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A B S T R A C T   

Intelligent manufacturing is an important driving force for improving quality and efficiency and 
promoting green innovation. Based on the data of Chinese listed companies and taking the Chi-
nese intelligent manufacturing pilot demonstration projects as a quasi-natural experiment, this 
paper constructs a difference-in-differences (DID) model to explore the effect and mechanism of 
intelligent manufacturing on enterprise green innovation. The results show that intelligent 
manufacturing has significantly promoted green innovation in China, and this effect is still valid 
after considering various robustness tests. Heterogeneity analysis shows that in areas with a good 
green development foundation and poor information infrastructure, the impact is more obvious. 
In non-state-owned enterprises and mature enterprises, the impact is more obvious. Mechanism 
analysis indicates that intelligent manufacturing enhances green innovation through cost man-
agement effects, efficiency improvement effects, and employment structure optimization effects. 
The conclusions provide clear policy implications for developing countries to promote intelligent 
manufacturing practices and green high-quality development.   

1. Introduction 

Since the 2008 global financial crisis, various countries have proposed different forms of reindustrialization strategies, such as 
Industry 4.0, modern industrial strategy, and “Made in China 2025.” A core element is the application of intelligent technologies and 
supporting technologies to efficiently perform a large number of simple, repetitive, and even flexible and precise tasks [1], which will 
set off a “manufacturing intelligence revolution” in the national economic system. Intelligent manufacturing is based on advanced 
information and manufacturing technology, which optimizes the production process and improves the design, production, manage-
ment, and integration level of the entire product life cycle [2] to achieve the intelligence of manufacturing equipment and processes. 
The entire manufacturing process has the characteristics of automatic learning, automatic perception, automatic decision-making, and 
automatic execution [3,4]. Davis et al. [5] argued that the widespread application of intelligent technology in the manufacturing 
industry has led to a profound transformation from automated production to personalized design and production of products as well as 
enterprise management and services. Kang et al. [6] pointed out that intelligent manufacturing is the integration of advanced in-
formation and communications technology and existing manufacturing technologies and has become a new revolution and paradigm 
in modern manufacturing. 

Currently, the total energy consumption in China is gradually increasing, and the pressure on ecological resources and the 
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environment is constantly increasing [7–9]. The extensive growth model that investment, resource investment, and external demand 
previously drove can no longer continue [10]. Green innovation is an important driving force for transforming the mode of economic 
development and an important support for achieving green sustainable development. Against the backdrop of this transformation of 
driving forces, intelligent manufacturing, with its outstanding advantages of permeability, diffusion, and spillover, provides a 
development opportunity for green innovation and has become an important lever for industrialization and green transformation in 
various countries [11]. However, the new industrialization led by information technology still fundamentally aims at expanding the 
scale of industrialization and economic aggregate and does not emphasize the green and intelligent technological revolution. The 
attention to new energy and new resources needs to be improved [10,12]. Large technology investment and high transformation costs 
characterize green innovation activities. In their decision-making behavior, enterprises may not only give up green innovation because 
of the associated risks, but they may also seize the development opportunity of intelligent manufacturing to enhance their market 
power. Therefore, in terms of the impact of intelligent manufacturing on green transformation, there are two perspectives: data-driven 
innovation and the curse of capability. 

Fig. 1. Research framework.  
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Specifically, the dynamic capability theory proposes that the technology paradigm shift triggered by intelligent technology can 
strengthen the dynamic capability of enterprises to identify innovation opportunities, transform innovative thinking, and optimize and 
reorganize existing green resources through strategic upgrading. The information processing theory proposes that the scalability and 
openness of intelligent technology can help enterprises identify their own resource needs [13] and effectively improve the efficiency of 
enterprise resource allocation and information integration capabilities. This joint role promotes green transformation of enterprises. 
Intelligent manufacturing equipment has been found to have high efficiency and precision and can monitor energy consumption and 
pollution in real time to regulate excessive pollution through standardized control [14–16]. Additionally, intelligent manufacturing 
can reduce the cost of renewable energy and provide cleaner manufacturing processes [17]. Gan et al. [18] and Tang et al. [19] found 
that the construction of robotics and telecommunications infrastructure could significantly improve the level of green innovation. 
Bernard et al. [20] argued that intelligentization could facilitate the flow of information, technology, research, and data, breaking 
geographical constraints and enabling the realization of green innovation’s full potential. Li et al. [21] and Qiao et al. [22] also found 
that robotics and information infrastructure significantly reduce air pollution. However, the curse of capability suggests that the 
application of intelligent technology will lead to information overload [23], not only raising the threshold for enterprise data 
decision-making, but also squeezing out the necessary resource investment for strategic upgrading. Specifically, with the continuous 
expansion of information channels, the exponential growth of network connections and information flooding have begun to emerge, 
making it difficult for enterprises to timely discover and capture valuable information from massive amounts of data. Under this 
condition, there is an imbalance in the matching between digital technology applications and organizational management capabilities. 
In addition, the massive resource investment required for the digital materialization process will have a crowding out effect on green 
upgrading [24], weakening the necessary resource base for green upgrading. The combined effect hinders the green transformation of 
enterprises. Zhao et al. [25] used provincial panel data from China to study the effect of artificial intelligence on green growth and 
found that the effect had U-shaped characteristics, with significant regional and industry heterogeneity. Xiong et al. [26] reached a 
similar conclusion using the Yangtze River Economic Belt as a case study. Zhang et al. [27] and Zhou et al. [28] argued that smart 
technologies would exacerbate green inequality and air pollution. They cited the potential risks and costs to environmental governance 
posed by defects in intelligent technology that can impact government decision-making mechanisms, information dissemination 
mechanisms, and social organization structures. They also cited the potential for significant errors and judgments by environmental 
decision makers because of data bias [29]. Luan et al. [30] proposed a new explanation from the perspective of the rebound effect. 

The marginal contribution is as follows: first, from the research perspective, we bring intelligent manufacturing and enterprise 
green innovation into the same analytical framework, and systematically investigate the effect of intelligent manufacturing on en-
terprise green innovation, therefore, it can provide new understanding and enlightenment to improve the refinement of eco- 
environmental management, improve the efficiency of resource utilization, and promote green and low-carbon green development. 
Second, in terms of research content, it enriches the research on the effect of intelligent manufacturing on enterprise green innovation, 
not only enriches the relevant theoretical literatures, but also provides experience for developing countries to develop the application 
of intelligent manufacturing in the green low-carbon transition. Third, we use various advanced robust estimation methods of DID, 
dual machine learning model to test the robustness. Most of the existing studies use IFR data to estimate the development level of 
intelligent manufacturing (Liu et al. , 2020), but Dauth et al. [31] point out that this construction method may cause the error terms in 
the areas with similar industrial structure to be correlated, so the standard error may be underestimated. 

Intelligence and greenery are the future development directions of the manufacturing industry, and how to achieve a balanced 
development is an important issue that countries urgently need to address. On a theoretical level, the debate surrounding data-driven 
innovation and the curse of capability provides a good research gap for this paper. On a practical level, China, a major manufacturing 
country, faces serious environmental protection and resource constraints. This provides a good practical scenario for how to use 
intelligent manufacturing to achieve green transformation. Therefore, based on the quasi-natural experiment of China’s intelligent 
manufacturing demonstration project, we used microenterprise samples of listed companies to connect the promotion and mode 
characteristics of intelligent manufacturing with enterprise green innovation and guide enterprise management practices to accelerate 
the process of intelligent transformation. Fig. 1 shows the research framework of this article. 

2. Institutional background and theoretical mechanism 

2.1. Institutional background 

We divided the development process of intelligent manufacturing in China into three stages. The first stage is the industrialization- 
driven informatization stage. After its reform and opening up, China initiated the National High-Tech Development Plan (also known 
as the 863 Program) to promote the development of advanced technologies in the country. The Ministry of Science and Technology was 
responsible for developing advanced manufacturing systems to upgrade China’s manufacturing industry. China has gradually inte-
grated advanced manufacturing technology and the Internet to construct an information network covering the entire country. 

