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Cardiovascular diseases have become one of the most prevalent threats to human health throughout the world. As a noninvasive 
assistant diagnostic tool, the heart sound detection techniques play an important role in the prediction of cardiovascular diseases. In 
this paper, the latest development of the computer-aided heart sound detection techniques over the last five years has been reviewed. 
�ere are mainly the following aspects: the theories of heart sounds and the relationship between heart sounds and cardiovascular 
diseases; the key technologies used in the processing and analysis of heart sound signals, including denoising, segmentation, feature 
extraction and classification; with emphasis, the applications of deep learning algorithm in heart sound processing. In the end, 
some areas for future research in computer-aided heart sound detection techniques are explored, hoping to provide reference to 
the prediction of cardiovascular diseases.

1. Introduction

With the prevalence of unhealthy living habits, cardiovascular 
disease (CVD) has become one of the major threats to human 
health. According to the latest statistics of the World Health 
Organization (WHO) [1], the number of deaths from CVDs 
reached 17.9 million in 2016; CVD is the leading cause of 
mortality throughout the world. At present, there are about 
290 million people suffering from cardiovascular diseases in 
China alone, so the prevention and treatment of cardiovascular 
diseases have become an urgent issue for health-conscious 
people.

Heart sounds—the sounds made by the heart systole and 
diastole—can be recorded as heart sound signals, also known 
as phonocardiography (PCG), whose acquisition is noninvasive 
and easy. �rough PCG data processing and analyzing, the 
results can be used as an assistant diagnostic tool for the 
prediction of cardiovascular diseases. However, due to the 
characteristics of the heart sound signals and the influence of 
the noise in the environment, the detection of heart sound 
signals is facing great challenges. On the one hand, the 
randomness and variability of cardiovascular disease 
symptoms lead to the complexity and diversity in the signal 
manifestation. On the other hand, heart sound signals are 
relatively weak, and the acquisition process of the original 

signals can be affected by various noises and interferences, 
resulting in noisy data collected, which can reduce the accuracy 
of related parameter extractions and increase the uncertainty 
of diagnosis.

Computer-aided detection technology is a fast, efficient 
and economical tool [2], which can be applied to quantitative 
acquisition and the analysis of heart sound signals. By 
extracting the key parameters in the PCG and comparing the 
patient’s monitoring sequence with the tagged database, not 
only can more intuitive diagnostic results be obtained 
automatically, but the potential cardiovascular disease may be 
further inferred by the experts with their clinical knowledge. 
In recent years, computer-aided detection technology for the 
heart sound signals processing and analysis has made 
remarkable achievements and aroused wide interest [3, 4].

At present, intelligent auscultation technology has not 
been widely used in clinical diagnosis, and the main method 
used for heart sound detection is manual auscultation. 
�erefore, the research and application of computer-aided 
techniques for heart sound detection will greatly promote 
development in the field of cardiovascular disease diagnosis.

�e purpose of this paper is to provide an overview of 
computer-aided heart sound detection techniques in recent 
years. �e clinical characteristics of heart sound signals are 
introduced, first. �en, some promising processing and 
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analyzing techniques for heart sound detection that have 
developed over the last five years are reviewed. Next, the deep 
learning algorithm that can be applied to the PCG processing 
and analysis is discussed. Finally, some promising research 
areas in computer-aided heart sound detection techniques are 
recommended.

2. Heart Sounds and Cardiovascular Diseases

Vibrations caused by cardiac activities such as myocardial 
contraction, heart valve closure, and occlusion of the 
ventricular wall are transmitted through the tissue to the 
surface of the chest wall and form the heart sound signals that 
can be perceived by the human ear and recorded with 
electronic instruments. Figure 1 shows the location of heart 
valves and arteries associated with auscultation. According to 
the order of occurrence in a cardiac cycle, the heart sound is 
divided into four components: the first heart sound (S1), the 
second heart sound (S2), the third heart sound (S3) and the 
fourth heart sound (S4). For each of the 4 components, the 
physiological state of the heart is different. Figure 2 shows the 

blood flow changes of partial heart sound components in the 
heart. �e intensity, frequency and correlation of the heart 
sound reflect the heart valve condition, myocardial function 
and intracardiac blood flow. Table 1 shows the mechanism of 
the generation of heart sounds, including the cause, features 
and significance of heart sounds [5].

