frequency,
with two additional parameters of saturation of the peak and
trough of response, to capture both asymmetric and symmetric
saturation.

As with the CAP, the ANN can be described as the convolution
of a unit potential (UP), which is the shape of a single action
potential as it appears at the round window (Kiang et al., 1976;
Prijs, 1986; Versnel et al., 1992a), and the cumulative post-
stimulus time histogram, or summed histogram of all responding
auditory nerve fibers (Goldstein and Kiang, 1958; Snyder and
Schreiner, 1984; Chertoff, 2004). For low frequency tones, the
post-stimulus time histograms of auditory nerve fibers shows
cyclic firing to the positive-going half-phase of the stimulus (Rose
et al., 1967). By folding across stimulus cycles, the resulting cycle
histogram (CH) resembles the half-wave rectified form of the
phase-locking. The curve shown (Figure 2E) has been stretched
to be more than a half-cycle to simulate the spread in phase
associated with inclusion of fibers at more basal positions on the
basilar membrane as the intensity is varied (Kim and Molnar,
1979).

Implementation of the Model
The CM was described by Equation (1). A sinusoid (Equation
1a) was defined in time (t, in seconds) with frequency (f in Hz)
equal to the stimulus frequency and amplitude (ACM in µ V)
and starting phase (ϕCM , in cycles) as parameters. Additional
parameters were upper and lower cutoffs that represented
saturation of the peak and trough independently (Equation 1b).
The ACM was allowed to vary between 0 and 5x the maximum
of the input signal. The phase boundaries were from −2 to 2
cycles. Boundaries of clipping the peak and trough were 50% of
the maximum or minimum input, respectively.

CMsine(t) = ACM × sin
(

2Π
(

ft − ϕCM

))

(1a)

CM (t) =















UpperCutoff if CMsine(t) > UpperCutoff
CMsine(t) if LowerCutoff ≤ CMsine(t)

≤ UpperCutoff
LowerCutoff if CMsine(t) < LowerCutoff

(1b)

To fit the neural contributions to the ongoing response, the UP
was described as a single cycle of a sinusoid at 1,100Hz. This
frequency was selected based on pilot studies where values over
the range of 800–1,200Hz were tested, where 1,100Hz provided
the best fits on average. The UP has also been previously modeled
using a dampened sinusoid (Chertoff, 2004) but we found that
a peak in a second cycle of the UP introduced distortions not
reflective of those seen in the physiological data, producing poor
fits. The cycle histogram (CH), was described as a lognormal
probability distribution function (Equation 2) which describes
when neural spikes are most likely to fire. Probability in the
CH is highest during the phase of basilar membrane motion
that depolarizes hair cells, and is zero for the hyperpolarizing
direction because the spike rate cannot go below zero (although
spontaneous activity can be modulated; Rose et al., 1967). The
width of the CH distribution curve (σ) was determined by the
“SOE” parameter, which was allowed to range from 0.35 to 0.65
of the stimulus cycle. The lower limit was chosen because it is
sharper than the vector strength of a typical nerve fiber over most
frequencies and intensities, so a sharper cycle histogram for the
population is not expected. The upper limit was chosen because
there is a natural limit for SOEs greater than one cycle, because
only the cyclic part of the ANN contributes to the ac component
of the ongoing response as because a constant level of firing
occurs as the cycle histogram from different regions overlap.

H(t) =
1

(σ
√
2π)t

e
−(ln t−µ)2

2σ2 (2)

t = timeline of the CH, µ = period of UP, and σ = SOE
Convolution of the UP and the CH, multiplied by an ANN

amplitude term, AANN , was performed to yield a single cycle of
ANN (Equation 3). The AANN was allowed to vary between 0 and
5 times the maximum of the input signal.

ANN(t) = AANN × (CH (t) ∗ UP (t)) (3)
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FIGURE 2 | Conceptual basis of the model for the ongoing part of the

ECochG response to low frequency tones. (A–C) The CM. To a low stimulus

intensity (A), the hair cell stereociliary motion and channel openings operate

symmetrically within the input-output function (top, black bar), producing a

sinusoidal CM response (bottom). (B) With increasing stimulus intensity,

asymmetric saturation can occur if the operating point (average state of the

channels at rest) is displaced from the center of the function (top), producing a

CM saturated only to one side of motion, in this case the trough of the CM

(bottom). (C) With a high stimulus intensity, symmetric saturation occurs with

maximal deflection at both ends of the oscillation (top), creating a CM with

saturation to both the peak and trough. (D–F) The ANN is created by the

convolution (*) of the unit potential (D) and the population cycle histogram (E).

The unit potential is the shape of a single action potential at the round window,

and the cycle histogram is the sum of action potential firing in the population of

the across all responding nerve fibers. Because the cycle histogram is derived

by folding the periods in the post-stimulus time histogram, this process is

identical to that previously modeled to produce the CAP (see text for

references). The non-linearities inherent in this process will always create a

distorted version of the cyclic response (F). (G) The ongoing ECochG

represents the sum of the CM and ANN.

Phase shift (ϕANN) was a parameter applied to the convolved
signal using MATLAB function “circshift” which discretely shifts
the array circularly. It could vary over the range of−2 to 2 cycles.

The two signals were then summed to produce the model
ECochG by Equation (4).