The second stage is the integration of industrialization and informatization. In 2007, the central government proposed the strategy 
of integration, emphasizing informatization to drive industrialization and revitalize the equipment manufacturing industry. In 2010, 
China realized its informatization goals, and the information industry has become an important pillar of the national economy. 
However, from the perspective of industry practice, the traditional industrial automation system still dominates industrial production, 
which has yet to reach a real level of personalized customization as a typical feature of intelligent manufacturing. Compared with 
developed countries in the same period, China has implemented many beneficial policies but has not yet formed a systematic strategic 
deployment for intelligent manufacturing. 
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In the third stage, the “Made in China 2025” policy aims to make the country dominant in global high-tech manufacturing. The 
country and various regions have launched pilot intelligent manufacturing demonstration projects and supporting measures to create 
an intelligent manufacturing industry cluster and the atmosphere of a technological breakthrough. 

To investigate the effectiveness of intelligent manufacturing models and facilitate the transformation and upgrading of the 
manufacturing industry in China toward intelligent manufacturing, the Ministry of Industry and Information Technology has focused 
on key links in manufacturing since 2015. It has prioritized selecting pilot demonstration projects from enterprises that meet the 
requirements of the two-way integration management system standards in key regions and industries where basic conditions are 
favorable and demand is pressing. Pilot and demonstration activities have occurred in six areas: process manufacturing, discrete 
manufacturing, intelligent equipment and products, new forms and models of intelligent manufacturing, intelligent management, and 
intelligent services. After 3 years of implementation, over 300 pilot enterprises have been selected, covering 92 industry categories and 
31 provinces (municipalities and autonomous regions), generating over 100 billion yuan in investment. This has provided valuable 
practical experience for the development of intelligent manufacturing in China. 

2.2. Theoretical mechanism 

2.2.1. Cost management effect 
Green innovation behavior requires the long-term investment of a large amount of capital and labor. Resource constraints, espe-

cially financial constraints, are often the primary problems hindering the green innovation of enterprises. Intelligent manufacturing 
encourages enterprises to optimize their own organizational structure and promotes their evolution from static organizations to dy-
namic organisms, which helps to reduce enterprise cost stickiness and total production cost and allows enterprises to devote more 
resources to green innovation. Enhance the prior tolerance of enterprises to green innovation activities. In this study we mainly 
analyzed the mechanism of intelligent manufacturing on green innovation from the perspectives of internal agency cost and external 
transaction cost.  

(1) Internal agency cost 

The internal agency cost mainly includes sales costs and management costs. From the perspective of sales costs, intelligent 
manufacturing technology has transformed enterprise sales models [32], a transformation that has created conditions for reducing 
sales costs. Enterprises achieve collaboration and sharing of information resources in various stages by introducing intelligent high-end 
equipment, thus reducing the cost of obtaining production information. At the same time, they use digital technology to effectively 
track the consumption of raw materials and energy as well as the output of waste, and they implement more accurate emission 
reduction plans (Kusiak, 2017). The application of Internet e-commerce platforms has further accelerated the exchange of product 
information between enterprises and customers, increasing consumer understanding of products and accelerating the speed of product 
turnover of enterprises [33], all of which will help enterprises implement precision marketing, reduce sales costs, and promote green 
innovation. 

From the perspective of management costs, intelligence reduces the discretion of managers [34] and the moral hazard that may 
exist in the principal–agent relationship of enterprises. Managers use intelligent analysis tools to accurately predict changes in market 
demand and adjust resource inputs in a timely manner [35]. Intelligent technology can also help us timely understand firsthand in-
formation such as consumers’ green preferences, green environmental protection policies, and trends in industrial clean technology 
reform [36]. Digital technology subverts the organizational structure of traditional enterprises, alleviates internal information 
asymmetry, and promotes the development of enterprise organizational structure toward networking and flattening [37]. Various 
departments can reorganize organizational resources with green innovation as the core through information systems and information 
platforms, and they can coordinate and complement each other by promoting enterprises’ internal governance mechanism and the 
external environment for the development of the digital economy, thus effectively reducing the internal and external transaction costs 
in the green innovation process.  

(2) External transaction cost 

The external transaction cost mainly includes search costs and financing costs. The mechanism by which intelligent manufacturing 
reduces search costs for enterprises lies in the application of new digital technologies that help break through the boundaries of in-
ternal innovation, enhance cooperation (collaboration) innovation capabilities between enterprises [35], shift to open innovation, and 
promote green innovation activities through knowledge spillovers and transfer. Specifically, with the highly developed division of 
labor in industries and the increasing complexity of innovation, a new product is often the result of collaborative cooperation among 
enterprises, suppliers, customers, and other market entities. Compared with internal independent innovation behavior of enterprises, 
external cooperation is constrained by various cost factors such as search and matching costs, contract costs, and communication and 
coordination costs [38]. Enterprises’ utilization of various information technologies is beneficial for shortening the geographical and 
technological distance of resource allocation in green innovation; mastering new technologies, concepts, and trends of green inno-
vation at a lower cost; and promoting green innovation in enterprises [39]. 

The mechanism by which intelligent manufacturing reduces financing costs for enterprises lies in its ability to effectively alleviate 
information asymmetry in the credit market [40], better promote the matching between financial resource supply and enterprise 
demand, and provide more financial support for enterprises’ green innovation activities. At the same time, the rise of digital finance 
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driven by intelligent manufacturing can effectively compensate for the shortcomings of traditional financing markets, reduce financing 
costs, alleviate the financial pressure for enterprises to carry out green innovation [41], and stimulate green innovation activities for 
enterprises. 

2.2.2. Efficiency promotion effect 
The efficiency promotion effect of intelligent manufacturing is multifaceted and includes the enhancement of R&D efficiency and 

production efficiency. The application of intelligent technology is conducive to the rational allocation of resources, improving the 
utilization rate of green R&D investment elements and R&D efficiency while leaving enterprises’ inherent resource boundaries un-
changed. Specifically, the development of intelligent technology has accelerated the encoding of knowledge [42], expedited the ex-
change and sharing of data and knowledge elements among various systems, increased opportunities for green integrated innovation 
among different innovation entities, and fast-tracked the efficiency of green innovation. In addition, intelligent manufacturing pro-
motes the continuous optimization of technological innovation models and mechanisms, providing opportunities and conditions for 
enterprises to accelerate breakthroughs in key core green innovation, effectively breaking the low-end, lock-in state of green tech-
nology in reality [43], and to break through technological bottlenecks and improve innovation speed with shorter practice. 

Enterprises’ application of digital technology allows them to obtain market and user information through multiple channels, 
greatly extending the radiation range of their green product sales market [44], and to explore new market opportunities [45]. At the 
same time, enterprises use advanced and mature digital technology to digitize and green their existing products and services, which 
helps them speed the innovation process of products and services, cultivate new business projects, and expand new business models 
based on digital platforms. The new business model can increase enterprises’ operating revenue, improve their performance returns, 
and provide them with financial guarantees to introduce green equipment and carry out green innovative production. The new 
business model is also conducive to increasing the expected returns of enterprises’ green innovation R&D investment, thereby 
encouraging them to invest more in R&D and stimulating green innovation behavior. From the perspective of technological progress 
benefits, the use of big data technology can effectively enhance the ability of enterprises to collect, accumulate, and comprehensively 
analyze data information on energy investment structure, pollution emissions, and green emission reduction technologies; enhance 
their ability to predict emission reduction; and force enterprises to carry out energy-saving and emission reduction green innovation. 

2.2.3. Employment structure optimization effect 
The two classic informatization development and labor demand theories are the skill-biased technological change (SBTC) hy-

pothesis and the routine-biased technological change (RBTC) hypothesis. According to SBTC, the improvement of enterprise infor-
matization will increase the demand for high-skilled labor and reduce the demand for low-skilled labor [46]. RBTC holds that the 
improvement of enterprise informatization levels will replace repetitive and procedural jobs and complement non-repetitive and 
non-programmed jobs [47]. The excessive demand for highly skilled labor in intelligent manufacturing drives the transformation and 
upgrading of workers’ knowledge and skills, continuously improving the level of human capital, changing the direction of skill 
development, and achieving dynamic matching between new jobs and knowledge and skill structures (Kusiak, 2017). Enterprises are 
more likely to integrate advanced technology, knowledge, and green production concepts into their products and services, promoting 
green innovation activities. 

