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Cells from prokaryota to the more complex metazoans cease proliferating at some point

in their lives and enter a reversible, proliferative-dormant state termed quiescence. The

appearance of quiescence in the course of evolution was essential to the acquisition

of multicellular specialization and compartmentalization and is also a central aspect

of tissue function and homeostasis. But what makes a cell cease proliferating even in

the presence of nutrients, growth factors, and mitogens? And what makes some cells

“wake up” when they should not, as is the case in cancer? Here, we summarize and

discuss evidence showing how microenvironmental cues such as those originating from

metabolism, extracellular matrix (ECM) composition and arrangement, neighboring cells

and tissue architecture control the cellular proliferation-quiescence decision, and how

this complex regulation is corrupted in cancer.

Keywords: quiescence, proliferation, growth, microenvironment, extracellular matrix, tissue architecture, cancer,

cell cycle

INTRODUCTION

Proliferation is one of the most conserved and fundamental traits of cells. However, all cells from
prokaryota to mammals stop proliferating at some point during their lifetime in a controlled
and reversible process called quiescence (O’Farrell, 2011). But why did quiescence triumphed
during evolution and how is it controlled? For a number of unicellular organisms, the answer is
very straightforward: environmental limitations. These limitations, mainly in the form of nutrient
scarcity, acted as selective pressures that favored the success of those unicellular organisms that
could quit proliferation and then “wake up” later on when the conditions were more suitable.

The gift of “sleeping” and thus remaining viable in adverse situations was vital to the
perpetuation of genetic material and the success and ubiquity of unicellular organisms and also to
the appearance of their multicellular descendants. While several key traits of unicellular quiescence
(e.g., core signaling pathways, survivability, and reversibility) remain in higher organisms, in
more complex living systems, such as mammals in which most cells are found to be quiescent,
(macro)environmental pressures do not seem to contribute to quiescence. Cells become quiescent
even in the presence of abundant resources (Spencer et al., 2011, 2013; Valcourt et al., 2012; Fiore
et al., 2017).
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Under the optimal conditions of nutrients, growth factors, and
mitogens, cells “know” when to proliferate, but they need to be
“told” when to stop. In other words, although proliferation might
be considered a default setting (Parr, 2012), cells retain a built-in
program of quiescence, which is set off extrinsically. This ability
to become proliferative-dormant is essential to the acquisition
of the function, defined geometry, and size of complex organs
such as the heart, kidney, brain, and mammary glands. In these
organs, a cell resides in a milieu composed of extracellular matrix
(ECM) molecules, soluble factors, and other cells that produce
various chemical and physical signals. Thismilieu is termed as the
microenvironment, and it influences all aspects of a cell’s life. It
is the microenvironment that “tells” the cell to stop proliferating
and activates the quiescence program.

Changes in the microenvironment too can “wake up” cells
in a controllable fashion; as is the case in situations where
cells need to proliferate to perform their functions (e.g., dermal
fibroblasts upon wound healing and lymphocytes during the
immune response) or to compensate for cell loss (e.g., intestinal
epithelial cells and epidermal cells). Of course, the cell itself
can also influence its microenvironment. A cell can instruct
and modify its microenvironment by remodeling the ECM, and
physically and chemically networking with its neighboring cells.
Nevertheless, the reciprocal exchange between the cell and its
microenvironment (Bissell et al., 1982), that finely regulates
all aspects of cell behavior and fate including quiescence, is
disrupted in cancer. The microenvironment “enchantment” is
lost and cells “wake up” to resume proliferation, but this time in
an unrestrained manner.

Here, we consider molecular aspects of cell cycle
regulation and discuss how the cooperation of different
microenvironmental signals are critical to the proliferation-
quiescence decision, and how this orchestrated regulation goes
awry in cancer. Because cellular quiescence programs are actively
triggered by tissue- and conditional—specific factors, we argue
that uncontrolled cell division, seen frequently in cancer, does
not solely depend on oncogenic activation of the cell cycle, but
also occurs due to loss of control over quiescence imposed by the
microenvironment.

CELL CYCLE REGULATION AND
DEFINITION OF CELLULAR QUIESCENCE

Proliferation is one of themost conserved and elemental attribute
of a living system. Because of its importance for reproduction,
tissue growth, and regeneration, and also its status as a hallmark
of cancer, a lot is known about the molecular mechanisms that
control cell proliferation. To divide, cells must go through a
series of necessary steps termed the cell cycle. The cell cycle
is divided into four phases characterized by a set of discrete
events: growth and preparation for DNA replication (G1),
DNA replication (S), preparation for mitosis (G2), and mitosis
(M) and culminates with cell division (Figure 1). Although a
large number of signals can trigger cell cycle entry and their
molecular details may vary, key elements of the cell cycle are
extremely well-conserved from yeast to mammals (Harashima

et al., 2013). For instance, as a rule, the cell cycle is triggered by
growth-factor signaling pathways that activate cyclin-dependent
kinases (CDKs) which in turn are cyclically activated and mainly
regulated by another class of proteins called cyclins (Bloom and
Cross, 2007). The content of cyclins is mainly controlled at the
gene expression level and post-translationally by degradation
via proteasome (Bloom and Cross, 2007; Harashima et al.,
2013). Another layer of regulation is provided by the two
groups of cyclin-CDK inhibitors, the INK4 inhibitors (p15, p16,
p18, p19), and the kip/Cip proteins (p21, p27, p57) (Polyak
et al., 1994a,b; Pagano et al., 1995; Sherr and Roberts, 1999),
and by the retinoblastoma protein (pRb). pRb represses the
transcription factor E2F, which initiates the transcription of
cell cycle activators. CDK-mediated hyperphosphorylation of
pRb releases E2F promoting cell cycle progression (Fischer and
Muller, 2017).

