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Abstract: The spread of viruses essentially occurs through the interaction and contact between people,
which is closely related to the network of interpersonal relationships. Based on the epidemiological
investigations of 1218 COVID-19 cases in eight areas of China, we use text analysis, social network
analysis and visualization methods to construct a dynamic contact network of the epidemic. We
analyze the corresponding demographic characteristics, network indicators, and structural charac-
teristics of this network. We found that more than 65% of cases are likely to be infected by a strong
relationship, and nearly 40% of cases have family members infected at the same time. The overall
connectivity of the contact network is low, but there are still some clustered infections. In terms of the
degree distribution, most cases’ degrees are concentrated between 0 and 2, which is relatively low, and
only a few ones have a higher degree value. The degree distribution also conforms to the power law
distribution, indicating the network is a scale-free network. There are 17 cases with a degree greater
than 10, and these cluster infections are usually caused by local transmission. The first implication of
this research is we find that the COVID-19 spread is closely related to social structures by applying
computational sociological methods for infectious disease studies; the second implication is to confirm
that text analysis can quickly visualize the spread trajectory at the beginning of an epidemic.

Keywords: COVID-19; social network analysis; contact network; dynamic network evolution

1. Introduction

At the end of 2019, an outbreak of COVID-19, a novel coronavirus, rapidly spread in a
very short time, becoming the largest “black swan” event of the 21st century. By January
2022, the cumulative number of confirmed COVID-19 cases exceeded 286 million and the
death number exceeded 5429 thousand worldwide. The Delta and Omicron variant of
the virus cased the new wave of spread across the globe at the end of 2021 [1–3]. As a
result, the development of vaccines has become an important focus [4,5]. The epidemic
has had a huge impact throughout the world, from public health to many aspects of
the economy and society, and no country or region could stay away from it. Thus, to
understand the evolution, prevention, and control of the epidemic, it is vital to analyze
the spatial and temporal co-occurrence of confirmed cases. In addition, using real-world
data on disease transmission is crucial during the early stages of an epidemic to ensure
the accuracy and efficacy of nonpharmacological interventions. To achieve this goal, the
contact network analysis based on real-world transmission data can effectively capture the
dynamic transmission process of viruses among individuals and reflect the development
of the epidemic through visualization and network modeling [6–10]. The study of contact
relationships between patients at the beginning of the outbreak of COVID-19 can also help
the prevention of possible future outbreaks.
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A large number of researches have gradually improved our understanding of diseases
and our ability to fight them. Existing studies on the spread of infectious diseases are
mainly based on three methods. The first method is the construction of corresponding
models to predict the spread of diseases based on differential equations, such as the
classical SI (Susceptible-Infective) [11,12], SIR (Susceptible-Infective-Recovered) [13,14],
and SEIR (Susceptible-Exposed-Infective-Recovered) [15–17] models. The second method
is regression models [18,19] and simulation calculations [20]. The third method is contact
network analysis, which is used widely in health departments via contact tracing [21–24].
Different research methods have deepened our understanding of disease transmission.
However, these studies still have limitations. Differential equation models ignore the
heterogeneity of individual social interaction patterns. Regression and simulation methods
fail to show the microscopic mechanisms of disease transmission. The existing contact
network studies lack the support of real-world disease transmission data and fail to show
the dynamic evolution of disease spread. To an extent, it reduces the explanatory power of
the study on the transmission of diseases [25].

To address these problems, the objective of this study is to build a contact network
from real-word cases and calculate related network indicators to reveal the pattern of
epidemic transmission at the beginning stage. COVID-19 has a typical “human-to-human”
characteristic. Through human-to-human contact and interaction, the epidemic spreads
rapidly, resulting in aggregated infections and multiple simultaneous diagnoses. Interper-
sonal interactions and contacts can reflect the transmission trajectory of the virus, forming
a contact network among confirmed cases. The contact network is therefore a duplication
of the virus transmission network, which can reflect the disease transmission process at
individual level [6]. Meanwhile, the relevant indicators of contact network can be studied
by means of social network analysis [25]. In addition, cases published during an outbreak
are an important source of real-world data for studying disease outbreak and spread.
Therefore, we use case texts to study the disease outbreak and virus transmission pattern.

Specifically, this paper first constructs a dynamic contact network of confirmed cases
by mining the texts of case studies during the COVID-19 epidemic outbreak in China.
Secondly, based on the network, we calculate the corresponding network indicators and
analyze the network structure. The data used in this paper are obtained from the confirmed
cases published on the official websites of the Health Commissions of eight areas in China.
We chose these regions because detailed information on patient-to-patient contacts is
revealed by their case reports.