In addition, the boundary extension effect of artificial intelligence requires highly skilled labor with scientific research capabilities 
and technologically innovative thinking. Organically integrating various data resources to solve the complexity problems of pro-
duction and service systems enhances the collaborative innovation ability in the green technology research and development process 
[48]. The application of intelligent technology in enterprises also requires the introduction of information technology-oriented talents. 

Fig. 2. Impact mechanism.  
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This will provide important technical and human support for green technology innovation, reduce the risk of failure and innovation 
costs in the process of green technology innovation—which is conducive to stimulating the enthusiasm of green innovation in 
enterprises—and improve the efficiency and quality of green value creation in enterprises [49]. Fig. 2 visually demonstrates the impact 
mechanism. 

3. Research design 

3.1. Model setting 

To examine the impact of intelligent manufacturing on green innovation, we constructed a staggered DID model based on theo-
retical analysis. 

GTIi,t = β0 + β1DIDi,t + γXi,t + λt + μi + εi,t (1)  

where GTI is green innovation, DID is the intelligent manufacturing index (the core explanatory variable of this paper), X is a group of 
control variables, λt is time fixed effect, μt is individual fixed effect, εit is random error, t is the time dimension and i is the individual 
dimension. 

3.2. Variable selection  

(1) Explained variable 

In this study we measured the level of green technology innovation using the number of patent applications and acquisitions. A 
higher number of green patents indicates a stronger green technology innovation capability. This choice of indicator has the advantage 
of being quantifiable and directly reflects the output of enterprises’ green technology innovation activities. Additionally, compared to 
measures such as R&D investment, patents have a clear technology classification, allowing for analysis of innovation activities based 
on different technology attributes and the reflection of their different value connotations and contributions. We measured the level of 
green innovation using the number of green patent acquisitions and tested the robustness of this measure using the number of green 
patent applications. To address the right-skewed distribution, we added 1 to the number of green invention patents and took the 
natural logarithm to obtain the core explanatory variable GTI.  

(2) Explanatory variable 

The central explanatory variable in this study is DID. If enterprise i has been selected as a pilot demonstration enterprise for 
intelligent manufacturing at time t (including the current year), then DID is set to 1, and 0 otherwise. The coefficient of DID reflects the 
net effect of intelligent manufacturing on the enterprise’s green innovation. A positive value indicates that intelligent manufacturing 
improves the enterprise’s green innovation.  

(3) Control variable 

To minimize potential endogenous interference resulting from omitted variables, we controlled for factors that impact green 
innovation based on the work of Yang [50], Lee et al. [51], Amore et al. [52], and Wen et al. [53]. Examples include the following: (a) 
enterprise size (natural logarithm of total assets per year (Size)), (b) the ratio of revenue to average total assets (Ato), (c) enterprise 
value (Tobin Q), (d) a dummy variable indicating whether the chairperson and general manager are the same person (Dual), (e) the 
percentage of shares held by the top 10 shareholders (Top 10), (f) the number of years since the company went public (List Age), (g) the 
percentage of shares held by institutional investors (Inst), (h) a dummy variable indicating whether the company is audited by one of 
the Big Four accounting firms (Big 4), (i) and the ratio of net assets to average total assets (ROA). 

Table 1 
Descriptive statistics.  

Variable Obs Mean Std. dev. Min Max 

GTI 30,255 0.36299 0.76825 0 6.89972 
DID 30,255 0.01061 0.10246 0 1 
Size 30,255 22.1162 1.32655 15.5773 28.6365 
Ato 30,254 0.66146 0.54894 − 0.0479 12.3729 
Tobin Q 29,670 2.13361 2.84115 0.67352 259.146 
Dual 30,255 0.28405 0.45097 0 1 
Top10 30,255 0.5907 0.15495 0.0131 1.0116 
List Age 30,255 2.0125 0.94123 0 3.43399 
Inst 30,255 0.37476 0.2406 0 3.26727 
Big4 30,255 0.05642 0.23074 0 1 
ROA 30,254 0.04214 0.07706 − 1.8591 0.87959  
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3.3. Data source 

In this study we used a sample of 30,225 annual observations of manufacturing firms listed on the Chinese A-share market from 
2010 to 2020. We identified the intelligent manufacturing pilot enterprises based on the list of intelligent manufacturing pilot 
demonstration projects published by the Ministry of Industry and Information Technology of the People’s Republic of China. We 
obtained the financial data used in this study from the China Stock Market & Accounting Research database. We applied winsorization 
to the continuous variables at the 1 % and 99 % levels, and the descriptive statistical results are shown in Table 1. 

4. Empirical results and analysis 

4.1. Benchmark regression 

To examine the effect of intelligent manufacturing on green innovation, we employed the staggered DID model. Table 2 shows the 
benchmark regression results. Column (1) represents the simplified estimation without control variables, whereas column (2) includes 
control variables. Because macroeconomic policies and cyclical changes in the manufacturing industry may differentially influence the 
cost stickiness of firms and their willingness to adopt intelligent manufacturing, columns (3)–(5) control for industry fixed effects, city 
fixed effects, and province fixed effects, respectively. They also control for time fixed effects and individual fixed effects to minimize 
the bias owing to unobservable or unmeasurable factors at the city and province level. 

The results of the benchmark regression (Table 2) demonstrate that intelligent manufacturing significantly enhances the level of 
green innovation in various circumstances. Specifically, after controlling for time and individual fixed effects, the coefficient of the key 
explanatory variable is 0.0692 (0.245 * 0.10246/0.36299), which means that for every 1 % increase in the standard deviation of 
intelligent manufacturing, the green innovation of the enterprise will increase by 6.92 % relative to its average. This indicates that 
intelligent manufacturing enterprises tend to increase their investments in green innovation activities to meet the requirements of the 
digital economy and the sustainable development era. 

4.2. Robustness test 

4.2.1. Modification of the clustering level 
The clustering level refers to the assumption that groups of data objects are similar to one another. By varying the dimension of 

clustering (Table 3), we found that the regression results are consistent with expectations regardless of whether we employed industry 
clustering, industry–city bidirectional clustering, or industry–city–province clustering. 

Table 2 
Benchmark regression results.   

(1) (2) (3) (4) (5) 

DID 0.242*** 0.245*** 0.238*** 0.237*** 0.237*** 
(0.079) (0.079) (0.079) (0.080) (0.080) 

Size  0.0495*** 0.0559*** 0.0568*** 0.0568***  
(0.011) (0.011) (0.012) (0.012) 

Ato  − 0.0461*** − 0.0438*** − 0.0430*** − 0.0430***  
(0.013) (0.013) (0.013) (0.013) 

Tobin Q  0.00125* 0.00111 0.00107 0.00107  
(0.001) (0.001) (0.001) (0.001) 

Dual  − 0.0159 − 0.016 − 0.0154 − 0.0154  
(0.012) (0.012) (0.012) (0.012) 

Top10  − 0.122** − 0.106* − 0.114** − 0.114**  
(0.054) (0.054) (0.055) (0.055) 

List Age  0.0243 0.0188 0.0157 0.0157  
(0.015) (0.015) (0.015) (0.015) 

Inst  − 0.0404* − 0.0376 − 0.0342 − 0.0342  
(0.025) (0.024) (0.024) (0.024) 

Big4  − 0.100** − 0.103** − 0.109** − 0.109**  
(0.047) (0.046) (0.045) (0.045) 

ROA  0.0156 − 0.0063 − 0.014 − 0.014  
(0.041) (0.040) (0.041) (0.041) 

time fixed  YES YES YES YES 
individual fixed  YES YES YES YES 
industry fixed  NO YES YES YES 
city fixed  NO NO YES YES 
province fixed  NO NO NO YES 
N 29866 29278 29278 29278 29278 
R-sq 0.744 0.747 0.748 0.750 0.750 

Note: We clustered the standard errors in brackets at the enterprise level. *p < 0.1, **p < 0.05, ***p < 0.01. The same applies later. 
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4.2.2. Replacement of estimation model 
Because the majority of enterprises’ green patent applications are zero, there is a left truncation characteristic. Therefore, we 

employed the Poisson pseudo maximum likelihood model and Tobit model, following Faleye et al. [54], to reexamine the effect of 
intelligent manufacturing on enterprises’ green innovation activities. The results appear in columns (1) and (2) of Table 4. The 
robustness of the results obtained using different models supports the conclusion from the benchmark regression that intelligent 
manufacturing significantly enhances enterprise green innovation. 