Unlike proliferation, little is known about the molecular
biology of cellular quiescence. While proliferating cells from
different tissues share many similarities, quiescent cells differ
a lot in their expression programs (Bissell, 1981; Coller et al.,
2006; Coller, 2011). There exist several types of quiescence,
differing from organism to organism, cell to cell, and at
different times and locations within an organ (O’Farrell, 2011).
Few studies have focused on defining the molecular markers
and/or signatures of different types of quiescence induction
(Johnson et al., 1975; Williams and Penman, 1975; Schneider
et al., 1988; Gos et al., 2005; Coller et al., 2006; Liu et al.,
2007; Coller, 2011). In general, quiescent cells possess a
transcriptional profile different from cycling cells, achieved
by downregulating proliferation and cell-cycle progression
genes, and upregulating genes that are not only related to
cell cycle inhibition but also give the cells new properties
(Coller et al., 2006; Coller, 2011; O’Farrell, 2011). Furthermore,
depending on the type of inhibition of proliferation, the group
of upregulated genes in quiescence can vary considerably
(Coller et al., 2006).

Given the non-uniform nature of cellular quiescence (Coller
et al., 2006; O’Farrell, 2011) and hence, the lack of a universal
marker and/or genetic signature thereof, the assessment and
definition of quiescence pose a difficult task and is subject to
ongoing debate. To determine quiescence, some researchers have
relied on the expression of CDK inhibitors like p27kip1, which are
usually elevated in quiescent cells (Polyak et al., 1994a,b; Coller,
2011). However, high levels of CDK inhibitors are also associated
with entry into senescence and terminal differentiation (Ruas
and Peters, 1998; Sherr and Roberts, 1999; Bringold and Serrano,
2000). Additionally, overexpression of CDK inhibitors does not
reproduce the transcriptional signature of quiescent cells (Coller
et al., 2006; Sang et al., 2008). It is also disputed whether cells
in quiescence enter a non-cycling “compartment” termed G0 or
halt in G1 (Smith and Martin, 1973; Shields and Smith, 1977;
Spencer et al., 2013; Arora et al., 2017; So and Cheung, 2018).
Although presenting the same amount of non-replicated DNA,
quiescent cells spend longer periods of time between mitosis exit
and S phase and express different sets of genes, when compared
to active cycling cells in a canonical G1 (Coller et al., 2006; Sang
et al., 2008; Coller, 2011; Spencer et al., 2013; Arora et al., 2017).
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FIGURE 1 | A schematic depicting the continuity of the cell cycle and the quiescence compartment. Although a continuous cell cycle resulting in proliferation might be

considered the “default program” of cells, microenvironmental cues can trigger the “optional setting” of quiescence. Quiescent cells are able reenter the cell cycle

upon changes in their microenvironment.

We support the idea that the best way to identify quiescent
cells relies on properties not detected in cycling cells and absence
of proliferative traits such as cell cycle activating factors, DNA
synthesis, and mitotic markers (O’Farrell, 2011). Also, there is
some confusion when distinguishing quiescence from replicative
senescence. Senescent cells are found in an essentially permanent
growth arrest induced by extrinsic and genotoxic stresses
(Campisi and d’Adda di Fagagna, 2007; Rodier and Campisi,
2011) and express markers not found in quiescent cells like
senescence-associated β-galactosidase, nuclear foci containing
DNA damage proteins (DNA-SCARS) and senescence-associated
heterochromatin foci (SAHF) (Rodier and Campisi, 2011).
Quiescent cells are those uncommitted to any proliferation-
related activity but are also not in irreversible states such as
senescence, terminal differentiation, or apoptosis. While the only
other option for senescent and terminally differentiated cells is
cell death, quiescent cells are capable of many cell fates such as
reverting to proliferation, differentiating, senescing, or dying.

The ability of becoming quiescent is found in many different
cells types and conditions, including non-malignant, malignant,
undifferentiated, and differentiated cells from distinct tissues
in normal and aberrant situations. For example, differentiated
hepatocytes in a normal liver have the capacity to reenter the
cell cycle upon physical (i.e., resection) and chemical injury
(Kim et al., 1997; Michalopoulos and DeFrances, 1997; Presnell
et al., 1997; Dong et al., 2007); Quiescence is also crucial
for maintenance of adult stem cells (Wilson et al., 2008; Fu
et al., 2017). Stem cell microenvironmental cues can either
trigger quiescence or direct stem cells toward proliferation and
functional differentiation (Cheung and Rando, 2013). In cancer
dormancy, residual cancer cells disseminated from the primary
tumors survive in a quiescent state in distant organs. These
dormant cells appear to be responsible for metastases that occur
years or even decades after tumor surgery and treatment (Ghajar
et al., 2013; Sosa et al., 2014).

Cellular quiescence was defined in the past as a default state
of inactivity (Cheung and Rando, 2013) acquired passively when
conditions are not optimal for proliferation. But, a growing body

of compelling evidence compiled herein shows that quiescence is
a molecularly diverse, non-terminal and tissue-specific state that
can be activated and sustained by the cell microenvironment.

CHANGES IN SYSTEMIC, TISSUE AND
CELL METABOLISM REGULATE THE
PROLIFERATION-QUIESCENCE DECISION

In metazoans, in addition to favorable nutritional conditions,
ligands like growth factors, mitogens, and conditional signals are
necessary to trigger a receptor response to promote and regulate
growth and proliferation (Valcourt et al., 2012). Core cell growth
pathways like PI3Kinase/AKT/TOR are conserved from yeast (a
unicellular eukaryote) to Metazoa and connect biochemical cues
and nutrient availability with the cell cycle re-entry of quiescent
cells (Vivanco and Sawyers, 2002). In yeast, growth pathways
are not coupled to extracellular signaling molecules. Rather, they
proliferate if provided with sufficient nutrients and appropriate
pH, temperature, and pressure (Soto et al., 2016).