The main contributions of the study are as follows. First, we confirm that virus
transmission is related to the strength of ties in social network, which implies viruses are
closely related to human social structures, and that control for diseases is a problem of not
only natural science, but also social science. Second, by mining case texts, we combine
the contact network analysis method with real-world cases, overcoming the limitations of
statistic models and simulation method, presenting the process of disease transmission and
spread at the microscopic level. Theoretically and methodologically, this paper enriches the
idea of studying the transmission pattern of infectious diseases and emphasizes the need
to utilize data from reported cases.

2. Theoretical Background
2.1. Social Science Research during the Epidemic

The prevention and control of an epidemic outbreak is not only a natural science issue
involving virology, epidemiology and immunology, but also a social science issue involving
organizational mobilization, social mentality, mental health and economic impact [26,27].
Since the outbreak of COVID-19, relevant issues have been actively explored in the field
of social sciences. Many studies have emerged from the fields of public health, sociology,
economics and management, which have played a crucial role in the understanding,
prevention and control of the pandemic [27].
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During the epidemic, physical quarantine and distance-increasing interactions have a
great impact on people’s physiology and psychology. Bian et al. constructed the concept
of “virus-combat social capital”, which specifically includes the effectiveness of physical
isolation, the closeness of relational interactions, and the heterogeneity of information
sources [28,29]. In addition, social mindset and mental health issues during quarantine
have received much research attention [29,30]. Catastrophic events can reveal some social
conditions that exist in daily life, but are often overlooked [31], especially social inequalities.
For example, in gender studies, an epidemic may result in higher unemployment rates
in industries with more interpersonal contact, where women were overrepresented. The
absence of child care institutions also increased the burden of mothers in the family [32].
Therefore, the epidemic has exacerbated the gender inequalities that already existed within
families and workplaces [32]. Wu et al. examined the impact of socioeconomic status on
health inequalities and found that an individual’s socioeconomic status can influence access
to daily protective gear, employment status and community environment, which in turn
can affect the risk of infection as well as mental health [33].

Published cases of COVID-19 contain basic information of sex, age, and diagnosis
date of confirmed cases, which are an important data source for analyzing the epidemic. A
number of studies have retrospectively analyzed the basic characteristics of COVID-19 cases
based on published information, including demographic characteristics such as gender,
age, etc., as well as clinical diagnostic information such as case’s origin place, onset time
and diagnosis time. According to a study of the initial 41 cases of COVID-19, the median
age was 49 years old, with 66% cases having a history of exposure to the Wuhan South
China Seafood Market [34]. Yang painted a digital portrait of COVID-19 cases in Shaanxi
Province of China based on 237 cases and found that these cases were predominantly
imported cases in early stages and mostly were middle-aged males [7]. These studies
conducted retrospective analyses based on cases using text mining methods, but mostly
used descriptive statistics and generally lacked in-depth mining of massive case data.

2.2. Social Networks and Disease Transmission

The spread of infectious diseases requires three basic components: infectious source,
transmission route, and susceptible population. SIR models and their evolutionary branch
models use differential equations to make simulations of disease outbreak and transmis-
sion. Furthermore, some other variables are added to expand the explanatory scope of
these models. For instance, researchers considered the dissemination of epidemic-related
information and constructed a UAU-SIS model, where U and A represent awareness of
relevant epidemic information, respectively [35]. In addition, linear regression models [18]
as well as autoregressive models [19] have been applied to epidemic-related studies. The
adoption of multiple models has enriched the research in this field. However, the above
studies lack the support of case data in real-world. Sometimes they only draw static in-
dicator figures such as number of confirmed cases and focus on the prediction or fitting
of the infection rate, while failing to show the dynamics of disease transmission from the
perspective of microscopic individual interaction process. In this regard, the microscopic
spread mechanism of viruses can be analyzed by means of social network analysis.