In recent years researchers have identified the potential problem of staggered DID as heterogeneous treatment effects, that is, the 
effect of the same treatment on different individuals may vary, which may be reflected in the length of time after treatment or in the 
two dimensions of the group that received treatment at different points in time. In this context, the traditional two-way fixed effects 
estimator, whether static or dynamic, may have potential bias. Therefore, we used the method proposed by Gardner [55], De Chai-
semartin and D’Haultfoeuille [56], and Borusyak et al. [57] to reestimate. Fig. 3 shows the results, which indicate that the empirical 
findings of this study remain robust when the heterogeneous treatment effects are considered. 

Furthermore, Bertrand et al. [58] highlighted that the data used in DID estimation often have the problem of serial correlation, 
which leads to standard error greatly underestimating the standard deviation, resulting in an overestimation of the t statistic and an 
overrejection of the original hypothesis. To address possible serial correlation, we employed Ma et al.’s [11] approach to build a 
Gaussian mixture model. Column (3) of Table 4 shows the results, which indicate that the empirical results remain robust. 

Finally, considering that the traditional regression model may face the problem of the curse of dimensionality and multi-
collinearity, we used the double machine learning method to reestimate Chernozhukov’s [59] benchmark regression. Columns (1)–(4) 
of Table 5 show the results of machine learning algorithms such as random forest, lasso regression, gradient boosting, and neural 
network, respectively. It can be seen that the regression coefficient is still significantly positive, which proves that our basic conclusion 
is still significant. 

4.2.3. Parallel trend test results 
The prerequisite for using the DID model is that the sample satisfies the parallel trend hypothesis, meaning that before intelligent 

manufacturing is implemented, green innovation of the treatment group and control group maintains a parallel changing trend. To 
verify this, we conducted a parallel trend test following Beck et al. [60]. Fig. 4 shows the results, which indicate that the pre-policy 
coefficients are not significant, but the interaction coefficients become significant from the year the policy is implemented. The re-
sults support the parallel trend hypothesis, and there is no discernible effect prior to the implementation of the policy. The increasing 
trend of the coefficient after the implementation of the policy suggests that the policy has a certain lag effect. This may be because the 
policy initially adopted a small-scale pilot demonstration, followed by the dissemination of effective experiences and models through 
replication and application, eventually expanding the scope of the pilot demonstration. Therefore, the promotion of green innovation 
by intelligent manufacturing is a dynamic, continuous learning process. As the pilot period extends, local governments’ experiences 
are enriched, and the effects of the measures taken become more evident [61]. 

Table 3 
Modification of the clustering level.   

(1) (2) (3)  

industry industry-city industry -city-province 

DID 0.245*** 0.245*** 0.245*** 
(0.014) (0.011) (0.021) 

Size 0.0495*** 0.0495*** 0.0495*** 
(0.016) (0.017) (0.016) 

Ato − 0.0461** − 0.0461** − 0.0461*** 
(0.017) (0.017) (0.015) 

Tobin Q 0.00125 0.00125 0.00125 
(0.001) (0.001) (0.001) 

Dual − 0.0159** − 0.0159* − 0.0159* 
(0.007) (0.009) (0.008) 

Top10 − 0.122*** − 0.122*** − 0.122** 
(0.037) (0.039) (0.045) 

List Age 0.0243 0.0243 0.0243 
(0.026) (0.027) (0.025) 

Inst − 0.0404** − 0.0404** − 0.0404** 
(0.015) (0.015) (0.019) 

Big4 − 0.100*** − 0.100*** − 0.100*** 
(0.033) (0.029) (0.023) 

ROA 0.0156 0.0156 0.0156 
(0.027) (0.037) (0.037) 

time fixed YES YES YES 
individual fixed YES YES YES 
N 29278 29278 29278 
R-sq 0.747 0.747 0.747  
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4.2.4. Placebo test 
There are two potential issues in using the DID model to assess the impact of intelligent manufacturing on green innovation. One is 

the possibility of a pseudo-regression problem, where the growth of green innovation in the treatment group is superior in itself 
regardless of whether or not intelligent manufacturing is implemented. The other is that the level of green innovation gradually 
deepens over time, at which point the results may not be closely related to intelligent manufacturing and the conclusion may be a 

Table 4 
Results of replacement of estimation model.   

(1) (2) (3)  

Tobit PPML GMM 

L.GTI   0.936***   
− 0.0267 

DID 0.754*** 0.748*** 0.618*** 
(0.042) (0.285) (0.201) 

Size 0.182*** 0.870*** 0.00603*** 
(0.004) (0.088) (0.002) 

Ato 0.00127 0.296** − 0.0278*** 
(0.008) (0.126) (0.010) 

Tobin Q 0.00840*** 0.0311*** − 0.0009 
(0.002) (0.005) (0.001) 

Dual 0.0471*** 0.662*** − 0.008 
(0.010) (0.206) (0.012) 

Top10 − 0.509*** − 0.972 − 0.0576 
(0.037) (1.074) (0.051) 

List Age − 0.182*** − 0.377** − 0.0178** 
(0.007) (0.154) (0.008) 

Inst 0.0816*** 0.0363 0.0111 
(0.024) (0.363) (0.023) 

Big4 0.113*** 0.226 − 0.0266 
(0.020) (0.254) (0.025) 

ROA − 0.0871 1.363 − 0.038 
(0.059) (1.048) (0.040) 

_cons − 3.072*** − 18.58***  
(0.090) (2.443)  

sargan   0.814 
var(e.y) 0.540***   

(0.004)   
time fixed YES YES YES 
individual fixed YES YES YES 
N 29669 29669 24103  

Fig. 3. Heterogeneity robust estimator.  
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random occurrence. To address these concerns, we conducted a placebo test. By randomizing the experimental group, we randomly 
generated a sample of intelligent manufacturing enterprises, created artificial pilot policy variables, and regressed the sample. We 
repeated the process 500 times. 

Fig. 5 plots the kernel density distribution of the simulated regression coefficients for the randomized experimental group and the 
control group. It is evident that the regression coefficients for the core explanatory variables are normal distributions with mean values 
close to zero, indicating that the randomly generated directory of intelligent manufacturing has no effect on green innovation and 
satisfies the principle of randomness. 

4.2.5. Time trend and expected effect 
Because non-observational industry-specific factors may affect different enterprises in their respective industries, we added the 

industry time trend term as an additional control variable to the model for reestimation. The results in column (1) of Table 6 are 
significantly positive at the 1 % level, indicating that our core conclusion in this study is robust. Considering the potential expected 
effects of intelligent manufacturing policies, we sequentially incorporated time dummy variables from 1 or 2 years prior to the actual 
policy shock (2014–2013) in the benchmark regression. The results in columns (2)–(4) of Table 6 show that the regression coefficient 
of the core explanatory variable DID did not significantly change compared to the benchmark regression, indicating that the regression 
results without considering the expected effects are still reliable. 