Quiescence signaling in animal cells can be triggered even
when conditions are suitable to sustain proliferation, such as with
sufficient nutrients and growth factors (Weaver et al., 1997;Wang
et al., 1998; Liu et al., 2004; Spencer et al., 2013). For example,
during formation of 3D acinar structures in a reconstituted
basement membrane, cells cease proliferating despite the culture
media containing and being regularly replenished with all the
additives required for cell growth and proliferation (Weaver
et al., 1997; Wang et al., 1998; Liu et al., 2004). Most likely,
quiescence in complex organisms is not a consequence of the
absence of growth stimuli, but instead an active process of growth
suppression (Parr, 2012).

Quiescent cells preferentially oxidize carbon compounds to
produce ATP to drive basic cellular processes. Proliferating cells,
however, shift their metabolism to more anabolic pathways so
they can generate biomass and commit to cell division (Vander
Heiden et al., 2009; Palm and Thompson, 2017). The first
metabolic signature associated with cancer was that tumors
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take up glucose and break it down into lactate more quickly
than normal tissues, even in the presence of an abundance of
oxygen that would otherwise lead to the complete oxidation of
glucose in the mitochondria (Rabinowitz and Coller, 2016). This
phenomenon is called the Warburg Effect, named after Otto
Warburg, a biochemist who first observed the phenomenon by
comparing lactate production in normal and tumor tissues (Kim
and Dang, 2006; Koppenol et al., 2011). Proteins downstream
of growth factor signaling regulate metabolism and display
oncogenic potential. Pathways centered on PI3K-AKT and RAS
proteins, for instance, are critically involved in the abnormal
metabolism of cancer cells, including the Warburg effect,
enhanced proliferation, and survival (Thompson, 2009; Pavlova
and Thompson, 2016). On the other hand, tumor suppressors,
like PTEN, a PI3K signaling inhibitor, and p53 can oppose
unrestrained proliferation, and therefore, mutations in these
genes also contribute to abnormal metabolism (Thompson,
2009).

Altered metabolic routes, including not only that of
carbohydrates but also amino acid and lipid metabolism, are a
hallmark of cancer and are essential to sustain the uncontrolled
proliferation and survival of tumor cells (Hirschey et al.,
2015; Coloff et al., 2016; Keckesova et al., 2017) (Hanahan
and Weinberg, 2000, 2011). For example, proliferating cells
metabolize significantly more glutamate via transaminases,
whereas quiescent cells consume less glutamine and have
reduced non-essential amino acid (NEAA) synthesis (Coloff
et al., 2016). Highly proliferative tumors couple glutamine usage
to NEAA production to sustain biosynthesis (Coloff et al.,
2016). The Weinberg lab (Keckesova et al., 2017) performed
transcriptome analysis of experimentally induced quiescent
and differentiated muscle cells to identify that Lactamase B
(LACTB), a mitochondrial protein, was upregulated in relation
to undifferentiated and cycling cells. LACTB was able to strongly
inhibit proliferation in multiple breast cancer cell lines by
changing mitochondrial lipid metabolism and reducing the levels
of mitochondrial phosphatidylserine decarboxylase (Keckesova
et al., 2017).

The metabolic shift displayed by tumors was first considered
exclusively as a consequence of cancer cell-autonomous processes
such as mutations in proto-oncogenes and tumor suppressors
that are primarily involved in growth signaling and cell cycle
regulation. However, growing epidemiological and experimental
evidence has shed light on the role of disrupted metabolism
in oncogenesis (Onodera et al., 2014; Hirschey et al., 2015).
Metabolic diseases such as type II diabetes and obesity correlate
with an enhanced risk of developing many types of cancer
(Giovannucci et al., 2010; Doerstling et al., 2017). The molecular
mechanisms behind this correlation are still unclear and
may be linked to aberrant growth factor-stimulated signaling,
hyperglycemia, chronic inflammation associated with obesity
and diabetes or indeed a combination of these processes
(Giovannucci et al., 2010). Experimentally, Onodera et al. showed
that increased glucose uptake and glycolysis can elicit malignant
phenotypes in non-malignant breast cells, including activation of
oncogenic pathways like EGFR, β1-integrin, PI3K, and MAPK,
loss of tissue polarity and importantly, loss of quiescence.

Reducing glucose uptake in malignant cells, conversely, resulted
in gain of polarity and cell cycle arrest (Onodera et al., 2014).
This may help explain why metformin, a drug used to treat
type II diabetes, reduces the incidence of cancer in diabetes
patients and is regarded as a potential treatment for some
types of cancer (Ben Sahra et al., 2011; Loubière et al., 2013;
Rosilio et al., 2014; Higurashi et al., 2016). The experimental
data together with epidemiological evidence indicate that a
hyperglycemic microenvironment may contribute to exit from
quiescence of already genetically altered cells in the early stages
of tumorigenesis and the consequent development of neoplastic
lesions (Figure 2).

THE COMPOSITION AND PHYSICAL
PROPERTIES OF THE EXTRACELLULAR
MATRIX ARE KEY DETERMINANTS OF
CELLULAR QUIESCENCE

The ECM is composed of a complex network of biochemically
diverse molecules including glycoproteins, non-glycosylated
proteins, proteoglycans, and polysaccharides that assemble into
three-dimensional scaffolds with a myriad of biochemical and
biomechanical properties. By acting as ligands of cell surface
receptors like integrins, the ECM molecules not only make
the structural frame that determines the morphology and
physical properties of tissues and organs but are also crucial
in tuning cell signaling pathways, including growth factor-
stimulated pathways, that control all aspects of cell behavior
(Hynes, 2009; Lu et al., 2011, 2012; Pickup et al., 2014). Cell to
ECM adhesion mediated by heterodimers of integrins is required
for cell proliferation. Responses to growth factors depend on the
cell being anchored via integrins to a component of the ECM
(Schwartz and Assoian, 2001; Hynes, 2002; Ivaska and Heino,
2011; Pickup et al., 2014). For example, insulin stimulation
promotes binding of the integrin pair αvβ3-integrin with insulin
receptor substrate-1 (IRS-1) and this linkage is necessary to
induce DNA synthesis (Vuori and Ruoslahti, 1994). Blocking
β1-integrin binding to ECM inhibited CDK activity leading
to an accumulation of hypophosphorylated pRb (Day et al.,
1997). Furthermore, there are numerous studies showing that
intracellular signaling induced by integrin-binding to the ECM
are analogous to, and intersect with, growth-factor pathways like
RAS-MAPK and PI3K-AKT (Yu et al., 2001; Cabodi et al., 2004,
2010; Ivaska and Heino, 2011). Notably, the ECM also functions
as a “reservoir” of a large number of growth factors and cytokines.
The ECM can, in this way, store molecules that can be released
by proteases and can induce proliferation in specific locations
(Bonnans et al., 2014).