ECochGmodel(t) = ANN(t)+ CM(t) (4)

A schematic representation of the analytical process performed
by the computational model is shown in Figure 3. To
fit an observed ECochG using the model, the averaged
ongoing response was evaluated using a nonlinear least
squares curve fitting function (MATLAB function “lsqcurvefit”)
which calculated optimized values of the CM and ANN
parameters (ACM , AANN , ϕCM , ϕANN , SOE, peak saturation
and trough saturation) based on Equation (4). The specific

FIGURE 3 | Block diagram for fitting an observed ECochG to model

parameters. The ongoing portion of a recorded/input ECochG signal (lower left

corner) is the basis for a fit-adaptive modeling function (center, bottom). To

estimate the hair cell contribution (right column), the fitting function generates

a sinusoidal CM at the stimulus frequency and optimizes the coefficients for

amplitude and phase, and saturation of the peaks and troughs of the

response. To estimate the neural contribution (left column), a unit potential is

convolved with a cycle histogram of variable spread of excitation (SOE) and

the resulting ANN amplitude and phase are also optimized. The output of the

model is the estimated ongoing ECochG and its associated CM and ANN

parameters (lower right corner).

least-squares algorithm implemented used the “trust-region-
reflective” approach because themodel was defined with specified
equations (Equations 1–4) and the parameters were bounded.
Optimized parameters were returned when the output waveform
approximated the input signal, using the default optimality
tolerance of 1× 10−6.

Goodness of fit was evaluated using regression analysis
to calculate the degree of correlation (r) and determination
coefficient (r2) between the average cycle of the recorded ECochG
and one cycle of the modeled ECochG. Frequency spectra of the
modeled ECochG and the individually modeled CM and ANN
components were also computed using FFTs.

The model reports the amount of “CM” and “ANN” required
to best fit the input waveforms. However, for various reasons
described throughout the manuscript these modeled results
are not identical to the actual amounts of CM and ANN
that produced the waveforms, only an approximation of them.
To avoid calling them “mCM” and “mANN” throughout, for
example, it should be understood that the reported CM and ANN
represent these approximations.

Generation of Simulated Signals for Model
Testing
In addition to the human and animal data sets from ECochG, a
third data set was a series of simulated signals where the values
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of each parameter were systematically varied. These simulated
signals served to determine the model’s ability to detect the
changes and observe the effects of the change in each parameter
on the others. The simulated signals used the same fitting
functions for the CM and ANN as described above.

RESULTS

Modeled Fits to the Average Cycles from
Human CI Recipients
The fits between recorded waveforms used as inputs and the
outputs produced by mixing parameters of the CM and ANN
are shown in Figure 4. The examples in Figures 4A–E were
chosen to illustrate the variety of waveform morphologies seen
to low frequency tones. The waveforms show the inputs and
modeled outputs to two concatenated average cycles (left panels),
and the spectra show the magnitudes of the individual CM
and ANN components (right panels). Some of the responses
showed strong distortions compared to the sinusoidal stimuli
(e.g., Figures 4A,E), while in others the distortions were smaller
(Figures 4B–D). Metrics used to compare the average cycle and
model fit were the correlation coefficient (r) between the two
(from the xcorr function in MATLAB) and the coefficient of
determination (r2). The additional examples in Figures 4F–J

show responses and the modeled fits across a wider range
of stimulus frequencies (250–2,000Hz) and in subjects with a
variety of hearing loss etiologies. The case shown in Figure 4F,
reported as ANSD, showed extreme distortions and a strong
ANN to a 250Hz tone. Another case with a specific type of ANSD,
cochlear nerve deficiency (Figure 4G) had very small distortions
or ANN, as did a case with an unknown cause of sensorineural
hearing loss. Distortions could be present to 1,000Hz (Figure 4I),
while to 2,000Hz it was absent; in this case there was only
saturation (Figure 4J).

Figure 4K demonstrates the distribution of the fits produced
by the model based on the analysis of all of the ECochG signals
from 284 CI recipients. The mean r2 produced by the model,
based on analysis of 1,241 signals recorded, was 0.97 ± 0.051
(standard deviation).

The data in Figure 4 indicates the model can accurately
reproduce the recorded waveforms from CI subjects, and that
the ANN/CM ratio reported follows the degree of distortions
(other than saturation that can be attributed to the CM) in the
waveforms. This data suggests that the model is a plausible means
to analyze the responses to assess the underlying sources. We
will test this idea with three data sets, first with simulated signal
that can be varied parametrically, second with data from gerbils
before and after application of neurotoxins to the round window,
and finally in the sample population of CI subjects.

Assessment of the Model Using Simulated
Signals
To help understand interactions between ANN and CM that
help fit particular shapes, and to evaluate possible interactions
between parameters returned by the model, we simulated
waveforms with parametric variations using the same equations

for the CM and ANN that the model used to fit ECochG
signals. In Figure 5, we show effects of variation of the phase
between the CM and ANN when the amplitudes of each
remained the same. This manipulation resulted in waveforms
which closely resembled the physiologic signals we have collected
from experiments with human CI recipients (see Figures 4E, 4I,
and 4E for analogs of Figures 5A, 5B, and 5C, respectively).
The phase relationship also changed the overall peak to peak
magnitude of the ongoing response, which was at its largest when
the two signals were in phase (Figure 5A) and smallest when
out of phase (Figure 5C), due to constructive and destructive
interference.

The effects of parametric variations of the inputs on the
outputs of the model are shown in Figure 6. The parameter
that was varied is indicated for each column (Figures 6A–F)
and the outputs of the model are shown in the rows. Each
panel shows the output to a series of 100 input signals. The
input values are indicated by black lines. Only small deviations
were seen in the amplitudes of the CM and ANN (top
row) and the phases between them (second row), with the
largest deviation occurring to the CM amplitude as symmetric
saturation increased (Figure 6D, top row, blue trace). For the
trough saturation (third row, green trace) a relatively large
deviation occurred as the ANN became large (Figure 6A), but
this had only a small effect on the CM amplitude. The peak
saturation parameter (third row, black trace) and the SOE,
showed small deviations that were associated with minor effects
on the CM and ANN amplitudes, and did not affect the
phase measurement. These results indicate the model can detect
independent parameter changes in the underlying formulae, and
that interactions of the parameters do occur, but do not appear to
be major.