Viruses can spread along human social ties, forming a contact network among pa-
tients [21–23]. Contact networks can be used to study the process and pattern of infectious
diseases transmission. In such networks, nodes represent patients diagnosed with the
disease, and edges between nodes represent the contact relationship between patients,
i.e., the transmission path of the virus. Based on the view of the contact network, some
researchers have carried out studies on the epidemic pattern of infectious diseases from the
perspective of network dynamics, which demonstrate the ability of social network analysis
to explain the real world [21,36–38]. Researchers have studied the spread of diseases such
as the Black Death [23], AIDS [39] and SARS [40] in the human world from the perspective
of contact network.
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For example, Eubank et al. combined the contact network with simulation to construct
a dynamic bipartite graph of individuals and locations to simulate smallpox outbreaks
in urban social networks. They found that the individual contact network was a small
world network and the location network was a scale-free network, so the authors suggested
that targeted vaccination and early outbreaks surveillance could be an alternative to mass
vaccination in the control of pandemic [6]. Unlike previous studies, this paper did not use
differential equations, but used the contact network method to model the outbreak of virus,
thus providing a more microscopic and precise description of the disease. However, the
settings about parameters in this study such as the infection rate, fatality rate, and incubation
period of smallpox were based on assumptions rather than real-world data of disease
transmission, so it may not fully display the process of disease spread in a real outbreak. In
addition, researchers emphasized the application of contact network method in the study
of the COVID-19 outbreak to better reflect a more realistic population movement [41]. A
study modeled the two-stage outbreak of COVID-19 on the Diamond Princess cruise ship
and estimated the transmission rate and the basic reproduction number R0 [42].

The above studies used different contact network models to simulate the outbreak,
but data sources were mostly social media networks and Wi-Fi networks, which generally
lack disease transmission data in the real world and could not reflect the contact network
among individuals. Therefore, these data limitations reduced the explanatory power of
these studies to some extent.

In modern society, where people interact frequently, the structure of social interaction
has become a key factor in disease transmission. A small-world type of interpersonal net-
work, Watts and Strogatz proposed, has a dense local connection structure with occasional
long-distance connections, connect different clusters together [43]. In this case, the overall
contact network of human society is a giant component, in which long-distance edges can
form the center of a disease outbreak at two different locations at the same time [6]. In
this kind of network, the virus can spread to everyone in the entire population through a
small number of interpersonal contacts [22]. This means that the small-world effect allows
the viral particles to spread more widely and faster, causing simultaneous oscillations
of epidemic beyond the initial outbreak site [44]. Therefore, changes in the structure of
social contact networks have an important impact on the development of an epidemic [40].
Contact network structure influences the effectiveness of non-pharmacological intervention
strategies and re-open policies [41]. Overall, existing studies confirm that immunization
strategies based on network structure, such as degree centrality, clustering coefficient, or
modularity, could be more effective [45–47].

For the COVID-19 epidemic, some researchers have used real-world case data to con-
duct relevant studies from the perspective of contact network. Azad and Devi collected data
from 30 January to 6 April 2020 in India, visualized the trajectory of confirmed cases from
abroad to India, and calculated the corresponding network indicators, whereby the epidemic
development in India was classified into four stages [48]. Jo et al. constructed a directed
infection network based on data of 3283 cases in the Seoul metropolitan area of Korea from
20 January to 19 July 2020. They calculated indicators such as network out-degree distribu-
tion, average path length, and network diameter, pointing out that network structure has an
important impact on the transmission processes of COVID-19 and health departments should
perform improved investigation and tracking of cases exposure history [49]. These studies,
based on real disease infection data, deepen our understanding of epidemic transmission
and help us to implement more effective prevention and control policies.

In contrast to figures that only depict the number of people with COVID-19, text
of case studies can provide more information about the confirmed cases, including the
relationship between different cases and their movement trajectories in addition to basic
demographic information, thus reflecting the development and evolution of the epidemic
at the individual level. In addition to macro-level prevention and control measures, it is
also important to provide guidance and regulation on individual behavior, which requires
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individual data and information in the spread of the epidemic. Therefore, we investigate
the network structure of the COVID-19 transmission network based on confirmed cases.

3. Data and Method
3.1. Data

The data used in this paper were obtained from cases published on the official websites
of the Health Commissions of eight provinces and regions in China, including Gansu,
Guizhou, Hainan, Heilongjiang, Inner Mongolia, Shanxi, Tianjin, and Yunnan, for a total of
1218 cases from the time the first case was announced (17 January 2020) to 16 February 2020.
These regions were selected because their cases published by Health Commissions included
specific movement trajectories and contact relations between cases. This period was the
first outbreak of the epidemic on a global scale. The Chinese government took several
measures to control the spread of the outbreak, including quarantine, universal nucleic
acid testing (NAT), the establishment of cabin hospitals, and medical aids to the infected
areas [50–53]. One of the most significant impacts on the outbreak was the city lock-down
implemented in Wuhan, Hubei on 23 January 2020.