The ECM is divided into twomain components: the interstitial
matrix and the basement membrane. The interstitial matrix
contains fibrillar collagens and different types of proteoglycans
and glycoproteins made mostly by stromal cells (Figure 2).
The basement membrane (BM) is a specialized thin layer
of ECM produced by both epithelial cells and stromal cells
composed almost exclusively of laminins, type IV collagen,
nidogen, and proteoglycans (Lu et al., 2012). Besides separating
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the epithelial and stromal compartments, the BM plays key roles
in instructing the epithelial cells to differentiate, function, and
survive. For example, laminin-rich ECM (lrECM), a surrogate
for the basement membrane, induces tissue polarization and
quiescence and also reprograms gene expression in mammary
gland epithelial cells (Barcellos-Hoff et al., 1989; Streuli and
Bissell, 1991; Boudreau et al., 1995, 1996; Streuli et al., 1995;
Petersen et al., 1998; Kenny and Bissell, 2003; Akhtar et al., 2009;
Spencer et al., 2011; Fiore et al., 2017). Additionally, the basement
membrane suppresses apoptosis of mammary epithelial cells
(Boudreau et al., 1995). These findings support the notion that
quiescent cells not only cease proliferating but also undergo
genetic reprogramming acquiring new properties (Coller et al.,
2006; Coller, 2011; O’Farrell, 2011) and that quiescence programs
might overlap with survival signaling resulting in resistance to
cell death.

Normal epithelial cell lines grown in 3D laminin-111 rich
gels have been shown to form quiescent acinar structures with
polarized cells. In contrast, malignant cells grow as disordered
proliferating structures (Rizki et al., 2008; Fiore et al., 2017;
Wessels et al., 2017). Laminin-111 levels are reduced and show
irregular distributions in several stages of breast cancer (Petersen
et al., 1992). Increased expression and aberrant deposition of
collagen I and IV and fibronectin induced proliferation, loss
of polarity, and a malignant phenotype in several types of
epithelial cells (Hoffman et al., 1996; Zhang et al., 2002; Wozniak
et al., 2003; Provenzano et al., 2009; Malik et al., 2010; Schedin
and Keely, 2011; Espinosa Neira and Salazar, 2012; Kim and
Gumbiner, 2015). In non-malignant cells from the mammary
gland, signals from laminin-111 increase the levels of nitric oxide
and active p53 (Furuta et al., 2018) and decrease the level of
nuclear actin via export by exportin-6 (XPO6) (Fiore et al.,
2017), resulting in polarized and quiescent acini. Actin in the
nucleus is essential for RNA synthesis and RNA levels (Percipalle,
2013; Virtanen and Vartiainen, 2017) which, in turn, are crucial
to sustain cell proliferation (Spencer et al., 2011; Fiore et al.,
2017). In malignant cells; XPO6 activity is not enhanced, nuclear
actin and RNA levels are not decreased, and malignant cells
are unresponsive to quiescence-inducing cues from laminin-111
(Fiore et al., 2017). Interestingly, inhibition of PI3K results in
increasedN-actin export (Fiore et al., 2017). Although quiescence
involves genetic reprogramming leading to the acquisition of
new properties (Coller et al., 2006; Coller, 2011), it is still
uncertain whether the cooperation of laminin-111 signaling and
nuclear actin influences the functional differentiation of the
mammary gland. In addition, it is unclear which configuration
of nuclear actin, either monomeric or filamentous, regulates cell
proliferation and quiescence.

Cancer cells have the ability to remodel their own ECM by
secreting pro-proliferation ECM components like fibronectin
(Hynes and Naba, 2012; Naba et al., 2014, 2017). The nature
of the ECM receptors bound to the cancer cell-secreted
ECM may enhance proliferation-promoting pathways and/or
attenuation of growth inhibitory signals. Additionally, active
degradation of laminin-111 and the consequent breakdown of the
supramolecular structure of the BM bymatrixmetalloproteinases
(MMPs), enzymes that are commonly overexpressed in different

stages of tumor development of several cancers (Kessenbrock
et al., 2010; Bonnans et al., 2014), result in re-activation of the cell
cycle (Beliveau et al., 2010) leading to subsequent development
of tumors (Bissell et al., 2005; Calvo et al., 2013). Importantly,
key genetic alterations (e.g., oncogene activation and loss of
tumor suppressors) commonly found in malignant cells induce
changes in the microenvironment and on how cells sense
their surroundings. For instance, BRAFV600E mutation induces
expression of both α3/α6 integrins (Nucera et al., 2010) and
thrombospondin-1 (THBPS1) in thyroid papillary carcinoma,
as well as in melanome, eliciting hyperproliferation and cell
invasion (Nucera et al., 2010; Jayachandran et al., 2014).

Despite carrying several genetic alterations, disseminated
tumor cells (DTCs) can survive in a reversible dormant state for
decades in secondary sites (Sosa et al., 2014). Strong evidence
frommouse and co-culture experiments has shown that the ECM
of microvascular niches is crucial to influence the proliferation-
quiescence decision in breast DTCs. Thrombospondin-1 in the
BM of mature endothelial cells sustained quiescence, whereas
sprouting neovasculature is rich in active TGF-β1 and periostin
induced proliferation of breast cancer cells (Ghajar et al., 2013).