Modeled Fits of the ECochG Signals from
Gerbils before and after Application of
Neurotoxins
The previous data showed that the model provided good
fits to the raw curves and tracks the changes in simulated
signals. To further assess how well it could capture the ANN
and CM in ECochG responses, experiments using neurotoxins
were performed in gerbils. Expected effects of the neurotoxins
included (1) a reduced proportion of ANN, (2) little or no effect
on the CM, (3) low-pass filtering of the ANN compared to the
CM due to the range of phase-locking in auditory nerve fibers,
and (4) greater compression of the rate-level function in the ANN
compared to the CM; i.e., there should be a greater proportion of
ANN to low and moderate intensities than to high intensities in
low frequency sounds. These features, if captured by the model,
could then be experimentally related to the ANN.

Examples of the effects of the different neurotoxins are
shown in Figure 7. The frequency/intensity combination in each
response was 500Hz at 50 dB SPL. This stimulus was chosen
for illustration because: (1) the phase-locking is expected to
be strong to this low frequency, so a large ANN is expected;
(2) the ANN should be proportionally larger compared to the
CM than would be the case at higher intensities; and (3) the
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FIGURE 4 | Model fits to ECochG responses in human subjects. (A–E) Responses from different subjects to 250Hz (A,B) or 500Hz (C–E) show that the output of

the model (left panels, red, dotted line) is able to reproduce the wide variety of waveforms seen in human CI subjects (solid black lines). From the model, the spectra of

the CM and ANN used to produce the fit can be produced (right panels). For each case the linear fit between the two curves was described by the r2 value, and the

ANN/CM ratio is given for the spectra. (F–J) Similar to the previous examples, except these cases are from subjects with different hearing loss etiologies, to indicate

the heterogeneity of causes leading to cochlear implantation (ANSD, auditory nerve spectrum disorder; CND, cochlear nerve deficiency, SNHL, unknown cause of

sensineural hearing loss; Meniere’s, Meniere’s disease; EVA, enlarge vestibular aqueduct). The responses are shown in order of increasing stimulus frequency. The

spectrum of the ANN is slightly displaced for clarity. (K) Across all recordings (n = 1,126) from 284 subjects, the model was able to fit observed ECochG signals with

an mean r2 of 0.97 ± 0.058 (standard deviation).

500Hz region is relatively apical in the gerbil cochlea, so it
represents a site where the spread of the neurotoxin can be
assessed. In addition, 500Hz is the “sweet-spot” for human
CI subjects, where the responses tend to be the largest, so
the choice is relevant for our main purpose. The left column
shows responses from three gerbils (Figure 7A1–3) prior to any
drug application. Each case shows the signal waveform and the

model fit (top) and the FFT of the ANN as reported by the
model (bottom). Both the waveforms and FFT are normalized
by the maximum firing rate. The numbers in the FFTs are the
ANN/CM ratio reported by the model. For each neurotoxin
(Figures 7B–D), the three examples (Figures 7B–D, 1–3) were
chosen to cover the range of distortions remaining; cases in row 1
had the least remaining distortion, those in row 2 an intermediate
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FIGURE 5 | Waveforms generated using simulated signals varied in phase. (A) When the CM and ANN are in phase, the waveform is only slightly distorted, and the

amplitude is maximal. (B) When the CM and ANN are ¼ cycle out of phase, the distortion increases. (C) When the CM and ANN are ½ cycle out of phase the

distortion is even greater and the overall response magnitude is at a minimum.

level, and those in row 3 were at the upper end of distortions
seen for that drug. The “Post-KA” responses (Figure 7C) are
from the same gerbils as the “Pre-KA” responses (Figure 7A).
The main results were that application of the drugs removed
most of the distortions compared to the Pre-KA responses,
and that the ratio of ANN/CM reported decreased. Application
of TTX (Figure 7B) resulted in more complete removal of
the distortions and reported reduction in the ANN compared
to KA (Figure 7C), or OA (Figure 7D), although with each
substance cases with nearly complete reported removal of the
ANN occurred (e.g., row 1).

The population data for the gerbil experiments across
frequencies and intensities is shown in Figure 8. The four
columns, representing the responses recorded in gerbils before
application of any neurotoxin (Figure 8A) and the effects of the
drugs (Figures 8B–D) are the same as the previous figure. The
rows represent the CM (top) and ANN (middle) reported by
the model which were used to calculate the “ANN/CM index”
(bottom). The index is an alternate method for reporting the
proportion of ANN using the formula (ANN-CM)/(ANN+CM),
so that negative values indicate CM larger than ANN (−1 is all
CM), 0 indicates equal amounts of CM and ANN, and positive
values indicate greater ANN than CM (+1 is all ANN). A
larger range of frequencies and intensities was tested in the KA
experiments compared to when TTX or OA was used. Across
the top row, the use of the neurotoxins had little effect on
the CM, although to low intensities in the post KA cases the
values reported for 750 and 1,000Hz were reduced (arrows).
For the ANN, in the pre-drug condition (Figure 8A) there was
a considerable effect of frequency with both the ANN (middle)
and the ANN/CM index (bottom). This bias of the ANN toward
low frequencies is expected from neural phase-locking. However,
to achieve this effect in the case of the ANNmagnitude the values
reported as 5% or less of the total were scored as a zero, because
the model rarely produced an ANN much smaller than 5%.
Without this cut-off the ANN reported for high frequencies and
high intensities was only slightly lower than for low frequencies;
i.e., because the responses themselves were so large even a small

percentage produced a relatively large ANN. The cut-off did not
affect any of the measurements to low frequencies (<= 1,000Hz)
in the pre-drug condition, and the cut-off was not used for the
ANN/CM index, so the low pass filtering of the ANN compared
to the CM is clear from the model.