The collected information in cases were organized, classified, text-mined and coded
in anonymized form. Based on specific text descriptions, the demographic and infection
characteristics of COVID-19 cases were counted, including gender, age, household registra-
tion, place of symptom onset, source of case, time of arrival, time of symptom onset, time
of taking medical measures, and time of definite diagnosis. A dynamic contact network
within the eight regions was also constructed based on the relation between cases.

3.2. Variables

We first classify the virus spread pathway for each confirmed case. In the perspective
of social network analysis, ties can be classified into three categories: strong ties, weak
ties and strangers, depending on the frequency, familiarity and emotion intensity of each
contact [54,55]. Frequency refers to the daily interaction intensity between contacts. The
familiarity between two contacts refers to the degree of mutual understanding between
them, while the emotion intensity refers to how close they are to one another [54,55]. It has
been confirmed that tie strength can affect virus spread process [56–58]. Accordingly, by
analyzing published case information, we determine whether a case is infected through a
strong tie, a weak tie or a stranger. If one case clearly stated that he or she was diagnosed af-
ter close contact with family members, friends, or acquaintances confirmed with COVID-19,
the case was considered to have been infected through a strong tie. If one case did not have
close contact with other confirmed case, the infection route would be determined by other
supporting information such as activity track, household location, type of work, and place
of employment. For example, if one case only went out for a walk occasionally and did not
have close contact with other people confirmed with COVID-19, the infection route was
coded to a stranger contact. Otherwise, the infection was caused by a weak tie. If one case
is infected through a certain tie, the infection route is coded 1, otherwise coded 0. We also
take family infection into consideration. If one case has a family member diagnosed, this
case is coded 1, otherwise coded 0.

Second, the contact relationship between confirmed cases is depicted in daily cases
published on the Health Commission website, through which we construct and visual-
ize the contact network between confirmed cases. Some studies have shown that net-
work centrality-based immunization strategies are more effective [46,47]. We calculate
the relevant network indicators, which are shown in Table 1. Furthermore, referring to
Eubank et al. [6] and Jo et al. [49], we also simulate the effect of quarantine policy by
deleting nodes with certain value of degree centrality.



Int. J. Environ. Res. Public Health 2022, 19, 689 6 of 17

Table 1. Contact network indicators.

Indicator Definition Equation Meaning in Contact Network

Degree Centrality Number of nodes in the network that
are directly connected to a focal node CD(i) =

n

∑
j=1

aij

Number of contacts with other
patients of a focal patient

Closeness Centrality Proximity of a node to all other nodes
in the network CC(i) =

1
∑n

j=1 dij

Proximity of one patient to other
patients, with larger values indicating
that the epidemic is spreading with
fewer intermediate patients and at a

faster rate

Betweenness
Centrality

The ability of a node to lie on a
geodesic path between other pairs of

nodes in the network

CB(i) =
n

∑
j

n

∑
k

bjk(i)

j 6= k 6= i, j < k

The ability of a patient to act as a
bridge in the transmission of the

virus, such as the position of B in an
A-B-C transmission route

PageRank Scores
The centrality of a node in the whole
network rather than ego network by

iterative computation
PRi = ∑

j∈Bi

PRj

nj

The degree to which a patient is
central to the whole contact network

Number of
component

A sub-network of a network in which
there are paths between any nodes,

but there is no any connections
between other sub-networks

— The more components, the sparser
the contact network

Density How closely the network is connected D =
2L

n(n− 1)

In a low-density contact network,
virus spread becomes difficulty

4. Results
4.1. Description Statistics

In this section, we first present the description statistics about diagnosed cases, includ-
ing demographic information such as gender, age, infection source place (inside or outside
the area), and the likelihood of being infected by each type of ties (strong tie, weak tie or
stranger). The results are shown in Tables 2 and 3.

Table 2. Gender and infection source of contact networks in eight regions of China.

Variables Items Frequency Percentage

Gender
Male 546 50.32%

Female 539 49.68%

Infection source
Inside region 642 57.17%

Outside region 481 42.83%

Table 3. Infection route of contact networks in eight regions of China.