4.2.6. Retaining sample and adding control variables 
Because the theme of our study is intelligent manufacturing enterprises, we filtered the research sample to include only 

manufacturing enterprises for empirical analysis. Column (1) of Table 7 shows the results. At the same time, to reduce the impact of 
macroeconomic factors at the city level on green innovation through non-intelligent manufacturing channels, we referred to Fan et al. 
[62] and added control variables at city level to mitigate the endogenous bias, including industrial structure (Secind), economic 

Table 5 
Dual machine learning estimation results.   

(1) (2) (3) (4)  

random forest lasso regression gradient boosting neural network 

DID 0.196*** 0.224*** 0.238*** 0.251*** 
(0.050) (0.048) (0.048) (0.048) 

_cons 0.078*** 0.005** 0.005** 0.005** 
(0.003) (0.003) (0.0026) (0.0026) 

Control variables YES YES YES YES 
Control variable quadratic term YES YES YES YES 
time fixed YES YES YES YES 
individual fixed YES YES YES YES 
N 30255 30255 30255 30255  

Fig. 4. Parallel trend test results.  
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development level (PGDP), population density (Density), and human capital (Edu). We obtained the data for these variables from the 
China City Statistical Yearbook. Column (2) of Table 7 shows the results, which indicate that the coefficient of intelligent 
manufacturing is still significantly positive regardless of whether the sample of manufacturing enterprises is retained or the control 
variables are added. 

Fig. 5. Placebo test results.  

Table 6 
Time trend and expected effect test results.   

(1) (2) (3) (4)  

time trend expected effect 

DID 0.242*** 0.205** 0.215*** 0.205** 
(0.079) (0.080) (0.080) (0.080) 

treat*year2014  0.0894  0.051  
(0.065)  (0.073) 

treat*year2013   0.0854 0.0464   
(0.060) (0.064) 

Size 0.0516*** 0.0484*** 0.0484*** 0.0483*** 
(0.009) (0.009) (0.009) (0.009) 

Ato − 0.0373*** − 0.0360*** − 0.0361*** − 0.0360*** 
(0.011) (0.011) (0.011) (0.011) 

Tobin Q 0.000272*** 0.000329*** 0.000329*** 0.000328*** 
(0.000) (0.000) (0.000) (0.000) 

Dual − 0.014 − 0.0135 − 0.0136 − 0.0136 
(0.011) (0.011) (0.011) (0.011) 

Top10 − 0.139*** − 0.138*** − 0.138*** − 0.138*** 
(0.051) (0.051) (0.051) (0.051) 

List Age 0.0259* 0.0298** 0.0298** 0.0299** 
(0.015) (0.015) (0.015) (0.015) 

Inst − 0.039 − 0.0397 − 0.0399 − 0.0398 
(0.024) (0.024) (0.024) (0.024) 

Big4 − 0.0935** − 0.0933** − 0.0935** − 0.0934** 
(0.045) (0.045) (0.045) (0.045) 

ROA 0.00831 0.0105 0.0106 0.0106 
(0.010) (0.009) (0.009) (0.009) 

_cons − 0.675*** − 0.650*** − 0.650*** − 0.650*** 
(0.190) (0.190) (0.190) (0.190) 

time trend YES NO NO NO 
time fixed YES YES YES YES 
individual fixed YES YES YES YES 
N 30183 30183 30183 30183 
R-sq 0.745 0.745 0.745 0.745  
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4.2.7. Excluding policy interference 
How to eliminate the interference of other policy shocks effectively is difficult in clarifying the effect of intelligent manufacturing 

policy. During the sample period, other intelligent and information-based policies may also affect green innovation. Based on the 
aforementioned analysis, we combed the policy shocks that may interfere with the results of this study, including two types: the pilot 
zone of integration of informatization and industrialization (PZIII) policy and the big data experimental zone (BDEZ) policy. We 
controlled for the two types of policies in the model. Table 8 shows the results. 

The results in columns (1)–(3) demonstrate that intelligent manufacturing significantly promotes green innovation in enterprises. 
This finding is consistent with the conclusions of the benchmark regression model, indicating the robustness of the results. 

4.2.8. Endogeneity test 
First, this paper constructs a PSM-DID model to solve the possible sample self-selection problem. The control variables were 

selected as the characteristic variables, and the propensity score was calculated by Logit regression model and matched with 1:1 
nearest neighbor. The impact of intelligent manufacturing on green innovation is re-tested based on the matched samples, and the 
results are shown in column (1) of Table 9. 

Second, the Heckman two-stage model is used to solve the problem of possible sample selection bias. In the first stage, the Probit 
model is used to calculate the inverse mills ratio (IMR), and it is included in the regression model. The results are presented in column 
(2) of Table 9. 

Finally, in order to solve the possible reverse causality problem, this paper takes the fiber density of each province as the tool 
variable of intelligent manufacturing, the interactive term between the provincial dimension of cable density and the number of 
Internet users in the previous year was used as the tool variable of intelligent manufacturing. The results are presented in column (3) of 
Table 9. It can be seen that after accounting for possible endogeneity, the estimated coefficient is still significantly positive, which is 
consistent with the benchmark result. 

Table 7 
Retaining manufacturing sample and adding control variables.   

(1) (2)  

retaining manufacturing sample adding control variables 

DID 0.227*** 0.236*** 
(0.082) (0.084) 

Size 0.0823*** 0.0489*** 
(0.019) (0.012) 

Ato − 0.0574** − 0.0522*** 
(0.026) (0.014) 

Tobin Q 0.00345 0.00155** 
(0.002) (0.001) 

Dual − 0.0119 − 0.0192 
(0.016) (0.013) 

Top10 − 0.140* − 0.124** 
(0.0825) (0.0597) 

List Age − 0.0198 0.0265* 
(0.02) (0.0159) 

Inst − 0.0376 − 0.033 
(0.031) (0.0262) 

Big4 − 0.0892 − 0.105** 
(0.0719) (0.0474) 

ROA − 0.0323 − 0.0576 
(0.0682) (0.048) 

Secind  0.15  
(0.139) 

PGDP  − 0.0108**  
(0.0046) 

Density  0.00471  
(0.0044) 

Edu  0.0009  
(0.0056) 

_cons  − 0.651**  
(0.27) 

time fixed YES YES 
individual fixed YES YES 
N 18920 27361 
R-sq 0.741 0.754  
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4.3. Heterogeneity test 

4.3.1. Heterogeneity of regional green development foundation 
The green development foundation plays a crucial role in facilitating the green innovation of enterprises. This can be attributed to 

the fact that high-quality energy-saving and emission-reduction technologies and funding provided by green infrastructure serve as an 
excellent platform for enterprises to engage in green research and development, ultimately improving the efficiency of their green 
innovation efforts by reducing technical barriers and transaction costs. However, because of differences in the construction level of 
green infrastructure and resource endowment, we examined the heterogeneity of the effect of green development foundations on the 
green innovation of intelligent manufacturing enterprises. Specifically, we followed the approach of Ma et al. [11] in measuring the 
green total factor productivity (TFP) as a proxy for the green development of prefecture-level cities and divided the sample into two 
groups based on the median. Columns (1) and (2) of Table 10 show the results. 

The results of this study show that the positive impact of intelligent manufacturing on green innovation is more pronounced in 
regions with strong green development foundations. This is consistent with our expectations, which suggests that the availability of 
financial support and green infrastructure as well as the concentration of high-tech enterprises and technological resources create 
favorable conditions for green innovation activities. In particular, the intelligent manufacturing infrastructure of green-intensive 
systems enhances the development and application of new information technologies, leading to improvements in manufacturing ef-
ficiency and product quality as well as reduced resource consumption and improved ecological environments, ultimately contributing 
to sustainable social and environmental development. 

4.3.2. Heterogeneity of regional informatization foundation 
The development of information infrastructure, which encompasses technologies such as mobile internet, big data, and artificial 

intelligence, has the potential to significantly enhance the transformation of intelligent manufacturing in enterprises. By providing 
support for logistics, business flow, capital flow, technology flow, and information flow, improved information infrastructure can 
facilitate the interaction between enterprises and markets within a region and improve the efficiency of internal and external 
communication. This can lead to the reduction of information asymmetry; the saving of human, material, and financial resources; and 
the reduction of transaction and external knowledge acquisition costs. Additionally, enhanced information infrastructure can facilitate 
the coordination capacity of various departments within an enterprise, leading to improvements in production efficiency and the 
integration of external green innovation resources. In this study we used the number of Internet users per 100 in prefecture-level cities 
as a proxy variable and divided the sample into two groups according to the median. Columns (3) and (4) of Table 10 show the results 

Table 8 
Results of excluding policy interference.   