Epithelial cells in normal and neoplastic tissues reside in
a cell-rich microenvironment containing resident fibroblasts,
endothelial cells, pericytes, and immune cells. These cells have
active roles in the tissue microenvironment biology, especially
in ECM remodeling. Cancer-associated fibroblasts (CAF) and
tumor-associated macrophages (TAM) are abundant in the
tumor microenvironment playing major roles in remodeling
the ECM and establishing paracrine signaling with neoplastic
cells that support cancer development (Kalluri, 2016). CAFs
derived from human prostate tumors were able to induce
malignant transformation and proliferation of non-malignant,
but genetically initiated, prostate epithelial cells (Olumi et al.,
1999). Human mammary epithelial cells transfected with SV40
large-T antigen, the telomerase catalytic subunit, and an H-Ras
oncoprotein when mixed with Matrigel (a commercial ECM)
or primary human mammary fibroblasts displayed increased
capacity to form tumors in immunocompromisedmice (Elenbaas
et al., 2001). In part, CAFs communicate with cancer cells via
secretion of cytokines and exosomes, small vesicles that contain
proteins, nucleic acids, and metabolites that can modulate the
behavior of cancer cells (Hoshino et al., 2015; Kalluri, 2016; Zhao
et al., 2016; Matei et al., 2017) (Figure 2). Macrophages are key
players in chronic inflammation associated with oncogenesis and
tumor progression (Balkwill et al., 2005). Noteworthy, chronic
inflammation triggered by infectious or chemical agents and
tissue-intrinsic mechanisms increase the risk of cancer, andmany
neoplasms are believed to initiate at sites of chronic inflammation
(Balkwill et al., 2005; Karin and Greten, 2005; Kenny et al.,
2007; Tyan et al., 2011). TAMs remodel the ECM via secretion
of MMPs and promote cell cycle reactivation by producing
growth factors and cytokines (Balkwill et al., 2005; Goswami
et al., 2005; Deryugina and Quigley, 2015; Vinnakota et al., 2017)
(Figure 2).

The ECM is not only a bystander in the tumor
microenvironment (Pietras and Ostman, 2010) but rather
actively contributes to cancer initiation and progression, and
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FIGURE 2 | Differences in microenvironmental and subcellular signaling between homeostatic conditions and loss of cell quiescence. (Top) Quiescence-inducing

microenvironment showing normal extracellular matrix, intact basement membrane, organized tissue architecture, and resident immune cells and fibroblasts. The

rates of proliferation and apoptosis are comparable to maintain homeostasis. (Below) Altered and proliferation-permissive microenvironment displaying abnormal

(Continued)

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 June 2018 | Volume 6 | Article 59

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Fiore et al. Microenvironmental Regulation of the Proliferation-Quiescence Decision

FIGURE 2 | extracellular matrix with altered composition and structure, disrupted basal lamina, activated fibroblasts in the stroma, inflammatory infiltrate by activated

macrophages and other cytokines-secreting activated immune cells. The rate of proliferation is increased due to loss of quiescence regulation by the tissue

microenvironment. Details of epithelial cells residing in a healthy (A-F) or aberrant microenvironment (a–f). A normal ECM and correct tissue architecture induces the

formation of hemidesmosomes connecting the ECM to cytokeratin filaments, cell-cell junctions, cortical actin cytoskeleton, and polarized epithelium (A,B).

Consequently, the Hippo pathway, that inhibits translocation of YAP/TAZ to the nucleus, is activated, receptor tyrosine kinase (RTK) activity is attenuated (C) and

nuclear actin export is enhanced (E). Glucose and glutamine are completely metabolized by the tricarboxylic acid cycle (TCA) and oxidative phosphorylation (OxPhos)

(D). Quiescence gene expression programs are triggered during quiescence acquisition (F). Aberrant ECM signaling due to altered ECM composition and stiffness

increases formation of focal adhesions (FA), loss of cortical distribution of the actin cytoskeleton, enhanced activation of FAK, formation of actomyosin stress fibers,

translocation of YAP to the nucleus (a) and accumulation of nuclear actin (e). Loss of adherens junctions allows the translocation of beta–catenin to the nucleus (b).

Overactivation of growth factor signaling occurs as a consequence of intersection between integrin and RTK-triggered signaling (c). Glucose uptake and anaerobic

glycolysis are further increased due to exacerbated activation growth factor pathways, glutamine is converted to NEAA and biosynthetic precursors in the TCA and

oxidative phosphorylation is reduced in the aberrant microenvironment (d). Activation of genes involved in cell-cycle entry is increased (f).

this is an accepted fact. Indeed, it has been suggested that
the ECM should be seen as a modulator of all hallmarks of
cancer (Pickup et al., 2014) and we argue that an aberrant ECM
should also be considered a hallmark of cancer. Similar to the
biochemical traits of the ECM, biomechanical cues, specifically
ECM stiffness and topology, are also sensed by cells, triggering
signal transduction cascades affecting many aspects of cell
behavior. Tumor stroma is typically more rigid than normal
stroma due to increased collagen deposition and crosslinking
between collagen fibers and other ECM molecules catalyzed by
abnormal activities of the enzyme lysil oxidase (LOX) (Levental
et al., 2009; Lu et al., 2012). Women with dense tissue in 75%
or more of the breast have an elevated risk of developing breast
cancer, in comparison with women with little or no dense
tissue (Boyd et al., 2007). Moreover, patients with pancreatic
ductal adenocarcinoma display intense desmoplasia, a process
that involves a considerable increase in collagen types I and
V, myofibroblastic pancreatic stellate cells, and immune cells,
which are associated with cancer progression and poor survival
(Pandol et al., 2009). In addition, leiomyomas, a common
type of benign tumor, are characterized by neoplastic growth
and excessive collagen I and III deposition (Wolanska et al.,
1998).