�e fundamental heart sounds (FHS) [6] used in clinical 
diagnosis include S1 and S2 (S3 appears only in the cardiac 
cycles of some healthy young people, and S4 does not appear 
in normal cardiac cycles). �e period between S1 and S2 in 
the same cardiac cycle is called systole, and the one between 
S2 and S1 in the next cycle is called diastole. �e normal dura-
tion of systole is about 0.35 sec and that of diastole is about 
0.45 sec, for a total of 0.8 sec in a complete cycle. �ese values 
are closely related to the occurrence of cardiovascular diseases. 
Figure 3 shows two normal cardiac cycles.

Heart sound diagnosis with manual auscultation is a 
qualitative method entirely based on the experience of the 
expert through analysis of the tone and intensity of the heart 
sounds. Computer-aided detection techniques for heart sound 
analysis can obtain the quantized characteristic parameters, 
which are helpful to find the relationship between the heart 
sounds and the related diseases. It is conducive to the 
subsequent traceability of data and the formation of database 
as well. �erefore, it is significant to research in the non-
invasive diagnosis of cardiovascular disease.

3. Computer-Aided Heart Sound Detection 
Techniques

�e computer-aided processing of heart sounds includes 
denoising [7], segmentation [8], feature extraction and clas-
sification [9].

3.1. Denoising. Due to the influence of the external 
environment, heart sound signals are usually coupled with 
electromagnetic interference, power frequency interference, 
random noise, interference from the human body, breath 
sounds, and lung sounds [10]. �e diagnostic accuracy of the 
detection is directly affected by the quality of the signals and 
the features extracted subsequently. Consequently, denoising 
is the first essential step to improve the automatic detection 
accuracy of heart sounds. �e techniques used for heart 
sound denoising include discrete wavelet transform (DWT), 
adaptive filtering denoising, singular value decomposition 
(SVD), etc. In addition, combined methods are applied for 
better effects, which help to improve the signal quality and 
detection accuracy.

Jain et al. [11] proposed a DWT-based PCG signal 
denoising algorithm, using “Coif-5” wavelet as the mother 
wavelet and combined with an adaptive threshold estimation 
method, a nonlinear intermediate function method and a 
genetic algorithm, to optimize the traditional discrete wavelet 
transform (DWT) algorithm. �e improved algorithm 
eliminated the out-of-band noises and removed the lower 
detail level coefficients, further improving the denoising 
performance. Mondal et al. [12] introduced a novel heart-tone 
denoising method based on the combined framework of 
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Figure 1: Section view of the heart. �e heart valves and arteries 
associated with auscultation are marked.

Figure 2: Graphical representation of partial heart sound components 
and the corresponding changes in the direction of blood flow in the 
heart.
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Figure 3: Heart sounds and cardiac cycles. �e duration of S1, S2 and S3 and the relationship between systole and diastole in the heart are 
marked.

Table 2: Segmentation methods of PCG signals.

Year Author Segmentation method Dataset Result

2019

Giordano 
and 

Knaflitz 
[16]

Envelope-based technique

Sample population of 24 healthy 
subjects over 10-min-long 

simultaneous phonocardiography 
recordings

F1 of 99.2%

2019 Oliveira  
et al. [17] HSMM-GMM

PhysioNet [18], PASCAL [19] and a 
pediatric dataset composed of 29 heart 

sounds
F-score of 92%

2019 Kamson  
et al. [20] HSMM Training-set-a of 2016 PhysioNet/

computing in cardiology challenge
Sensitivity �+ F1

98.28 98.45 98.36

2019 Renna  
et al. [21] HSMM-CNN PhysioNet Sensitivity: 93.9%

2018 Liu et al. 
[22]

Time-domain analysis, 
frequency-domain analysis 

and time-frequency-domain 
analysis

Heart sound & Murmur library of 
UMich Sensitivity: 98.63%

2018 Belmecheri 
et al. [23] Correlation coefficients matrix A database of 21 clean heart sounds Sensitivity: 76%

2018 Alexander 
et al. [24] HMM 3240 PCG recordings from PhysioNet 

and PASCAL
Sensitivity Specificity

90.3% 89.9%

2017 Babu  
et al. [25] VMD

Database: Sensitivity �+ Accuracy
PhysioNet 98.90 96.07 95.14
PASCAL 99 100 99

Michigan [26] 100 100 100
eGeneralMedical [27] 100 100 100
Real-time PCG signals 100 97.08 97.08