In the post-drug conditions (Figures 8B–D), the ANN was
reduced compared to the predrug condition, but large values
were still reported to high intensities. These large values were
probably due to a mixture of two effects. First, the effects of the
drug were variable, so some ANN left over after drug application
on average is expected. Second, in the post-drug condition the
need for the 5% cut-off comes into play for low frequencies as well
as high frequencies. The ANN/CM index appeared to capture the
effect of the neurotoxins more accurately than the raw numbers.
Note that as in the examples presented earlier (Figure 7) the OA
had the least effect.

Another way to assess the effect of the neurotoxin is to
compute the difference between the pre and post drug conditions
reported by the model. In Figure 9 we show this data for control
cases where only vehicle (lactated Ringer’s or artificial perilymph)
was applied to the round window as well as for when neurotoxins
were applied. In the control cases with lactated Ringer’s as the
vehicle (Figure 9A), a non-specific effect of time is evident by
the small decrease in response of the CM and ANN. This is
the main reason the frequency and intensity combination were
decreased in later experiments.With this smaller stimulus set and
change and using artifical perilymph as the vehicle (Figure 9C),
the changes in the CM and ANN were much less. After KA
(Figure 9B), the subtraction showed the CM to 750 and 1,000Hz
at the lowest intensity (30 dB SPL) to be reduced by a relatively
large amount (arrow), as shown in the previous figure with the
raw data. The CM after KA, TTX, and OA (Figures 9B,D,E)
showed no changes in the CM compared to controls. For the
KA (Figure 9B) and TTX (Figure 9D), the ANN was reduced
to frequencies of 1,000Hz and below for intensities below 70
dB SPL. To low frequencies at high intensities and for high
frequencies the effects of these neurotoxins were small. The ANN
showed the greater effect of KA than the CM, with the CM similar
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FIGURE 6 | Parametric examination of model outputs to simulated signals. The parameter varied is changed along the columns (A–E), and the responses obtained

for each parameter is varied by row. (A) The ANN amplitude was gradually increased from 0.01 to 2 µV with CM amplitude of 1 µV, no phase difference between the

two signal components or trough or peak saturation, and SOE of 0.65 cycles. (B) The phase difference between the two CM and ANN was gradually increased from

−0.5 to 0.5 cycle while CM amplitude was 1 µV, no trough or peak saturation, and ANN amplitude was 0.3 µV with SOE of 0.65 cycle. (C) The trough saturation of

the CM component was varied from 0 to 15% of the CM amplitude with no peak saturation, the ANN amplitude was 0.3 µV in dB and SOE 0.65 cycles while the

phase difference between the two signal components was zero. (D) The degree of peak saturation of CM was varied from zero to approximately 10% of the CM

amplitude of 1 µV while trough saturation was stable at 15% of the CM amplitude; ANN amplitude was 0.43 µV in dB, SOE 0.65 cycles and phase difference between

the two components zero. (E) The SOE increased from 0.35 to 0.65 cycles while the CM amplitude was 1 µV, ANN amplitude was 0.3 µV and no trough or peak

saturation and the phase difference between these two signal components was zero.

to the control. The OA showed the same trends but with smaller
effect.

With the KA and the TTX, the reduction of the ANN was
less substantial for high than for low intensities, corresponding
to the larger remaining ANN to high intensities. However, the
expected effect is that the largest reduction in the ANN would be
to high intensities, since the neurotoxin would have the greatest
effect on the cochlear base, thus blocking spread of excitation.
Remaining ANN from the apex would be relatively less affected
by the neurotoxin. Thus, less ANN than was actually removed
was detected when it is was a small or neligible fraction of the
total response at the beginning, and more of the response was
estimated to remain than was likely to actually be present. To
help understand possible reasons for these results, Figure 10

depicts examples of waveforms and spectra to 1 and 4 kHz
before and after the application of TTX, presented at 80 dB
SPL. To the 1 kHz tone, some ANN is expected prior to TTX,
but at such a high intensity it should be small relative to the
CM. After TTX the ANN should be small or negligible. To
the 4 kHz tone there should be no ANN either before or after
TTX. However, all four of these responses were reported by the
model to have considerable ANN—from 7 to 17% of the CM.
In addition, all were accompanied by a similar waveform. To
be called purely CM, the model expects a sine wave that can
be saturated in the peaks and/or troughs. However, responses
shown had a declining, rather than purely saturated, response
at the peak (arrows). Although many of the pre and post-TTX
responses to high frequencies (and post-TTX to low frequencies)

Frontiers in Neuroscience | www.frontiersin.org 9 October 2017 | Volume 11 | Article 592

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Fontenot et al. Computational Model of Electrocochleography Signal

FIGURE 7 | Examples of waveforms and frequency spectra of ECochG signals in response to 500Hz tone burst at 50 dB SPL (A). Three examples (1–3) recorded

prior to KA. The waveforms shown strong distortions and in the ECochG and model waveforms (top panels) and the ANN has multiple harmonics in its spectra

(bottom panels). Both sets of data were normalized by the maximum response. The numbers in the spectra represent the ANN/CM ratio. The CM is not shown. (B–D)

Three examples each (1–3) recorded after KA, TTX, and OA, respectively. The waveforms show less distortion and smaller ANN/CM ratios, although the ANN is not

completely removed in most cases. The cases (1–3) are in order of least to most remaining ANN for that drug. The Pre-Drug condition for TTX and OA are not shown,

but were similar to that for Pre-KA.

had ANN/CM ratios below 0.05, for those that exceeded this
cut-off the waveform shape shown here was often encountered.