How then does microenvironmental stiffness influence
the proliferation-quiescence decision? Focal adhesions (FAs),
intracellular protein complexes of protein kinases, and adaptors
linked to filamentous actin (F-actin) are formed when cell
surface receptors bind ECM molecules (Howlett et al., 1995;
Giancotti and Ruoslahti, 1999; Zhao and Guan, 2011; Hynes
and Naba, 2012). These complexes are modulated by substrate
rigidity in response to intracellular tension built and stored
in the actomyosin cytoskeleton (Wozniak et al., 2004; Halder
et al., 2012). The critical proteins in FAs are the heterodimers of
integrins (usually containing β1-integrin chains) and FAK (Focal
Adhesion Kinase). FAK phosphorylates multiple substrates and
helps integrate integrin and growth factor signaling pathways
(Cabodi et al., 2010). In addition to growth factor-responsive
receptor tyrosine kinases, PI3K is activated by other kinases,
such as FAK and integrin-linked kinase (ILK), which also relay
signals from the ECM (Wang et al., 1998; Grant et al., 2002;
Reif et al., 2003; You et al., 2015). Aberrant β1-integrin signaling
and increased expression and activity of FAK are frequently
associated with tumorigenesis (Desgrosellier and Cheresh, 2010;

Zhao and Guan, 2011) and inhibition of either EGFR or β1-
integrin can induce the formation of quiescent acinar structures
in malignant breast cells (Weaver et al., 1997; Wang et al., 1998;
Nisticò et al., 2014). Furthermore, FAK phosphorylation activates
pro-proliferative pathways like Src-RAS-MAPK (Zhang et al.,
2002; Provenzano et al., 2009). Cell cycle progression requires
integrin binding to the ECM that promotes activation of RAS
and ERK signaling, re-initiating the cell cycle (Schwartz and
Assoian, 2001; Pickup et al., 2014). In response to increased
ECM rigidity, cells increase FAK activation that activates cell
cycle progression via RAC stimulation (Bae et al., 2014; Pickup
et al., 2014). In addition, the activation of FAK promotes
nuclear localization of YAP, an effector of the Hippo pathway,
through activation of SRC-PI3K signaling (Kim and Gumbiner,
2015). Conversely, inhibition of β1 integrin signaling with the
AIIB2 blocking antibody inhibits FAK activation, reverting breast
epithelial tumor cells to a normal-like phenotype reassembling
the basement membrane and reestablishing cell to cell junctions
resulting in decreased cyclin D1 and upregulation of p21 (Weaver
et al., 1997; Wang et al., 1998).

In general, these data demonstrate that alterations in the
composition of the extracellular matrix may be an important
trigger for the activation of FAK-mediated pro-proliferative
pathways, thus promoting a mechanism of escape from quiescent
programs. Indeed, in leiomyoma cells, the interplay between
collagen signaling and the growth factor-stimulated MAPK
pathway regulates cell cycle progression (Koohestani et al., 2013).
In mammary epithelial cells, a stiff ECM promotes malignant
phenotypes by inducing miR-18a, which decreases levels of the
transcription factor HOXA9 and the tumor suppressor PTEN,
resulting, respectively, in cell proliferation (Gilbert et al., 2010)
and enhanced PI3K activity (Mouw et al., 2014) (Figure 2).

While increased FA formation and FAK activity correlate with
increased deposition and crosslinking of collagen and aberrant
cell-growth pathways, hemidesmosomes seem to counteract
these effects on physiological stiffness and are linked with a
cell cycle arrest phenotype (Weaver et al., 2002; Chaudhuri
et al., 2014; Nisticò et al., 2014). Hemidesmosomes are
multiprotein structures mediating cell-ECM adhesion. They
possess the integrin pair α6β4 at their core and connect the
BM to cytokeratin filaments (Walko et al., 2015). Perturbation
of hemidesmosomes is involved in the development and
progression of certain cancers (Rabinovitz and Mercurio, 1996;
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Nisticò et al., 2014). Remarkably, although ECM stiffness induces
malignant phenotypic transformation, including escape from
cellular quiescence (Paszek et al., 2005; Chaudhuri et al., 2014),
this effect is lost when combined with an increase in available
basement-membrane ligands (Chaudhuri et al., 2014). Thus,
ECM rigidity and composition seem to act in conjunction with
one another to regulate malignant phenotypes. This line of
evidence indicates that altered physical properties of the ECM
and the ECM composition itself should be jointly considered
when evaluating the risk of development of hyperproliferative
lesions and cancer prognosis (Branco da Cunha et al., 2014;
Chaudhuri et al., 2014). Moreover, depending on the biological
context, the composition and structural properties of the ECM
may drive cell cycle progression as is the case in tissues possessing
high densities of collagen fibers. Conversely laminin-111 together
with an intact BM can induce a resting state and preclude cells
from quitting quiescence and possibly establishing neoplastic
lesions.

INFORMATION PROVIDED BY THE TISSUE
ARCHITECTURE AND GEOMETRY ARE
CRITICAL REGULATORS OF CELL
PROLIFERATION AND QUIESCENCE

One of the most important physical properties of an organ
is its architecture itself. The normal function of an organ is
dependent on its shape and structural features. Indeed, loss of
tissue architecture is one of the diagnostic traits of cancer (Nelson
and Bissell, 2006). Interestingly, a healthy organ morphology can
itself function as a tumor suppressor, suppressing malignancy
even in cells possessing several mutations and aneuploidies
(Mintz and Illmensee, 1975; Howlett et al., 1995; Weaver et al.,
1997, 2002; Wang et al., 2002; Kirshner et al., 2003; Nelson and
Bissell, 2006).