2017 Varghees  
et al. [28] EWT

PhysioNet, PASCAL, Michigan, 
eGeneralMedical and real-time PCG 

signals

Sensitivity Pp OA

94.38% 97.25% 91.92%

2017 Liu et al. 
[29] HSMM

More than 120 000 s of heart sounds 
recorded from eight independent 

heart sound databases
F1 of 98.5%

2016 �omas  
et al. [30] Fractal decomposition (FD)

Michigan (23 different heart sounds 
and 6 patients’ recordings done in a 

real clinical environment)

Sensitivity +� DER

96.97 99.58 3.55

2016 Springer  
et al. [31] HSMM

405 synchronous 30–40 s PCG and 
ECG recordings from 123 deidentified 

adult patients
F1 of 95.63 ± 0.85%

2015 Salman  
et al. [32] Peak intervals pattern 1089 cycles from 62 set of normal and 

abnormal signals Correct cycle detected rate of 83.38%
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that allows computer systems to effectively access and analyze 
data to adjust and improve functioning based on patterns and 
experience, without the need for explicit programming. In 
recent years, machine learning has been widely used in heart 
sound classification. As the incidence of cardiovascular disease 
increases, the amount of heart sound data to be processed is 
also increasing. In order to ensure the accuracy of classification 
while processing a large amount of data, deep learning algo-
rithm has emerged.

4. Application of Deep Learning in Heart Sound 
Classification

Deep learning is a branch of machine learning that imitates 
the workings of the human brain, through artificial neural 
networks—complex algorithms inspired by the brain itself. 
�us, it can automatically extract the characteristics of original 
signals and find out the rules among data by means of a deeper 
learning than the traditional machine learning, thereby 
improving its accuracy and efficiency of classification. �e 
concept of deep learning was proposed by Hinton et al. [49] 
in 2006. Deep learning utilizes the relative relationship of 
space, and combines low-level models to form more complex 
high-level models, which greatly improves the training per-
formance of the system. In recent years, it has shown good 
practicality and reliability in the fields of speech recognition 
[50], image recognition [51], biomedical data analysis [52, 53], 
signal processing [54], automatic driving [55] and other areas. 
Deep learning models have been applied to classify heart 
sound signals, and the models mainly include Deep Neural 
Networks (DNN), Convolution Neural Networks (CNN), 
Recurrent neural networks (RNN) and etc. Table 4 lists the 
representative literature on the deep learning applied in the 
classification of heart sound signals over the past five years.

Deep learning has shown good superiority in the computer-
aided classification of heart sound signals, but it also faces some 
challenges. First of all, there are too many parameters of the 
deep learning model, with a large amount of data to be 
optimized, a long execution time and a large training data set 
required. Secondly, the deep learning modelling calls for higher 
configuration of the computer with powerful CPU and GPU 
for calculation, hence the experiment cost is high, and the 
model is unsuitable for home computers and microcomputers. 
However, the portable heart sound devices have great 
development potential and good application prospects.

5. Conclusions

With the increasing incidence of cardiovascular diseases in 
recent years, a greater attention has been drawn to non-inva-
sive heart sound detection technology. In this study, the latest 
research on computer-aided heart sound detection techniques 
over the last five years has been reviewed, with the applications 
of deep learning to the heart sound classification as an 
emphasis.

Regarding the potential contributions of the technology to 
human health promotion, the following areas for future 
research are recommended. A large amount of heart sound 