Variables Items Frequency Percentage

Is there a possibility of being infected by a stranger? Yes 684 64.65%
No 374 35.35%

Is there a possibility of being infected by weak ties? Yes 461 43.57%
No 597 56.43%

Is there a possibility of being infected by strong ties? Yes 695 65.69%
No 363 34.31%

Is there a family member being infected? Yes 418 39.62%
No 637 60.38%

As can be seen in Tables 2 and 3, there was no significant difference in the percentage
of men and women (50.32% vs. 49.68%). In terms of the origin place of infection, 642 cases
were infected within the eight areas, accounting for 57.17% of all cases. In terms of the
specific tie of infection with the virus, 64.65% cases had the possibility of being infected by
strangers. More than 40% cases had the possibility of being infected by a weak tie such as
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an unfamiliar colleague. More than 65% cases had the possibility of being infected by a
strong tie. Close to 40% cases had family members diagnosed, which indicates a greater
proportion of infections occurring within family.

The average age of all confirmed cases was 45.51 years old, with the youngest one
only 1 month old and the oldest one 94 years old. Figure 1 shows the age distribution of all
confirmed cases.

Int. J. Environ. Res. Public Health 2022, 18, x FOR PEER REVIEW  7 of 19 
 

 

Table 2. Gender and infection source of contact networks in eight regions of China. 

Variables                                  Items  Frequency  Percentage 

Gender 
Male  546  50.32% 

Female  539  49.68% 

Infection source 
Inside region  642  57.17% 

Outside region  481  42.83% 

Table 3. Infection route of contact networks in eight regions of China. 

                        Variables                                          Items  Frequency  Percentage 

Is there a possibility of being infected by a 

stranger? 

Yes  684  64.65% 

No  374  35.35% 

Is there a possibility of being infected by weak 

ties? 

Yes  461  43.57% 

No  597  56.43% 

Is there a possibility of being infected by 

strong ties? 

Yes  695  65.69% 

No  363  34.31% 

Is there a family member being infected? 
Yes  418  39.62% 

No  637  60.38% 

As can be seen in Tables 2 and 3, there was no significant difference in the percentage 

of men and women (50.32% vs. 49.68%). In terms of the origin place of infection, 642 cases 

were infected within the eight areas, accounting for 57.17% of all cases. In terms of the 

specific tie of infection with the virus, 64.65% cases had the possibility of being infected 

by strangers. More than 40% cases had the possibility of being infected by a weak tie such 

as an unfamiliar colleague. More than 65% cases had the possibility of being infected by a 

strong tie. Close to 40% cases had family members diagnosed, which indicates a greater 

proportion of infections occurring within family. 

The average age of all confirmed cases was 45.51 years old, with the youngest one 

only 1 month old and the oldest one 94 years old. Figure 1 shows the age distribution of 

all confirmed cases. 

 

Figure 1. Age distribution of COVID‐19 cases in eight regions of China. Figure 1. Age distribution of COVID-19 cases in eight regions of China.

We further analyzed the transmission route of COVID-19 among all confirmed cases.
Figure 2 illustrates the trend of infection route over time. In addition to the three social
ties, the family member infection route is also depicted. A higher proportion of cases are
infected through stranger ties and strong ties.
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4.2. Contact Networks of COVID-19

Based on the information, we construct dynamic contact networks of confirmed cases
in eight areas in China. To present dynamic changes of the network, each network of a
certain region is intercepted by typical time intervals for analysis. In the contact network,
nodes represent confirmed COVID-19 cases, and edges represent close contact between
cases and the presence of a virus transmission route. Each node is numbered, representing
its order reported by the local Health Commission. The larger the number is, the later that
case was confirmed. Size of node represents the value of its degree centrality. The bigger
the size is, the more people got infected directly by that case.

4.2.1. Contact Networks Structure and Visualization

Figure 3 shows the dynamic contact networks in all the eight regions. As can be
seen, in the early period, the contact network is sparse, indicating that at early stage
the outbreak was dominated by individual infection rather than chain infection. After
February 2020, some clusters gradually appeared, which indicates that mass infection
emerged over time. In Heilongjiang Province, for example, the first confirmed case was
reported on 23 January 2020, and there were only three cases until 31 January 2020. By
the middle of the period (5 February 2020), however, the number of confirmed cases in
Heilongjiang Province suddenly surged, with 56 new cases confirmed on that day, resulting
in a total of 68 cumulative confirmed cases. At the same time, there were several clusters
of mass infection. In many provinces, the largest cluster usually included people staying
or passing by Wuhan, such as case No. 34 in Gansu Province, case No. 64 in Guizhou
Province, case No. 52 in Inner Mongolia, case No. 138 in Yunnan Province, and case No. 26
in Heilongjiang Province.