Cell quiescence and cytoarchitecture are also exquisitely
coupled. The biology of epithelial tissues is a classic example of
this relationship. The polarized distribution of cell–cell junctions,
organelles, and molecules are the defining morphological traits
of epithelial tissues (Inman and Bissell, 2010) and epithelial
polarity can have a crucial regulatory effect on cell proliferation
(Zeitler et al., 2004). The BM offers a platform of cell anchoring
and a source of molecular cues for the correct orientation of
apical–basal polarity in epithelia (Weaver et al., 1995; O’Brien
et al., 2001; Bissell et al., 2002; Halaoui and McCaffrey, 2015).
Reciprocally, cell polarity influences intracellular molecular
pathways, providing a mechanism for cells to sense, and
assimilate cues from their microenvironment to control
metabolism and cell growth pathways and consequently the
proliferation-quiescence decision (Jansen et al., 2009; Martin-
Belmonte and Perez-Moreno, 2011; McCaffrey and Macara,
2011; Nance and Zallen, 2011; Halaoui and McCaffrey, 2015).

Perturbation of epithelial structure by injury can re-activate
the cell cycle. However, epithelial cell–cell interactions induce
quiescence when the final organ size is attained (Bryant and
Simpson, 1984; Johnston and Gallant, 2002; Zeitler et al., 2004;
Zhao et al., 2011), even in the presence of abundant nutrients

and growth factors. Nevertheless, loss of cell junctions and
polarity is a trait of tumors occurring at the onset and at
pre-invasive stages of epithelial cancers (Bissell et al., 2002;
Martin-Belmonte and Perez-Moreno, 2011; McCaffrey and
Macara, 2011). Several proteins, especially the protein complexes
Crumbs, Par, and Scribble, are essential for cell polarity and
are deregulated in cancer (reviewed in doi: 10.1038/onc.2014.59
Halaoui and McCaffrey, 2015). In imaginal discs of Drosophila,
deletion of scribble disrupts epithelial architecture and induces
uncontrolled proliferation (Zeitler et al., 2004; Halaoui and
McCaffrey, 2015). In mammalian epithelia, depletion of Scrib
(a homolog of the Drosophila Scribble) leads to luminal filling
due to high rates of proliferation (Zhan et al., 2008) and is
sufficient to predispose mice to loss of quiescence control and
prostate neoplasia (Pearson et al., 2011). Moreover, loss of the
polarity protein Par3 induces mammary tumor growth and
metastasis (McCaffrey et al., 2012). Malignant breast cells can be
phenotypically reverted from disorganized epithelium to normal-
like quiescent acini by inhibiting PI3K signaling. By contrast,
PI3K-signaling effectors RAC1 and AKT, respectively, induce
epithelial polarity perturbation and unrestrained proliferation via
enhanced PI3K activity (Liu et al., 2004). Notably, forcing nuclear
actin accumulation in 3D cultures of non-malignant mammary
cells resulted in larger and proliferative epithelial structures
displaying partially disrupted apical polarity but preserved basal
polarity (Fiore et al., 2017). Structures with high levels of nuclear
actin had a filled lumen resembling the effects of induced
overexpression of ERBb2 or other oncogenes in non-malignant
cells (Muthuswamy et al., 2001), which suppress quiescence
without perturbing epithelial basal polarity (Spancake et al.,
1999; Muthuswamy et al., 2001; Debnath et al., 2002; Liu et al.,
2004; Leung and Brugge, 2012; Fiore et al., 2017). These data
indicate that acquisition of both basal and apical polarity is
required to induce quiescence in epithelial structures (Fiore et al.,
2017).

The availability of space within tissues is an important
regulator of cell death, quiescence, and proliferation. For
instance, cells divide rapidly to fill open spaces and the resultant
spatial constraints induce normal cell quiescence maintaining
homeostasis (Streichan et al., 2014). Restricting the area available
for growth is found to induce cell death, while a wider area
increases cell proliferation (Chen et al., 1997). When cultured
at high density, cells become quiescent. Tumor cells gradually
lose the ability to recognize surrounding tissue architecture and
exhibit motility independent of geometrical constraints (Kushiro
et al., 2017) such as cell density. But, furthermore, cells residing in
tissues with complex anisotropic morphologies have differential
access to gradients of growth factors, mitogens, and growth
inhibitors, resulting in diverse cell states and fates in different
regions of the same tissue (Nelson et al., 2006; Gomez et al.,
2010; Hannezo et al., 2017). For instance, Nelson and colleagues
showed that tissue geometry dictates concentration gradients
of autocrine TGFβ. TGFβ levels were found to be high at the
trunk of the microfabricated tubules where cellular quiescence
predominated, but were low at the branching/outgrowing tips,
resulting in increased invasion and proliferation (Nelson et al.,
2006).
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It is only in the last two decades that the molecular details
of how cells sense density have begun to be unveiled. Several
signaling pathways have been implicated in this regulation
relaying density signals to induce cell-cycle arrest in response
to cell contact (Polyak et al., 1994a; Wieser et al., 1999;
Heit et al., 2001; Faust et al., 2005; Zhao et al., 2008; Barry
and Camargo, 2013; Gumbiner and Kim, 2014). The Hippo-
YAP/TAZ pathway has been found to play important roles in
contact inhibition through mechanical cues provided by the
microenvironment (Zeng and Hong, 2008; Chen et al., 2012;
Halder et al., 2012; Schroeder and Halder, 2012; Gumbiner and
Kim, 2014; Mao et al., 2017). Discovered in Drosophila, Hippo-
YAP/TAZ signaling is a conserved pathway involved in contact
inhibition, mechanotransduction, proliferation, and organ size
determination (Piccolo et al., 2014). Alterations in different
components of the Hippo pathway have been implicated in
cancer (Zeng and Hong, 2008; Zhao et al., 2008; Ma et al., 2014;
Piccolo et al., 2014). The Hippo kinases set off a cascade of
phosphorylation that culminates in the inactivation of YAP/TAZ,
a transcriptional coactivator of cell proliferation and survival
genes such as Ki67, c-Myc, Sox4, H19, AFP, BIRC5/survivin, and
BIRC2/cIAP1 (Zeng and Hong, 2008; Pan, 2010). The subcellular
localization of YAP depends on cell density. YAP is primarily
present in the nuclei of cells cultured at low densities, whereas
at confluence, YAP is phosphorylated as a consequence of Hippo
kinase activity and accumulates in the cytoplasm, where it can no
longer act as a transcriptional coactivator (Dong et al., 2007; Zeng
and Hong, 2008; Zhao et al., 2010). In addition, formation and
stability of adherens junctions and the cadherin–catenin complex
in response to cell contact have been shown to stimulate Hippo
signaling pathway and induce cell quiescence (Varelas et al., 2010;
Schlegelmilch et al., 2011; Barry and Camargo, 2013; Gumbiner
and Kim, 2014). Moreover, proteins involved in the regulation of
apical–basolateral polarity in epithelia have also been implicated
in Hippo-mediated inhibition of YAP/TAZ (Genevet and Tapon,
2011; Boggiano and Fehon, 2012; Richardson and Portela, 2017).