The CM and ANN in Human CI Recipients
as Determined by the Model
The data presented to this point support the ability of the model
to reproduce waveform shapes in CI subjects (Figure 4), and the
parameters identified provide reasonable estimates of the CM
and ANN for most frequency/intensity combinations before and
after neurotoxins (Figures 7–10). Here, we apply the model to
the population of CI recipients (Figure 11). For 500Hz stimuli
at 90 dB nHL, the magnitude of the reported ANN was typically
lower than for the CM. On average, this difference was 14.7±13.9

dB (standard deviation). However, there was a general trend for
a larger ANN as the CM increased. This trend is expected to
the degree that a larger response indicates both larger CM and
ANN. However, the data indicated by the “X” symbols are the
cases where the ANN/CM ratio was <0.05, and in some of these
cases, such as for cochlear nerve deficiency (see Figure 4G), it is
highly likely that the ANNwould be small or absent. Thus, as with
the animal data, the model as currently implemented does not
allow for small or absent ANN when the overall response is very
large. The average reduction compared to the CM in these cases
where the ANN ratio was<0.05 was 26.2 dB, so this appears to be
essentially a lower limit for the ANNusing themodel. Figure 11B
shows there was a wide variety in the proportion of the ANN
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FIGURE 8 | The CM, ANN, and ANN/CM index reported by the model as functions of frequency and intensity. (A) The Pre-KA condition. The CM shows an orderly

pattern of CM across frequency and intensity, with no cut-off to higher frequencies. The arrow represents a small discontinuity to low frequencies (750 and 1,000Hz)

and intensities (30–50 dB SPL). The ANN shows a low-pass cut-off to frequencies >1,000Hz. However, a non-linearity was introduced—all responses where the

ANN/CM ratio was <5% were considered no response (see Text for further explanation). The ANN/CM index, where no non-linearity was introduced, also showed the

low pass cut-off to frequencies >1,000Hz. (B–D) Responses after KA, TTX, and OA, respectively. The Pre-Drug condition for TTX and OA are not shown, but were

similar to that for Pre-KA. A smaller range of frequencies and intensities was tested with TTX and OA that with KA. In general, the CM was little affected by the

neurotoxin. However, the discontinuity seen in the CM was not present after KA (arrow). The ANN/CM index was also reduced to low intensities, but was already small

at high intensities so a change was difficult to detect. The reduction in the ANN and ANN/CM index was greater for KA and TTX than OA. Errors bars are standard

deviation.

across cases. In the large majority of cases (93%) the ANN/CM
index was negative, indicating a predominance of CM over ANN
(mean index of −0.56 ±0.31, or an average of about 3.5 time
larger CM than ANN). However, a number of cases had an ANN
approaching 50% of the CM (index of 0), and in some the ANN
contribution was reported as larger than the CM.

To assess the effects of frequency, the ECochG signals

belonging to each individual were categorized based on a visual
assessment of the neural activity, including evaluation for the

presence of a CAP and ANN across the frequency range (see

section Methods). The data for the CM was not well-ordered
by the amount of neural activity (Figure 11C), and showed only

a small frequency effect (these cases show only responses that

were significant for each frequency, so the numbers are smaller

for 2 and 4 kHz compared to 250–1,000Hz). In contrast, the
reported ANN supported the results of the subjective assessment

(Figures 11D,E). As with the gerbil data, a non-linearity at
ANN/CM ratio of 0.05 was applied forcing lower ratios to have
zero ANN (Figure 11D). The CM/ANN index showed a similar
trend as the ANN magnitude without no non-linearity used
(Figure 11E). For cases with the highest nerve score the cut-off
frequency for the ANNwas similar to that seen in the NH gerbils,
while the responses in cases with the lowest nerve scores were
similar to that seen with gerbils after neurotoxins.

DISCUSSION

Although, the responses to tones have long been known to
contain both CM and ANN, methods to quantitatively separate
them have been largely lacking. Here, we created an analytic
model of the CM and ANN intended to separate and estimate
the magnitudes of these two components of the ongoing
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FIGURE 9 | Difference in the CM (top row) and ANN (bottom row) before and after application of vehicle only or vehicle + neurotoxins. Each subtraction is paired

between the Pre and Post data for each animal. (A,C) Control cases where vehicle only was applied to the round window. For the lactated Ringer’s (LR) there was a

small reduction in both the CM and ANN that could be related to the passage of time (A). For the artificial perilymph (AP), the smaller frequency, and intensity range

decreased the time between recordings, and the reduction in the CM and ANN was smaller (C). (B,D,E) Responses after KA, TTX, and OA, respectively. After KA (B),

the reduction in the CM to 750 and 1,000Hz, also shown in the previous figure, was greatest to the lowest intensity (arrow). After TTX (D), the reduction in the ANN

was large at 500 and 1,000Hz, and similar to controls the higher frequencies. After OA (E), the reduction to the lower frequencies was smaller than with KA or TTX.

Errors bars are standard deviation.

response. We used the model to analyze ECochG responses
recorded in CI recipients, NH gerbils before and after application
of a neurotoxin, and simulated ECochG signals. The model
succeeded in capturing the overall shapes of waveforms in CI
subjects (Figure 4), was affected in generally predicable ways
by parametric manipulation of simulated signals (Figures 5, 6),
captured aspects of the responses expected after application of
neurotoxins in gerbils (Figures 7–10) and provided estimates of
the ANN and CM in human CI subjects that generally matches
that of a subjective estimate of neural activity (Figure 11).
However, the model also showed limitations, of which the most
important was to overestimate the amount of ANN in cases
where little or none is expected, such as after neurotoxins or
in some CI subjects, and to underestimate the amount of ANN
when the CM is extremely large, such as to high intensities in
normal hearing animals.