After 5 February 2020, clusters formed in the mid-term expanded and a few fully
connected clusters appeared. Fully connected clusters occurred mostly in families. In a fully
connected cluster, family members are infected almost simultaneously, making it difficult
to distinguish their transmission pathways and sequences. By the later stage, no more new
clusters appeared, indicating that the epidemic was basically controlled. Since various
epidemic prevention policies were implemented in different parts of the country, the contact
network gradually broke down into many different sub-communities, which indicated that
the connectivity of the network was decreasing. In particular, the lock-down of Wuhan also
resulted in the absence of new cases in our study areas after 16 February 2020. In addition,
there are many isolated nodes in the contact network, some of which might be infected
through strangers. Some isolated cases mentioned the source of infection in their case but
the clear transmission pathways between them and others could no longer be traced due to
insufficient data.

In order to demonstrate the transmission pathways of COVID-19 more clearly, we
specifically select some confirmed cases for individual-level analysis. For instance, the largest
family infection in Inner Mongolia was a dense cluster formed by cases No. 52, 55, 56, and 57
(Figure 3e). In this cluster, case No. 52 returned from Wuhan and visited his family members,
which eventually led to the infection of all close contacts. The largest cluster in Yunnan was
formed by cases No. 139, 150, 151, 157, 158, and 160–167 (Figure 3h). In this cluster, case
No. 139 who returned from Wuhan participated in a village-wide gathering party, which
eventually led to a cluster of infection. As another example, cases No. 64 and 65 (husband and
wife) in Heilongjiang Province were diagnosed on 5 February 2020, and they had previously
gathered with cases No. 236 and 237 (their sisters) at home of case No. 235 (their mother)
on 24 January 2020, so that both their mother and sisters were diagnosed on 9 February 2020
(Figure 3d). This family also formed a relatively large cluster at the later stage. The son of
cases No. 64 and 65 returned from Shandong to Heilongjiang on 19 January 2020, arrived at
his parents’ home on 22 January 2020, then attended a family dinner on 24 January 2020, and
went back to Shandong on 28 January 2020. The son (not be showed in Figure 3) was being
treated in hospital because of COVID-19 when his parents were confirmed to be infected.
Therefore, it is possible that this family outbreak initially started from the son.
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4.2.2. Contact Networks Centrality Analysis

To further analyze the contact network of COVID-19 cases, we calculated relevant
network indicators including degree centrality, closeness centrality, betweenness centrality
and PageRank scores. The results are shown in Table 4. The mean value of degree centrality
was higher than 1 in Guizhou, Hainan, Tianjin and Yunnan, which means a focal case
spreads the virus to more than one person on average. The minimum value of degree
centrality was 0, while the maximum was 24, indicating that 24 new cases resulted from
this case (case No. 34 in Tianjin network). The No. 34 case was an employee of Baodi
department store in Tianjin where a mass infection occurred. The largest infection sub-
network in Tianjin formed with this case as the center.

Table 4. Contact network indicators.

Variables Areas Mean S. D. Min. Max.

Degree centrality

Gansu 0.867 1.309 0 6
Guizhou 1.288 2.241 0 10
Hainan 1.506 1.777 0 6

Heilongjiang 0.340 0.985 0 5
Inner Mongolia 0.722 0.996 0 3

Shanxi 0.681 0.783 0 3
Tianjin 2.339 3.517 0 24
Yunnan 1.345 3.187 0 12

Closeness
centrality

Gansu 0.304 0.391 0 1
Guizhou 0.412 0.457 0 1
Hainan 0.479 0.459 0 1

Heilongjiang 0.130 0.331 0 1
Inner Mongolia 0.366 0.452 0 1

Shanxi 0.426 0.448 0 1
Tianjin 0.470 0.331 0 1
Yunnan 0.320 0.459 0 1

Betweenness
centrality

Gansu 0.0002 0.001 0 0.0077
Guizhou <0.001 <0.001 0 0.0043
Hainan <0.001 <0.001 0 0.0022

Heilongjiang <0.001 <0.001 0 0.00002
Inner Mongolia <0.001 <0.001 0 0.0020

Shanxi <0.001 <0.001 0 0.0039
Tianjin 0.001 0.005 0 0.0385
Yunnan <0.001 <0.001 0 0.0003