The correct establishment of a quiescent state involves
an active process that is controlled by a complex set of
signaling cascades including activation of Hippo signaling and
attenuation of growth factor stimulated pathways like PI3K-AKT.
These are controlled by microenvironmental cues originating
from the ECM, tissue architecture, and neighboring cells, and
occur despite adequate energy sources and growth factors. In
an abnormal microenvironment, these signaling pathways are
perturbed resulting in unrestrained cell growth (Figure 2).

PERSPECTIVES AND CONCLUDING
REMARKS

From the above account, loss of quiescence is a central
aspect of tumorigenesis, and it can be seen that the tissue
microenvironment plays an essential role in quiescence
regulation. Therefore, we argue that in a context-dependent
manner the microenvironment can work as either a gas or brake
pedal, similar to the analogy proposed to explain the essential
roles of oncogenes and tumor suppressors in cell proliferation

(Hinds and Weinberg, 1994). A healthy microenvironment may
stop cells from re-entering the cell cycle, whereas an aberrant
ECM, disruption of tissue and cell architecture, inflammation,
and altered metabolism may permit cells to escape quiescence
and proliferate uncontrollably. Biochemical and structural
properties of the tissue microenvironment and the integration of
growth factor and ECM-receptor signaling should be considered
when studying cellular quiescence and proliferation and also in
cancer diagnostics and treatment.

Looking ahead, it is important for the field of cancer biology
to view loss of quiescence as an essential feature of neoplasia and
make efforts toward understanding the molecular mechanisms
of how quiescence is achieved in normal tissues and how it
may be disrupted in cancer. In addition, it is essential to
study cellular quiescence in assays that approximate the context
that cells experience in vivo. Currently, studies designed to
identify molecular players in quiescence are based on 2D cell
culture models such as contact inhibition, serum deprivation,
and cell synchronization that do not include the milieu by
which cells are surrounded in vivo. Most of these experiments
are done by forcing cell cycle synchronization using cytotoxic
drugs that affect crucial biochemical pathways such as nucleic
acid synthesis and cytoskeleton dynamics during cell division
(Spencer et al., 2013). Because these strategies do not reproduce
the establishment of quiescence in vivo and use strong cell
stressors, the biological events of the cell cycle may be masked
by assay-intrinsic artifacts. Furthermore, the majority of studies
of the cell cycle have been performed bymeans of bulk assays that
conceal the heterogeneous responses displayed by single cells in a
population (Spencer et al., 2013). We believe that the appropriate
assays for studying the regulation of the proliferation-quiescence
decision are those where cells are embedded in 3D and are able
to form morpho-functional tissue-like units. For instance, in the
mammary acinogenesis assay, non-malignant cells are cultured in
a 3D gel of a reconstituted basement membrane and are found to
display a program of proliferation and morphogenesis followed
by growth arrest and epithelial polarization (Weigelt et al., 2014).

A recent advance in the cell cycle field is the development of
live-cell imaging using fluorescent probes for the cycle such as
FUCCI and CDK-activity sensors (Spencer et al., 2013; Zielke
and Edgar, 2015), which should be considered when planning
experiments of quiescence acquisition in physiological contexts.
These approaches are overcoming the need for artificially-
induced cell cycle arrest and bulk biochemistry, allowing long-
term, and real-time tracking of cell cycle dynamics at the
single-cell level in asynchronous populations and are, in fact,
redefining what we know about the molecular biology of how
a cell adopts a proliferative or quiescent state (Spencer et al.,
2013; Arora et al., 2017; Barr et al., 2017; Kedziora and Purvis,
2017). Moreover, so far, most attempts to identify molecules
involved in the acquisition of quiescence have relied on gene
expression profiling methods, such as DNA microarrays and
RNA-sequencing, that are unable to discriminate between genes
which are a consequence of cell cycle exit and those which
play active roles in quiescence induction. The advent of highly
robust forward genetic screening strategies such as short-hairpin
RNA and CRISPR/Cas9 libraries may greatly contribute to the
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discovery of intracellular molecules, which relay quiescence-
inducing extracellular cues. Indeed, our laboratory is currently
performing experiments designed to understand the dynamics
andmolecular regulation of the proliferation-quiescence decision
at the single-cell level in the context of healthy and aberrant tissue
microenvironments.

Although essential for tumorigenesis, mutations in proto-
oncogenes, and in tumor suppressors and cumulative genetic
instability have proved insufficient to explain malignant
behaviors, including hyperproliferative phenotypes (Dolberg
and Bissell, 1984; Olumi et al., 1999; Bissell and Hines, 2011;
Palumbo et al., 2015; Harper et al., 2016; Hosseini et al.,
2016). In this review, we showed robust evidence indicating
that changes in the cell’s surroundings must also occur to
affect the proliferation-quiescence homeostasis. Therefore,
studies toward understanding cell cycle deregulation in tumor
cells should contain aspects of the tissue microenvironment.
Furthermore, the development of new therapies to kill fast
growing cells in tumors requires an integrative approach

taking in account both the cancer cell genetics and the tumor
microenvironment.
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