Need for the Model
Masking techniques can reveal the presence of the ANN in many
cases, but can quantitatively recover only the amount that is
masked, which for suprathreshold stimuli in single unit studies
is not the entire neural component (Smith, 1977; Harris and
Dallos, 1979). In addition, in CI subjects the stimulus levels are
already very high (typically >100 dB peakSPL), so maskers have
to be presented at levels that can be prohibitive. In addition,
recovery from masking is relatively slow (Snyder and Schreiner,

1985; Verschooten et al., 2015), a major issue with intraoperative
techniques. We have tried numerous other methods to quantify
the ANN in animals and CI subjects prior to adopting the
modelingmethod used here. As described in Figure 2D, the ANN
has inherent asymmetry due to the half-wave rectification of
phase-locking in auditory nerve fibers. Thus, the ANN typically
contributes a robust 2nd harmonic in the response. This has
also been called the “auditory nerve overlapped waveform”
(Lichtenhan et al., 2013, 2014). However, the 2nd harmonic
is not a quantitative measure of neural contribution because
most of the energy of this waveform is periodic at the stimulus
frequency, i.e., in the first harmonic, where it is mixed with the
CM. The ANN and CM are produced by independent processes
that can have different spatial distributions in the cochlea,
which results in highly variable phase relationship between the
two signals. Therefore, the proportion of ANN present in the

first harmonic cannot be predicted by the sizes of the higher
harmonics alone. Finally, the second harmonic is not entirely

ANN, as high stimulus intensities can cause asymmetric and

symmetric saturation of the CM which results in even and odd
order harmonics as well (Teich et al., 1989).

In addition to investigating measurements of each harmonic
and the total harmonic distortion, we have used cross-correlation
and error measures between the average cycle and a sinusoidal
representation of the stimulus, as well as shape distortions in
the response such as the form factor, crest factor, and skew.
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FIGURE 10 | Examples of average cycle waveforms and frequency spectra in

response to tone bursts at 80 dB SPL. These examples depict a particular

type of ECochG response that does not conform to the shapes expected for

CM. To the 1,000Hz (A) and 4,000Hz stimuli (B) there was a sloping response

to the clipped peak of the average cycle (arrows). To a 1,000Hz stimulus at

this sound level the ANN should be a relatively small proportion of the

response, and smaller still after TTX. For the 4,000Hz stimulus there should be

little or no ANN either before or after TTX. Thus, these waveforms are likely to

be nearly-pure CM. The model did capture considerable clipping of the CM,

indicated by the large saturation values reported for the peak (Pk. Sat.) and

smaller values for the trough (Tr. Sat.). However, the spectrum of each

modeled waveform showed considerable ANN even after TTX, suggesting the

model interpreted the sloping shape of the CM as ANN. The waveforms and

the spectra are normalized to the amplitude of CM contribution measured by

the model. The CM of the first harmonic is off-scale to emphasize the higher

harmonics, which were present due to the clipping. The spectrum of the ANN

is slightly displaced for clarity.

The spectral and time-based approaches both identified features
indicative of the ANN in many cases, such as the presence of
2nd harmonic, low correlation with a sinusoid, low form factor,
high crest factor, or high skew. While these approaches are not
quantitative, in most cases their results agreed with our visual
assessment of the waveforms. However, with each measure there
were clear false positive and false negatives in terms of identifying
the degree of ANN, based on visual examination of the average
cycle for distortions indicative of neural activity that has been our
“gold standard” for identifying the presence of ANN. This visual
approach is strongly informed by the animal experiments with
neurotoxins, where absence of the ANN was indicated by the loss
of the distortions except for saturation that can be attributed to
the CM.

It was because of these issues that we considered the approach
of using an adaptive model which treats the ECochG waveform
as the sum of the discrete CM and ANN signals. This approach
depends on accuracy of the equations used to estimate the
physiological processes, which we have only partially achieved
in this early implementation. Based on our experience up to this
point, physiological signals in which the ANN is either very small
or exceptionally large relative to the CM are challenging for the
model to analyse.

Basis of the Model: The CM
The CM was modeled as a sinusoid with parameters of peak and
trough saturation. A benefit of this method is that it requires no a
priori knowledge or assumptions about the shape of the function
or operating point—the proportion of open channels in hair cell
stereocilia in the absence of sound stimulation. In a population
response the shape of input/output function will be affected by
the spatial extent of responding hair cells which will be stimulated
at different effective levels according to their distance from the
characteristic frequency locus of the stimulation frequency. In
addition, the CM will be a mixture of contributions from outer
and inner hair cells, which can have different operating points.
By using such a simple and hard-edged description we probably
underestimate the complexity of the responses produced by hair
cells. In particular, responses in gerbils without ANN, either after
neurotoxins or to high frequencies before neurotoxins, show
what resemble cycle-by-cycle-adaptation to high intensity sounds
(Figure 10). It is not clear what drives this small decline in
response during each cycle in some cases. If such adaptation
were present in the model it might reduce some of the response
interpreted as ANN that is really CM.

Basis of the Model: The ANN
The ANN was modeled as the convolution of the UP and
CH, and included a parameter to represent the effect of SOE.
This convolution procedure is similar to the convolution of
the UP and PST histogram that has been used successfully to
model the CAP (Goldstein and Kiang, 1958; Chertoff, 2004)
with the cyclic firing to low frequencies in the PST collapsed
to produce the CH (Snyder and Schreiner, 1984). After piloting
a range of frequencies, the UP was ultimately modeled as
a single cycle of an 1,100Hz sinusoid. The use of a single
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cycle is similar to the UP determined from experimental data
(Versnel et al., 1992b), although we have not yet implemented
the exact shape they described. A better approximation of
the UP is also an improvement to the model that could
be implemented. The shape of the CH was modeled as a
stretched lognormal probability density equation, with the
variable width of the curve (σ) representing the SOE. These
equations represent a version of the underlying processes, and
a more accurate description of the actual physiology is likely to
be achieved if a biophysically-based model were used (Carney
and Yin, 1988; Meddis, 1988; Meddis et al., 2013; Zilany et al.,
2014).