PageRank

Gansu 0.011 0.012 0.003 0.072
Guizhou 0.007 0.007 0.002 0.064
Hainan 0.006 0.004 0.001 0.019

Heilongjiang 0.002 0.003 0.001 0.014
Inner Mongolia 0.014 0.012 0.004 0.049

Shanxi 0.021 0.017 0.005 0.053
Tianjin 0.008 0.007 0.001 0.046
Yunnan 0.006 0.006 0.002 0.022

The value of closeness centrality represents the proximity of one case to other cases in the
contact network. Higher values mean that the epidemic can spread with fewer intermediate
patients. Among eight regions, Hainan Province, with rich tourism resources, has the highest
mean value of 0.479 for the closeness centrality, which is probably due to the mass infections
caused by vacation travel. The lowest mean value of 0.130 for the closeness centrality is
in Heilongjiang, which indicates that there are fewer cluster infections in the province. In
addition, as can be seen in Figure 3, although some sub-networks formed over time, confirmed
cases received timely quarantine and treatment, which prevented further spread of COVID-19.

Betweenness centrality measures the ability of one case to act as a bridge of virus trans-
mission, such as the position of B in an A-B-C triple transmission. Generally, the small value of
betweenness centrality indicates less chain transmission during an epidemic in these areas.

In terms of PageRank scores, the eight regions generally take low value, with the maxi-
mum value of only 0.072 and the minimum value of about 0.001. The wide range of PageRank
scores indicates that the connectivity of confirmed cases is unevenly distributed in the network.
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Figure 4 shows the degree centrality distribution of all cases in eight regions. Most
cases’ degree centrality is between 0 and 2, and only a few ones have higher values. The
overall distribution shows a “long-tailed” characteristic.
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4.2.3. Simulation of Quarantine Policy in Contact Networks

Drawing on the previous researches [6,49], we also run a simulation on the effect
of the quarantine policy in epidemic prevention and control. Specifically, by removing
the nodes of the certain value of degree centrality in the contact network, we observe the
changes of indicators in the overall network to reflect the policy intervention on the spread
of COVID-19. The results of the simulation are shown in Table 5. With the deletion of nodes
with a high degree, the overall contact network density drops sharply, while the number
of components gradually increases. The changes in these two indicators demonstrate that
the connectivity of the contact network is declining, and the overall network is gradually
becoming fragile. Therefore, when individuals with high transmission risk are isolated, the
spread of diseases can be effectively controlled.

Table 5. Results of removing nodes in contact network.

Indicators Areas Original Network Removing Nodes
That Degree ≥ 3

Removing Nodes
That Degree ≥ 2

Number of
component

Gansu 60 73 66
Guizhou 97 106 102
Hainan 96 98 86

Heilongjiang 368 363 362
Inner Mongolia 52 54 52

Shanxi 32 33 34
Tianjin 43 61 53
Yunnan 132 131 128

Density

Gansu 0.010 0.003 <0.001
Guizhou 0.009 0.003 0.002
Hainan 0.009 0.004 0.002

Heilongjiang 0.001 <0.001 <0.001
Inner Mongolia 0.010 0.007 0.003

Shanxi 0.015 0.013 0.008
Tianjin 0.019 0.006 0.003
Yunnan 0.008 0.002 0.001
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5. Discussion

In terms of ties strength of the contact network, many infections through stranger
tie shows that many cases are infected without contact with colleagues, family members
or close friends; many infections through strong tie shows that clustering infections are
one of the important causes in the spread of virus. The number of family member infec-
tions showed a significant increase in February 2020, probably because many cases had
already been infected with COVID-19 during the Chinese New Year but diagnosed in early
February 2020 due to the incubation period. During the Chinese New Year, people in China
like visiting their family members or taking a vacation. At the same time, the overall trend
of all the four types of ties gradually dropped after a small peak in early February 2020,
indicating that during the later stage, the epidemic was under control.

Based on the network structure analysis and visualization, we find that the largest
clusters of infection in most provinces included cases with a history of residence or trav-
elling in Wuhan, then gathering activities lead to a larger transmission range. Besides,
clusters of infection in some areas mostly formed after February 2020, which may be caused
by gathering activities during the Spring Festival [59–62]. This is another proof that control
of gathering activities and quarantine of infected populations are especially critical in the
prevention and control of the epidemic.