(1) (2) (3)  

PZIII BDEZ PZIII and BDEZ 

DID 0.233*** 0.231*** 0.232*** 
(0.079) (0.079) (0.079) 

PZIII − 0.0488  − 0.0614** 
(0.031)  (0.031) 

BDEZ  0.014 0.0164*  
(0.008) (0.009) 

Size 0.0471*** 0.0470*** 0.0471*** 
(0.012) (0.012) (0.012) 

Ato − 0.0487*** − 0.0484*** − 0.0484*** 
(0.014) (0.014) (0.014) 

Tobin Q 0.00156** 0.00156** 0.00156** 
(0.001) (0.001) (0.001) 

Dual − 0.019 − 0.0188 − 0.0192 
(0.013) (0.013) (0.013) 

Top10 − 0.119** − 0.118** − 0.119** 
(0.057) (0.057) (0.057) 

List Age 0.0266* 0.0268* 0.0268* 
(0.015) (0.015) (0.015) 

Inst − 0.0356 − 0.0364 − 0.0359 
(0.025) (0.025) (0.025) 

Big4 − 0.0979** − 0.0979** − 0.0981** 
(0.047) (0.047) (0.047) 

ROA − 0.0496 − 0.0498 − 0.0498 
(0.047) (0.047) (0.047) 

_cons − 0.595** − 0.603** − 0.600** 
(0.251) (0.251) (0.251) 

time fixed YES YES YES 
individual fixed YES YES YES 
N 28906 28906 28906 
R-sq 0.752 0.752 0.752  
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Table 9 
Endogeneity test results.   

(1) (2) (3)  

PSM Heckman IV 

DID 0.244*** 0.530*** 1.384*** 
(0.081) (0.063) (2.913) 

Size 0.0498*** 0.236*** 0.115*** 
(0.012) (0.009) (0.018) 

Ato − 0.0509*** − 0.0209 − 0.0245** 
(0.014) (0.016) (0.012) 

Tobin Q − 0.000646 0.0104 0.00497*** 
(0.003) (0.007) (0.002) 

Dual − 0.0162 0.0524*** 0.0145 
(0.012) (0.018) (0.021) 

Top10 − 0.126** − 0.962*** − 0.371*** 
(0.056) (0.071) (0.071) 

List Age 0.0226 − 0.333*** − 0.209*** 
(0.015) (0.013) (0.013) 

Inst − 0.0368 0.0988** − 0.0275 
(0.025) (0.045) (0.051) 

Big4 − 0.101** − 0.0167 0.102* 
(0.047) (0.036) (0.055) 

ROA 0.0142 0.0448 − 0.424*** 
(0.042) (0.119) (0.125) 

/mills  − 1.566***   
(0.067)  

Cragg-Donald Wald F statistic   19.22 
Kleibergen-Paap Wald rk F statistic   28.22 
Kleibergen-Paap rk LM statistic   28.16 
_cons  − 4.727*** − 1.644***  

(0.182) (0.374) 
time fixed YES YES YES 
individual fixed YES YES YES 
N 28973 29368 27670 
R-sq 0.747  − 2.843  

Table 10 
Heterogeneity between green development and informatization foundation.   

(1) (2) (3) (4)  

high GTFP low GTFP high informatization low informatization 

DID 0.255** 0.199* 0.134 0.347*** 
(0.109) (0.113) (0.093) (0.129) 

Size 0.0479*** 0.0477*** 0.0441*** 0.0502*** 
(0.017) (0.017) (0.015) (0.019) 

Ato − 0.0407** − 0.0620** − 0.0354** − 0.0713*** 
(0.016) (0.026) (0.018) (0.024) 

Tobin Q 0.00206*** − 0.00061 0.00154** 0.00124 
(0.001) (0.002) (0.001) (0.003) 

Dual − 0.0166 − 0.0223 − 0.0274* − 0.00413 
(0.016) (0.021) (0.017) (0.020) 

Top10 − 0.111 − 0.12 − 0.051 − 0.193** 
(0.071) (0.091) (0.075) (0.086) 

List Age 0.0221 0.0331 0.0719*** − 0.0367 
(0.018) (0.025) (0.020) (0.024) 

Inst − 0.0632** 0.00618 − 0.0487 − 0.0234 
(0.032) (0.041) (0.032) (0.041) 

Big4 − 0.169*** − 0.00184 − 0.119* − 0.063 
(0.058) (0.073) (0.064) (0.064) 

ROA − 0.0673 − 0.019 − 0.0983 0.0156 
(0.062) (0.076) (0.062) (0.073) 

_cons − 0.628* − 0.599* − 0.637** − 0.518 
(0.346) (0.356) (0.322) (0.401) 

time fixed YES YES YES YES 
individual fixed YES YES YES YES 
N 16748 11851 16667 12013 
R-sq 0.737 0.776 0.782 0.704  
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of this analysis. 
The results show that in regions with inadequate information infrastructure, the impact of intelligent manufacturing on green 

innovation is more pronounced. The reason may be that information technology has facilitated the flow of innovative elements across 
time and geographical boundaries, leading to the concentration of resources in cities with strong information bases. Additionally, the 
information infrastructure, which includes technologies, may overlap with functions of intelligent manufacturing and thus mitigate its 
impact on green innovation. These findings suggest that, in cities with strong information infrastructure, the marginal effect of 
intelligent manufacturing on green innovation may decrease, providing policy guidance for local governments to promote informa-
tization and intelligent construction in a way that avoids duplication and misallocation of resources. 

4.3.3. Heterogeneity of enterprise ownership 
The ownership attribute of state-owned enterprises (SOEs) may affect their response to policy incentives, such as those promoting 

intelligent manufacturing and green innovation. As important pillars of the national economy, SOEs are expected to balance economic 
and social benefits and to play a greater policy demonstration role in the promotion of green development. Additionally, SOEs may 
have political connections that give them advantages in terms of access to funds, policy support, and resource allocation. In contrast, 
non-state-owned enterprises (NSOEs) may have a weaker resource base and be more reliant on policy support, with a greater marginal 
benefit from positive policies. NSOEs may also have stronger risk preference and higher risk return, allowing for more efficient 
resource utilization and greater transformation into green innovation outputs. 

In this study we investigated the heterogeneous effect of intelligent manufacturing on green innovation of SOEs and NSOEs. The 
results, presented in columns (1) and (2) of Table 11, indicate that the impact of intelligent manufacturing on the green innovation of 
NSOEs is more pronounced. Further research is necessary to determine how to utilize the demonstration effect of SOEs effectively in 
promoting green innovation. 

4.3.4. Heterogeneity of enterprise growth stage 
According to the life cycle theory, the profitability, scale, investment and financing strategies, growth, and innovation willingness 

of firms can vary significantly depending on their stage in the life cycle. Based on Dickinson’s [63] research and using the cash flow 
portfolio method, we divided firms into three stages: recession, maturity, and growth. We then analyzed the impact of intelligent 
manufacturing on green innovation for firms in each stage separately. Columns (3)–(5) of Table 11 show the results. 

The results suggest that intelligent manufacturing has the most significant effect on green innovation for mature firms, followed by 
growing firms, whereas the effect on declining firms is less apparent. The reason may be that mature firms have more financial re-
sources, a higher tolerance for risk, and a greater awareness of environmental issues compared to growing and declining firms. As a 
result, mature firms may be more likely to invest in green innovation to gain a competitive advantage in the market through the 
development of differentiated products and the improvement of the added value of green science and technology products. In contrast, 
growing firms may face financial constraints and incomplete information disclosure, leading to a reduced willingness to invest in green 

Table 11 
Heterogeneity results of enterprise ownership and growth stage.   