Results with the Model: Simulated Signals
With simulated waveforms as inputs the model was able
to reproduce the values of the parameters across the range
encountered physiologically. This simulation was presented in
detail to 500Hz, since that is a frequency where both the
CM and ANN can have a wide range of relative values. The
features reproduced with the most accuracy were CM amplitude,
ANN amplitude, and the phase difference between them. The
model reported a small degree of primarily saturation, primarily
in the trough, when the ANN amplitude exceeded the CM
amplitude. This deviation was accompanied by small deviations
in the reported CM and ANN amplitudes. The model was less
precise with its estimation of SOE, however, inaccuracies in that
parameter did not seem to affect other parameters of the ANN
component.

One purpose in using the simulated signals was to assess
the effects of phase differences between the ANN and CM on
the ECochG waveforms and compare them to the distortions
commonly seen in the human and gerbil data. We found that
manipulating the phase resulted in a variety of waveforms which
closely resembled the physiologic signals we have collected from
experiments with the animal model and human CI recipients.
The phase relationship also changed the magnitude of the
ongoing response, which was at its largest when the two signals
were in phase and smallest when out of phase; i.e., there
was constructive and destructive interference. This effect has
implications for studies of ECochG as a monitoring tool for
cochlear trauma during CI surgery. Many of these studies use
500Hz tones as a stimulus, and some monitor the magnitude
of the response, either as an RMS signal (Campbell et al.,
2015, 2016) or as the peak of the spectrum at the stimulus
frequency (Koka et al., 2016). Because of the expected effect
of phase interactions, which was demonstrated here in the
model, in the past we (Fitzpatrick et al., 2014; McClellan et al.,
2014; Formeister et al., 2015) and others (Dalbert et al., 2016)
have summed the peaks of the spectrum of the response to
each stimulus frequency as the measure of response magnitude.
By summing the spectral peaks, rather than calculating their
RMS value as would be done to reproduce the time waveform,
the contributions of the distortions to the overall signal are
given more weight. While summing rather than squaring the
response peaks partially mitigates the effect of phase when
assessing the magnitude of the ECochG response, the model
offers the possibility of measuring the potentials separately and

thus accurately measuring the overall response independent of
phase effects.

Results with the Model: Studies Using
Gerbils
The results from the gerbil indicate that the model captures
some important features of phase-locking in the auditory nerve
across frequency and intensity. It reports a larger CM than
ANN, with the major effects of neurotoxins limited to the
ANN. In the case of KA we did see some effect of KA on
the CM at a few frequency/intensity combinations, but this
was not seen with the other neurotoxins. However, the vehicle
was also different between the experiments (lactated Ringer’s
for KA and artificial perilymph for the others) so it hard to
know what to attribute this difference to. The proportion of the
ANN relative to CM is strongly reduced to high frequencies
compared to low, with the cut-off between 1,000 and 2,000Hz,
consistent with the range where phase-locking in gerbil auditory
nerve fibers has the greatest synchrony (Ohlemiller and Siegel,
1998; Versteegh et al., 2011). The relationship with intensity
is similar to that expected from compression of the ANN
relative to the CM, which is that the proportion of ANN is
much greater to low intensities compared to high. Thus, the
model does identify the major features of phase-locking expected
from single unit studies and extrapolated to a population
response.

The major limitation in the model was the report of
substantial ANN in cases where little or no neural responses
were expected (e.g., high frequency stimulus, or after treatment
with a neurotoxin). Large values of ANN were reported when
the CM was large, even if the overall percentage reported was
relatively low. To help mitigate this error, we set values of ANN
to be zero when the ANN/CM ratio was <0.05. There is evidence
(Figure 10) that the flaw lies in an incomplete modeling of
processes which can affect the CM waveform morphology. A
promising direction is to allow some adaptation in the response
on a cycle-by-cycle basis. The model also struggled with some
responses to low frequencies presented at low to moderate
intensities—these signals tended to have the largest ANN and
produce highly complex waveforms. While the model accurately
identified large ANN amplitude in these cases, the correlations
between the input and the model signals tended to be lower
than the average, suggesting possible areas of improvement in the
implementation of UP, CH, and SOE.

Application of KA also resulted in a small decline of the CM
signal magnitude to low frequencies (750 and 1,000Hz) and
intensities (30 dB SPL), suggesting the neurotoxin affected hair
cells, or that the model was incorrectly assigning some of the
ANN to the CM prior to KA application. A similar change in
the CM did not happen with either TTX or OA. A small effect
of KA on the CM has previously been reported in other animal
models (Zheng et al., 1996; Sun et al., 2001). In addition, although
we have not examined the question in detail, some effect on the
CM, either an increase or decrease, can be expected in individual
cases due to changes in the efferent system that can affect the
operating point of outer hair cells. Such changes are expected
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FIGURE 11 | The CM and ANN in human CI subjects. (A) In 249 subjects with significant responses (see section Methods) to 500Hz tone bursts at 90 dB HL the

ANN amplitude was generally smaller than the CM (below the line of equality, dashed) but the two were positively correlated (r = 0.75, p < 0.001). Symbols with an X

had an ANN/CM ratio <0.05. (B) The ANN/CM index of the same subjects. On this scale an index of−1 is all CM, 0 is equal amount of CM and ANN, and 1 is all ANN.