Based on the centrality values in the network, we test whether the degree centrality
distribution is in accordance with the power law distribution by fitting the logarithm of
degree and frequency [63]. The results are shown in Figure 5. The slope of the fitting
line is −1.29 and the goodness of fit (R-Square) is 0.855, which indicates that the degree
distribution is consistent with the power law. This implies that the contact network of
confirmed cases is a scale-free network, in which only a few nodes have a high degree
centrality and most nodes have a low degree centrality. As Meyers et al. pointed out, the
spread of disease is particularly not serious in scale-free networks [40]. In addition, there
were 17 cases with degrees greater than 10. Given cases with high degree centrality, timely
quarantine and medical treatment is key to interrupt further spread of the epidemic.
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Similar to the study on the Seoul metropolitan area of South Korea [49] and Shaanxi
Province of China [7], the distribution of the patient’s degree in this research is also
uneven and follows a power-law distribution. However, in the study on South Korea, a
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directed transmission network between cases was constructed. Due to data limitations, this
article cannot distinguish the infectious directions between confirmed patients, so only an
undirected transmission network is constructed. Unlike the research on India [48], we do
not construct a regional transmission network based on the travel history of confirmed cases,
but this is a good future research direction, which can reflect the network characteristics of
virus transmission at the spatial level. Besides, in Shaanxi Province, China, approximately
74% of patients may be infected by strong relationships, while we found that the proportion
in other eight parts of China is slightly lower, at approximately 66%. In terms of average
age, Shaanxi Province is relatively close to other eight areas of China, with the former being
45.9 years old and the latter being 45.5 years old.

6. Conclusions

By collecting and text mining 1218 cases of COVID-19 from eight areas in China at the
beginning of the epidemic, this study first illustrates demographical statistics of confirmed
cases in terms of gender, age, and source of infection. Then, we classify the types of social
ties from which cases are infected. Further, based on the published cases, we construct a
dynamic contact network of confirmed cases to demonstrate the trend and transmission of
the epidemic. Overall, there are clusters of aggregated infections which formed at first and
then gradually expanded, but the growth trend gradually slowed down at the later stage.
Meanwhile, the degree centrality of the network showed a power law distribution, with
only a few individuals having a high degree centrality, while the overall network was in a
low-connectivity state.

The history of humanity’s fight against diseases is also the process of deepening our
understanding on related diseases. The differential equation models represented by SI and
SIR have produced a large number of findings based on the assumption of homogeneous
populations. However, the assumptions of these models are too strict and may ignore the
heterogeneity and dynamic interactions within populations. Similarly, few studies based on
regression models can reveal the microscopic mechanism of disease transmission [64]. As a
consequence, some researchers have proposed to model disease outbreaks from the contact
network perspective, such as Newman [21], Eubank et al. [6], and Meyers et al. [40]. The
introduction of contact network method, which places more emphasis on the interaction
pattern between microscopic individuals, has further improved our ability to study disease
transmission patterns. However, it should be noted that contact network simulation models
are not based on real-world disease transmission data, so the dynamic perspective may not
be taken into consideration, which reduces the explanatory power of them to some extent.

The first contribution of this study is to use text mining and social network analysis
methods to construct a dynamic contact network of confirmed cases based on real-world,
original case texts. By analyzing and visualizing the contact relationship between cases, we
show the development and evolution of the epidemic at the microscopic and individual
level and enrich the research ideas in the field of disease transmission. Second, we find
that virus transmission is closely related to social network and strength of social ties and is
largely dependent on the structure and trajectory of human social activities, which indicates
the study of virus transmission requires not only explanation and tracing of natural science,
but also a lot of efforts from social scientists.

This research inevitably has some limitations. First, the data format and content
published on the website of the Health Commissions vary with areas. For example, con-
tact relationships were not fully reported in some cases. Second, we selected only eight
regions of China because reports from these regions are complete. Some other regions only
provided the number of confirmed cases without specific information about trajectories
of their activity. Therefore, future studies can conduct relevant analyses based on more
complete and comprehensive data that can be acquiring from other database sources. Of
course, this requires good organization and coordination of epidemiological investigations
by public health departments. Furthermore, case information should be uniform and
detailed as much as possible to display the true disease transmission process. High-quality
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epidemiological investigation not only provides first-hand data for disease-related scientific
research, but more importantly, provides timely and accurate reference for intervention
policy and epidemic control measures. Finally, because the variability of the mutations of
the pathology and the heterogeneity of cases due to regions and time is indeed unavoidable,
future research can merge contact network studies in different areas and periods to provide
a whole picture of the development of COVID-19.
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