wavelet packet transformation and SVD. According to the 
standard of mutual information measurement, the most 
abundant nodes in the wavelet tree were selected, and the noise 
component from the heart sound signals was suppressed by 
using the SVD technique to process the coefficients 
corresponding to the selected nodes. Ali et al. [13] selected 
different DWT families, threshold types, and signal 
decomposition levels to denoise the heart sound signals, and 
evaluated the influence of different wavelet functions and 
wavelet decomposition levels on the efficiency of the denoising 
algorithm. �ey concluded that the Db10 wavelet and the 
discrete Meyer wavelet with the fourth-order decomposition 
can obtain the maximum SNR (signal-to-noise ratio) and the 
minimum RMSE (standard error) of the standard heart 
sounds. Zheng et al. [14] proposed an innovative denoising 
framework based on a combination of modified SVD and 
Compressed Sensing (CS), which can well maintain the 
original morphological characteristics of heart sounds. 
Compared with the traditional techniques such as DWT and 
empirical mode decomposition (EMD), this framework can 
obtain a larger SNR. �e denoised heart sound signals still had 
the highest correlation with the original heart sound signals. 
Deng and Han [15] proposed an adaptive denoising algorithm. 
Compared with the conventional wavelet method, the 
proposed algorithm had better denoising effect.

3.2. Segmentation. Segmentation is o�en performed on the 
raw signal or the denoised signal. �e purpose of segmentation 
is to find the beginning and end of heart sounds, and to 
segment S1, S2, systole, and diastole for the subsequent 
feature extraction. To date, the methods used for heart 
sounds segmentation mainly include hidden Markov models 
(HMM), WT, and correlation coefficient matrices, etc. Table 2 
summarizes some of the heart sound segmentation literature 
in the past five years.

3.3. Feature Extraction and Classification. �e goal of feature 
extraction is to find out a small number of representative 
features to replace the high-dimensional raw signals. In 
general, the classification model based on features training 
is more efficient and accurate than that which is based on 
raw signals training. Feature extraction is o�en performed 
on the signal with segmentation. DWT, continuous wavelet 
transformation (CWT), short-time Fourier transform (STFT) 
and Mel Frequency Cepstrum Coefficient (MFCC) are 
commonly used methods for heart sounds feature extraction. 
Without segmentation, feature extraction can be conducted 
on the raw signal or the denoised signal.

Classification can be performed on the features, the raw 
signals and the denoised signals as well. �e goal of classification 
is to present the qualitative results of the detection, dividing the 
heart sound signals into the normal or abnormal. �e 
classification techniques for heart sounds include HMM, Support 
Vector Machine (SVM), Artificial Neural Networks (ANN), 
k-Nearest Neighbor (kNN), Euclidean distance, etc. Table 3 lists 
the representative literature on the feature extraction and 
classification of the heart sound signals over the past five years.

�ese techniques (SVM, kNN, BP neural network, and 
logistic regression) all utilize machine learning—an algorithm 
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Table 3: Feature extraction and classification methods of PCG signals.

Year Author
Feature 

extraction 
methods

Classifier Database Result

2019 Shi et al. [33]

Feature 
extraction 

algorithm of 
Springer

AdaBoost PhysioNet and PASCAL ACC: 96.36%

2019 Nogueira et al. 
[34] MFCC SVM PhysioNet

Sensitivity Specificity Accuracy
91.87% 82.05% 97%

2019
Cheng (without 
segmentation) 

[35]

Envelope 
autocorrelation SVM HSCT11 dataset Accuracy all could reach to 100%

2018 Meintjes et al. [36] CWT SVM, kNN PhysioNet MAcc: 86%

2018 Hamidi et al. [37] Curve fitting, 
MFCC

Euclidean 
distance

Dataset A from PhysioNet MAcc: 92%
Dataset B from PhysioNet MAcc: 81%
Dataset C from PhysioNet MAcc: 98%

2018 Juniati et al. [38] DWT
kNN, Fuzzy 

c-means 
clustering

40 normal heart sounds, 40 extra 
systole, 40 murmurs MAcc: 86.17%

2017 Kay et al. [39] CWT, MFCC BP neural 
networks PhysioNet MAcc: 85.2%

2017 Karar et al. [40] DWT
Rule-based 

classification 
tree

22 sets of heart sounds and noise 
data from the public database of 

the CliniSurf medical school
MAcc: 95.5%

2017 Zhang et al. [41] Tensor 
decomposition SVM

Dataset A: normal heart sounds, 
extra systole, murmurs, artificial 

heart sounds
MAcc: 76%

Dataset B: normal heart sounds, 
extra systole, murmurs MAcc: 83%

Dataset C: normal heart sounds, 
abnormal heart sounds MAcc: 88%

2017

Langley and 
Murray (without 

segmentation) 
[42]