Usually the CM was greater than the ANN, although in a number of cases they were nearly equal, and in a few the ANN was larger than the CM (C–E). The CM (C),

ANN (D), and ANN/CM index (D) as a function of frequency and with the parameter of “nerve score,” which is a subjective scaling of the neural activity in each cases

based on visual observation of the CM and ANN. There was no trend for the subjective nerve activity to reflect the size of the CM, in contrast, the size of the ANN and

the ANN/CM index reflected the nerve activity. Both also showed low-pass filtering of similar to that in gerbil. The responses included for each frequency had to be

significant (see section Methods) so the numbers of cases differ by a small amount for 250–1,000Hz (>80% of cases have significant responses to these frequencies)

but are fewer to 2 and 4 kHz (43 and 26%, respectively). Errors bars in (C–E) are standard error.

once the afferent input is removed, but the direction may vary
across cases.

The frequency range of ANN reported by the model is a
close match to the range where the ANN was detected in a
spectral analysis using some of the same KA data (Forgues
et al., 2014). It is also similar to the range of the “auditory
nerve overlapped potential,” reported in similar experiments in
other species (Lichtenhan et al., 2013, 2014). In contrast to the
evoked potential results, single units in gerbils can show phase-
locking to frequencies up to 3–4 kHz (Versteegh et al., 2011), as
is also reported in other species (Johnson, 1980; Weiss and Rose,
1988). There are at least two reasons why the ANN in ECochG
recordings may have amore limited phase-locking range than the
single units. The first is that the ANNmay only be detectable over
the range of phase-locking where the synchrony is the highest.

In gerbils and most species there is a steep decline in the vector
strengths of single units beyond about 1,000Hz. The second is
that there will also be low-pass filtering of the ANN due to the
overall UP duration of ∼1ms (∼period of 1,000Hz sinusoid),
as previously suggested by Lichtenhan et al. (2013). Due to the
UP’s relatively long duration, overlapping responses to higher
frequency stimuli may reduce the cyclic component in the evoked
response.

A main assumption of the model is that the ongoing response
consists of only the ANN and CM. This misses at least one known
source of cochlear electrical responses—the dendritic current that
is produced from the sum of synaptic currents in auditory nerve
fiber terminals (Dolan et al., 1989). Since the dendritic potential
is not based on spikes, the correlate of the UP would be the
synaptic EPSP from transmitter-gated channels. TTX blocks only

Frontiers in Neuroscience | www.frontiersin.org 15 October 2017 | Volume 11 | Article 592

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Fontenot et al. Computational Model of Electrocochleography Signal

the action potentials and should not affect these EPSPs, unlike
KA which removes the nerve terminal, and OA which prevents
further depolarization. This dendritic current is not currently
considered in the model. By initial application of TTX followed
by KA, the dendritic contribution can be isolated as the difference
of the response seen after each compound. Preliminary results
from this experiment show the dendritic response to be present
but smaller than the spiking component. Future iterations of the
model will need to consider both sources of neural contributions
to the ongoing response to better account for recorded waveform
shapes.

Finally, the model does not include separate functions
for inner and outer hair cells. This is reasonable given that
the recordings from the round window are the sum of all
contributions to the CM, which include both types of hair
cells. However, it would be important to know whether the
asymmetries are different in the two cell types, which could also
be approached pharmacologically in gerbils, as it has in guinea
pigs (van Emst et al., 1995, 1996).

Results with the Model: Human CI Subjects
The results of model analysis of the signals recorded in human
CI subjects are encouraging, however, issues similar to those
in the animal experiments were present. The reported CM was
on average larger than the ANN, by 26 dB on average. This
corresponds with our expectation that the ECochG responses in
CI subjects are dominated by the CM, which is the reason why the
measure of “total response” (sum of all significant responses to
harmonics 1–3 across a range of tone burst frequencies) account
formore of the variance in outcomes in adults (>40%, Fitzpatrick
et al., 2014; McClellan et al., 2014) and in older children (>30%,
Formeister et al., 2015) than does audiometric or biographic
data (Lazard et al., 2012). That is, the proposed explanation
for correlation of outcomes with a signal dominated by the
CM in these studies is that the degree of hair cell survival is a
better correlate to “cochlear health” than is the degree of intact
connections with nerve fibers. Here, the CM did not show a
low-pass cut-off frequency, consistent with the animal data and
basilar membrane movement. Furthermore, it was not correlated
with the degree of neural activity determined subjectively, and
which was a good fit with the results for ANN, further supporting
the view that the CM and ANN in CI subjects do not provide
identical information regarding outcomes.

In the population-wide results, as in the gerbil data, the model
did not always report a small ANN for cases where the CM/ANN
ratio was small; instead, enough ANN was reported for it to scale
with the size of the CM. As was discussed with the gerbil results, it
may be that the shape of the CM is more complex than a sinusoid
with parameters of asymmetric and symmetric saturation, such
that any waveform abnormalities beyond those would likely be
attributed to the ANN. The importance of this issue is that to the

degree the reported ANN is covariant with the CM rather than
independent, its value as a independent predictive measure for
speech perception outcomes with the CI recipients is limited.

Unlike gerbils, the phase-locking range in the human auditory
nerve is unknown. There are some indications that human phase-
locking could go to higher frequencies than found in animal
single unit studies (Moore et al., 2006), but the more general
view is that the weight of evidence supports a range of up to
about 1.5 kHz for strong phase-locking, i.e., similar to other
species (Joris and Verschooten, 2013). Here we are able to report
that the frequency range of the ANN estimated by the model
(and seen visually in the average cycle) is similar to that in the
gerbil.

CONCLUSION

A model based on an analytic description of hair cell and neural
contributions to the ongoing responses to low frequency tones
was used to separate the ECochG signals into their individual
components. This analytical tool can help characterize the
residual physiology CI recipients, and can be useful in other
clinical settings where a description of the cochlear physiology
is desirable.
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