(1) (2) (3) (4) (5)  

SOE NSOE growth maturity recession 

DID 0.266** 0.168* 0.202** 0.288*** 0.0592 
(0.125) (0.090) (0.102) (0.107) (0.250) 

Size 0.0648*** 0.0318 0.0331** 0.0536** 0.0493** 
(0.015) (0.021) (0.016) (0.024) (0.024) 

Ato − 0.0618*** − 0.00962 − 0.0607*** − 0.0649* − 0.0427** 
(0.017) (0.025) (0.020) (0.035) (0.021) 

Tobin Q 0.00257*** 0.000269 0.000419 − 0.00318 0.00216 
(0.001) (0.003) (0.003) (0.005) (0.002) 

Dual − 0.0313** − 0.00012 − 0.0267 − 0.025 − 0.0307 
(0.015) (0.026) (0.020) (0.023) (0.022) 

Top10 − 0.0758 − 0.226** − 0.135 − 0.0521 − 0.0128 
(0.068) (0.108) (0.085) (0.100) (0.106) 

List Age 0.0292* 0.112*** 0.019 7.37E-05 0.0776 
(0.018) (0.039) (0.021) (0.038) (0.051) 

Inst − 0.0307 − 0.112** − 0.0545 0.0231 − 0.0641 
(0.031) (0.046) (0.038) (0.046) (0.058) 

Big4 − 0.132* − 0.11 − 0.114 − 0.124 − 0.039 
(0.069) (0.068) (0.071) (0.088) (0.043) 

ROA − 0.0238 − 0.293** − 0.0784 − 0.14 − 0.01 
(0.051) (0.129) (0.090) (0.097) (0.074) 

_cons − 0.984*** − 0.428 − 0.215 − 0.711 − 0.938* 
(0.322) (0.472) (0.338) (0.514) (0.536) 

time fixed YES YES YES YES YES 
individual fixed YES YES YES YES YES 
N 18665 10178 12926 9302 4436 
R-sq 0.726 0.797 0.763 0.816 0.823  
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innovation technologies. Declining firms, meanwhile, may lack the motivation to make green investments because of internal and 
external difficulties and a lack of innovation incentives. 

5. Mechanism analysis 

We conducted a thorough analysis of the relationship between enterprise intelligent manufacturing and green innovation through 
robustness testing and rich heterogeneity analysis. We also examined the theoretical mechanisms behind this relationship, with a focus 
on the cost management and efficiency promotion effects of intelligent manufacturing on green innovation. We used empirical analysis 
to investigate the specific channels through which intelligent manufacturing affects green innovation. 

To analyze the cost management effect, we examined the internal operating cost and external transaction cost. We measured the 
internal operating cost using the proportion of sales and management expenses to business income. Columns (1) and (2) of Table 12 
show the results. We evaluated the external transaction cost using the company’s overseas business income as a proxy for search cost 
because the geographic and cultural distances often result in significant search costs for businesses seeking information about potential 
customers [64]. The introduction of digital technology can increase the availability of information, speed up the collection and 
processing of information, and thus reduce the cost of information search, market development, and information asymmetry. Column 
(3) of Table 12 shows the results. We also used financing constraints as a proxy for the external financing cost of the enterprise. Column 
(4) of Table 12 shows the results. 

Empirical results show that the coefficient of intelligent manufacturing on sales cost is significantly negative, indicating that 
intelligent manufacturing reduces sales costs in the business process and promotes green innovation, forming a path of intelligent 
manufacturing–reducing sales costs–promoting green innovation. The regression coefficient of intelligent manufacturing on man-
agement cost is also significantly negative, indicating that intelligent manufacturing reduces management costs in the management 
process, forming a path of intelligent manufacturing–reducing management costs–promoting green innovation. However, the coef-
ficient of intelligent manufacturing on search cost is significantly positive, indicating that intelligent manufacturing does not reduce 
the overseas search costs of enterprises. The possible reason is that the pilot project’s focus is to promote the transformation and 
upgrading of domestic manufacturing to intelligent manufacturing, with relatively insufficient expansion of overseas business. As a 
result, there is no path of intelligent manufacturing–reducing search costs–promoting green innovation. Finally, the regression co-
efficient of the financing constraint of intelligent manufacturing is significantly negative, indicating that intelligent manufacturing also 
reduces the financing cost of the enterprise in the management process, forming a path of intelligent manufacturing–reducing 
financing costs–promoting green innovation. 

Aiming at the path of efficiency promotion effect of intelligent manufacturing on green innovation, we described R&D efficiency 
and production efficiency. Specifically, we used the stochastic frontier analysis model to measure technical efficiency as a proxy 
variable of R&D efficiency. Technological progress, closely related to R&D activities, is a key driver of TFP growth. Investment in R&D 
and information and communication technology can enhance the ability of an enterprise to absorb external knowledge and judge 
external information value, thus providing technical support for the enterprise’s strategic adjustment and improving its adaptability to 
the environment. Column (1) of Table 13 shows the results. We used the growth rate of business income and markup to measure 
production efficiency in terms of quantity and quality. Columns (2)–(4) of Table 13 show the results. 

The empirical results show that the regression coefficient of intelligent manufacturing on technical efficiency is significantly 
positive, indicating that intelligent manufacturing promotes R&D efficiency and then promotes green innovation, forming a path of 
intelligent manufacturing–promoting R&D efficiency–promoting green innovation. The regression coefficients of intelligent 
manufacturing on the growth rate of income and markup are all significantly positive, indicating that intelligent manufacturing leads 
to improvements in enterprises’ quantity and quality of main income and profit sources, forming a path of intelligent manufactur-
ing–promoting efficiency–promoting green innovation. 

The introduction of artificial intelligence technology has a heterogeneous impact on the employment structure of enterprise labor 
[65]. Specifically, we measured the optimization of enterprise employment structure from three dimensions: the proportion of 
technical department employees, the proportion of graduates or above, and the proportion of R&D personnel. Columns (1)–(3) of 
Table 14 show the results. 

According to the test results, the regression coefficient of technical personnel is significantly positive, indicating that artificial 
intelligence has increased the number of technical department employees, thereby promoting green innovation, forming a path of 
intelligent manufacturing–increasing the number of technical department employees–promoting green innovation. The regression 
coefficient of highly educated talents is significantly positive, indicating that artificial intelligence has increased the number of highly 
educated talents in enterprises, thereby promoting green innovation and forming a path of intelligent manufacturing–increasing the 
number of highly educated talents–promoting green innovation. The number of employees in the R&D department is significantly 
positive, indicating that artificial intelligence has increased the number of R&D employees, thereby promoting green innovation and 
forming a path of intelligent manufacturing–increasing R&D personnel–promoting green innovation. 

6. Conclusions and policy recommendations 

Based on the micro-data of listed companies from 2010 to 2020, this article empirically explores the impact of intelligent 
manufacturing on green innovation on the basis of clarifying the theoretical mechanism. The main research conclusions are as follows: 
(1) Intelligent manufacturing significantly promotes the level of green innovation. This impact is more obvious in areas with good 
green development foundations and incomplete information infrastructure, as well as non-state-owned enterprises and mature 
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enterprises. (2) Intelligent manufacturing affects green innovation through three channels: cost management effects, efficiency 
improvement effects and employment structure optimization effects. In response to the above empirical conclusions, this article puts 
forward the following countermeasures and suggestions: 

First, promote the deep integration of digital and intelligent technology with manufacturing equipment and production process. 

Table 12 
Results of mechanism analysis: cost management effect.   