/ Wavelet 
entropy PhysioNet

Sensitivity Specificity Accuracy

94% 65% 80%

2017 Whitaker et al. 
[43] Sparse coding SVM PhysioNet

Sensitivity Specificity MAcc
84.3% 77.2% 80.7%

2017 Li et al. [44] FFT

BP neural 
networks

PhysioNet

Sensitivity Specificity MAcc
68.36% 94.01% 88.56%

Logistic 
regression

Sensitivity Specificity MAcc
75.68% 87.71% 72.56%

2016

Deng and 
Han (without 
segmentation) 

[45]

DWT SVM-DM

Dataset A from PASCAL �e highest total precision of 3.17

Dataset B from PASCAL �e highest total precision of 2.03

2015 Zheng et al. [46] EMD SVM
A dataset collected from the 
healthy volunteers and CHF 

patients

Sensitivity Specificity Accuracy

96.59% 93.75% 95.39%

2015 Safara [47] Wavelet packet 
tree

Higher-order 
cumulants 

(HOC)

A set of 59 heart sounds from 
different categories: normal heart 

sounds, mitral regurgitation, 
aortic stenosis, and aortic 

regurgitation.

Best classification accuracies: 
99.39%

2011

Yuenyong  
et al. (without 
segmentation) 

[48]

DWT Neural 
network

Several on-line databases and 
recorded with an electronic 

stethoscope

Tenfold cross-validation: 0.92 for 
noise free case, 0.90 under white 
noise with 10 dB signal-to-noise 

ratio (SNR), and 0.90 under impulse 
noise up to 0.3 s duration
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Table 4: Literature for heart sound classification using deep learning.

Year Author Segmentation 
method Dataset Performance

2019 Wu et al. [56] CNN
PhysioNet (2575 normal heart 

sounds and 665 abnormal heart 
sounds)

Hold out testing
Sensitivity Specificity Accuracy

86.46% 85.63% 86.0%
Ten-fold cross validation

Sensitivity Specificity Accuracy
91.73% 87.91% 89.81%

2019 Abduh et al. [57] DNN PhysioNet
Sensitivity Specificity Accuracy

89.30% 97% 95.50%

2018 Gharehbaghi and 
Lindén [58] DTGNN 130 recordings of the heart sound 

signal
Sensitivity Specificity CR

83.9% 86% 85.5%

2018 Chen et al. [59] DNN PASCAL
Sensitivity Specificity Accuracy Precision

98% 88.5% 93% 89.1%

2018 Yaseen et al. [60] DNN
5 categories of heart sound signal, 

200 per class (N, AS, MR, MS, 
MVP)

Sensitivity Specificity

94.5% 98.2%

2018 Han et al. [61] CNN 2575 normal recordings and 665 
abnormal recordings

MAcc Sensitivity Specificity
91.50% 98.33% 84.67%

2018 Ren et al. [62] CNN PhysioNet
19.8% higher than the baseline accuracy obtained using 

traditional audio processing functions and support 
vector machines.

2018 Morales et al. 
[63] CNN PhysioNet

Accuracy Sensitivity Specificity
97% 93.20% 95.12%

2018 Baris et al. [64] CNN

UoC-murmur database (innocent 
murmur versus pathological Mur-

mur) and PhysioNet-2016 database 
(normal versus pathological)

MAcc Specificity Sensitivity

81.5% 78.5% 84.5%

2018 Messner et al. 
[65] DNN PhysioNet F1 ≈ 96%

2017 Ghaemmaghami  
et al. [66] DNN 128 recordings from male and 

female subjects with healthy hearts
Accuracy Sensitivity Specificity

95.8% 83.2% 99.2%

2017 Sujadevi et al. 
[67]

RNN & 
LSTM&GRU

Dataset A from PhysioNet

Accuracy Precision
RNN 4 layer 53.8% 55.8%
LSTM 4 layer 76.9% 83.3%
GRU 4 layer 75.3% 78.2%

Dataset B from PhysioNet

Accuracy Precision
RNN 4 layer 65.2% 68.1%
LSTM 4 layer 74.7% 94.5%
GRU 4 layer 74.4% 69.7%

2017 Chen et al. [68] DNN 311 S1 and 313 S2 from 16 people 
(11 males and 5 females) Accuracy: 91.12%

2017 Yang and Hsieh 
[69] RNN PhysioNet MAcc: 84%

2017 Zhang and Han 
[70] CNN

Dataset A from PASCAL Normalized precision: 0.77
Dataset B from PASCAL Normalized precision: 0.71