(1) (2) (3) (4)  

sales cost management cost search cost FC 

DID − 0.0972* − 0.0992** 0.179** − 0.00672*** 
(0.058) (0.044) (0.090) (0.002) 

Size 0.893*** 0.696*** 0.0991*** 0.000837 
(0.066) (0.016) (0.013) (0.001) 

Ato 0.553*** 0.225*** 0.0744*** 0.00241** 
(0.120) (0.045) (0.027) (0.001) 

Tobin Q − 0.0417*** 0.00756*** 0.00365*** − 0.00163*** 
(0.011) (0.002) (0.001) (0.000) 

Dual − 0.0125 − 0.00509 0.00129 − 0.000956 
(0.028) (0.010) (0.007) (0.001) 

Top10 0.233 0.0206 0.0523 − 0.0159*** 
(0.251) (0.058) (0.058) (0.004) 

List Age 0.0574 0.0711*** − 0.0329** 0.0160*** 
(0.050) (0.012) (0.013) (0.001) 

Inst 0.123* − 0.0193 0.0226 − 0.00329*** 
(0.073) (0.020) (0.017) (0.001) 

Big4 0.475*** 0.0703 0.126** − 0.00311 
(0.184) (0.051) (0.052) (0.004) 

ROA − 0.455** − 0.611*** − 0.0721** 0.0119*** 
(0.185) (0.080) (0.036) (0.003) 

_cons − 2.312 3.089*** − 2.140*** 1.306*** 
(1.481) (0.354) (0.293) (0.030) 

time fixed YES YES YES YES 
individual fixed YES YES YES YES 
N 27438 27697 27697 28906 
R-sq 0.848 0.952 0.766 0.968  

Table 13 
Results of mechanism analysis: efficiency promotion effect.   

(1) (2) (3) (4)  

technical efficiency income growth rate income markup 

DID 0.0701** 0.643** 0.422* 0.0780** 
(0.032) (0.297) (0.215) (0.039) 

Size 0.0595*** 0.675 0.801*** 0.125*** 
(0.017) (0.741) (0.108) (0.019) 

Ato 0.584*** 0.461 0.910*** 0.176*** 
(0.049) (0.335) (0.179) (0.030) 

Tobin Q − 0.00381 − 0.104* 0.0288*** − 0.00576** 
(0.005) (0.060) (0.009) (0.003) 

Dual − 0.0204 0.136 0.0147 − 0.00163 
(0.016) (0.173) (0.050) (0.013) 

Top10 0.136 1.542 0.970*** 0.0692 
(0.093) (2.630) (0.346) (0.087) 

List Age 0.0179 0.829 − 0.340*** − 0.0443 
(0.039) (0.787) (0.074) (0.031) 

Inst − 0.00171 − 1.663 0.253*** 0.0103 
(0.049) (1.105) (0.092) (0.028) 

Big4 − 0.0101 0.557 − 0.12 − 0.114** 
(0.055) (1.048) (0.371) (0.055) 

ROA 1.234*** 6.297*** − 0.392* − 0.181** 
(0.111) (2.369) (0.206) (0.073) 

_cons − 1.870*** − 16.42 − 17.33*** − 0.507 
(0.369) (15.980) (2.436) (0.420) 

time fixed YES YES YES YES 
individual fixed YES YES YES YES 
N 17134 27577 27697 20886 
R-sq 0.229 0.129 0.952 0.875  
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Through the construction of intelligent workshop and intelligent factory, the intelligent complete set production line for the specific 
scene and the modular production unit combining the new technology and process will be developed, promoting the application of 
new technological innovations such as digital twinning and artificial intelligence. Second, deepen the application of intelligent 
technology. To further promote the digital transformation of various sectors of the main body. To guide leading enterprises to play a 
leading role, relying on the industrial Internet, integrated industrial software to drive the industry chain upstream and downstream 
enterprises synchronous implementation of intelligent manufacturing, and fully take into account the different levels of enterprise 
input costs and transformation effects of the relationship between the typical application scenarios, according to the characteristics of 
industry attribute, scale and volume, technology advantage, regional difference, resource endowment, property right attribute and so 
on, promote a batch of digital equipment and services that meet the needs of enterprises. Third, we will continue to improve the 
infrastructure. On the one hand, we will continue to promote the large-scale deployment of new network infrastructure such as in-
dustrial Internet, Internet of Things and 5G, encourage industries to build their own industrial Internet platforms around resource 
allocation, supply chain coordination, product life cycle management, etc. The development of intelligent manufacturing and the 
construction of the Industrial Internet require powerful computing power to support the huge data capacity and the complexity of 
algorithms, and accelerate the construction of computing power infrastructure such as industrial data centers and intelligent 
computing centers. 

First, explore regional intelligent manufacturing development paths with unique characteristics according to local conditions, 
formulate differentiated digital transformation plans, promote local innovation and improve policy systems, and guide the accumu-
lation of various resources, such as taking advantage of local energy advantages and relying on hydropower and wind power to focus 
on green and intelligent production according to local conditions; Facing the "Belt and Road” initiative, accelerate the internation-
alization process of equipment manufacturing enterprises, etc. Second, under the top-level design of national intelligent 
manufacturing, guide the cross-regional coordinated development of provinces (autonomous regions and municipalities), promote 
cross-regional cooperation in key technological innovation, supply and demand docking, and talent training in intelligent 
manufacturing, and encourage local, industry organizations and leading enterprises, etc. to jointly promote advanced technologies, 
equipment, standards and solutions. Third, strengthen the construction of information infrastructure and popularize digitalization in 
underdeveloped areas, provide appropriate fiscal and financial support, strengthen guidance, supervision, tracking and detection, and 
solve the problem of unbalanced spatial development caused by digital barriers. 

Grasp the gradual characteristics of the impact of intelligent manufacturing on green innovation, and accelerate the release of the 
green effects of the digital economy. First, promote the innovation of digital technology and enable the whole digital industry chain to 
save energy and reduce emissions. At the same time, promote the application of digital technology in data centers and 5G network 
management, accelerate the promotion and application of energy-saving 5G base stations, strengthen automation and intelligent 
energy consumption management, and reduce the energy consumption of new digital infrastructure; finally, optimize the energy 
structure for the development of the digital economy, adjust the power structure, increase the use of clean energy in the development 
process of the digital economy, and increase the proportion of renewable energy in energy supply. 

Table 14 
Results of mechanism analysis: Employment structure optimization effect.   

(1) (2) (3)  

technical staff Highly educated talents R&D personnel 

DID 0.109*** 0.438** 0.174** 
(0.036) (0.206) (0.068) 

Size 0.664*** 0.531*** 0.490*** 
(0.010) (0.056) (0.023) 

Ato 0.116*** − 0.451*** − 0.0058 
(0.016) (0.096) (0.033) 

Tobin Q 0.0119*** 0.0377** 0.0298*** 
(0.003) (0.019) (0.005) 

Dual 0.00161 0.0616 − 0.0243 
(0.012) (0.068) (0.021) 

Top10 0.0552 1.178*** − 0.201 
(0.055) (0.325) (0.124) 

List Age 0.0684*** − 1.110*** − 0.360*** 
(0.024) (0.140) (0.055) 

Inst − 0.0282 0.571*** 0.0852 
(0.028) (0.160) (0.054) 

Big4 − 0.0406 − 0.368* 0.0332 
(0.036) (0.191) (0.071) 

ROA − 0.248*** 1.109*** − 0.264*** 
(0.061) (0.367) (0.097) 

_cons − 9.105*** − 5.567*** − 9.401*** 
(0.211) (1.229) (0.497) 

time fixed YES YES YES 
individual fixed YES YES YES 
N 19190 14452 11859 
R-sq 0.91 0.9 0.951  
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7. Discussion and limitations 

In this study we demonstrated the heterogeneity of the impact of intelligent manufacturing on green innovation through both 
theoretical and empirical analyses and arrived at several significant conclusions that future researchers can further refine and expand 
upon. One avenue for future research is to examine the long-term dynamic impact of intelligent manufacturing on green innovation 
performance. Another is to analyze the impact of intelligent manufacturing on green innovation for small and medium-sized enter-
prises using representative microdata because the sample of listed companies in this study may not be fully representative of these 
enterprises. Finally, on the basis of this study, it is also possible to further investigate the impact of emerging technologies such as 
artificial intelligence and the Internet of things (IoT) on green innovation. 
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