2017 Faturrahman  
et al. [71] DBN

MITHSDB [72] Accuracy: 84.89%
AADHSDB [73] Accuracy: 86.15%

2017 Maknickas and 
Maknickas [74] CNN PhysioNet

Train accuracy: 99.7%
Validation accuracy: 95.2%

2016 �omae et al. 
[75] DNN PhysioNet

Sensitivity Specificity Score
96% 83% 0.89

2016 Tschannen and 
Dominik [76] CNN PhysioNet

Sensitivity Specificity Score
84.8% 77.6% 0.812

2016 Potes et al. [77] AdaBoost & 
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on Intelligent Signal Processing and Communication Systems 
(ISPACS), IEEE, Nusa Dua, Indonesia, 2015.
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of wavelet coefficients for phonocardiogram denoising,” in 
2016 IEEE International Conference on Digital Signal Processing 
(DSP), pp. 1–5, IEEE, Beijing, 2016.

[12]  A. Mondal, I. Saxena, H. Tang, and P. Banerjee, “A noise 
reduction technique based on nonlinear kernel function for 
heart sound analysis,” IEEE Journal of Biomedical and Health 
Informatics, vol. 22, no. 3, pp. 775–784, 2018.

[13]  M. N. Ali, E. S. A. El-Dahshan, and A. H. Yahia, “Denoising of 
heart sound signals using discrete wavelet transform,” Circuits 
Syst Signal Process, vol. 36, no. 11, pp. 4482–4497, 2017.
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level singular value decomposition and compressed sensing 
based framework for noise removal from heart sounds,” 
Biomedical Signal Processing & Control, vol. 38, pp. 34–43, 
2017.

[15]  S. W. Deng and J. Q. Han, “Adaptive overlapping-group sparse 
denoising for heart sound signals,” Biomedical Signal Processing 
and Control, vol. 40, pp. 49–57, 2018.

[16]  N. Giordano and M. Knaflitz, “A novel method for measuring 
the timing of heart sound components through digital 
phonocardiography,” Sensors, vol. 19, no. 8, 2019.

[17]  J. Oliveira, F. Renna, T. Mantadelis, and M. Coimbra, “Adaptive 
sojourn time HSMM for heart sound segmentation,” IEEE 
Journal of Biomedical and Health Informatics, vol. 23, no. 2, 
pp. 642–649, 2019.

[18] “PhysioNet,” https://physionet.org/. 
[19]  P. Bentley, G. Nordehn, M. Coimbra, S. Mannor, and R. Getz, 

“Classifying heart sounds challenge (PASCAL database),” 2015, 
http://www.peterjbentley.com/heartchallenge/index.html.

[20]  A. P. Kamson, L. N. Sharma, and S. Dandapat, “Multi-centroid 
diastolic duration distribution based HSMM for heart sound 
segmentation,” Biomedical Signal Processing and Control, vol. 48, 
pp. 265–272, 2019.

[21]  F. Renna, J. H. Oliveira, and M. T. Coimbra, “Deep convolutional 
neural networks for heart sound segmentation,” IEEE Journal of 
Biomedical and Health Informatics, vol. 23, no. 6, pp. 2435–2445, 
2019.

data is needed to supplement the heart sound database. Heart 
sound data is a reliable source of information for discovering 
the hidden features of the cardiovascular diseases. �erefore, 
it is necessary to complete and improve the heart sound data-
base and its corresponding expert annotations, for better model 
training and a more accurate assistant diagnose. Since large-
scaled computer systems are already available in hospitals, it 
has become feasible to establish the complex deep learning 
model, which will be able to process the heart sound data. �us, 
the data processing and the parameters optimizing techniques 
need more in-depth study. �e deep learning modeling requires 
higher computer configurations with powerful GPU support, 
but the compressed deep learning algorithms can work on PC 
or microcomputers. Since the heart sounds classification model 
based on compressed deep learning algorithms are more accu-
rate than those based on traditional algorithms, further study 
on the heart sound classification model based on the com-
pressed deep learning algorithms is helpful to the populariza-
tion and application of portable heart sound detection.
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