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Abstract: Quantum dot white light-emitting diodes (QD-WLEDs) were fabricated from green- and
red-emitting AgInS;/ZnS core/shell QDs coated on GaN LEDs. Their electroluminescence (EL)
spectra were measured at different currents, ranging from 50 mA to 400 mA, and showed good color
stability. The modulation bandwidth of previously prepared QD-WLEDs was confirmed to be much
wider than that of YAG:Ce phosphor-based WLEDs. These results indicate that the AgInS,/ZnS
core/shell QDs are good color-converting materials for WLEDs and they are capable in visible light
communication (VLC).
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1. Introduction

With the increasing concerns in global climate change and environmental protection, people are
looking for alternatives to reduce energy consumption and greenhouse gas emission [1,2]. Solid-state
white light emitting diodes (WLEDs) are excellent candidates to replace conventional light sources
because of their low power consumption, fast response, high luminous efficiency, excellent stability,
and environmentally friendly characteristics [2,3]. The phosphors play an important role to fabricate
WLEDs with high qualities [4,5]. Currently, the rare-earth phosphors represented by YAG:Ce>* are
prevalent in fabricating commercial WLEDs [6,7]. However, their color rendering is poor due to the
lacking of red emission in the visible spectrum [2,8]. Quantum dots (QDs) have the size-dependent
bandgap and high quantum yield, and have been widely applied in fabricating WLED. Based on the
recent reports, CdSe QDs have been confirmed as a good down conversion materials for WLEDs [9].
However, the heavy-metal nature of the cadmium composition raises concerns about carcinogenicity
and other chronic health risks as well as disposal hazards. Therefore, non-cadmium nanomaterials
were proposed and prepared with the excellent optical properties, including CulnS, QDs, AgInS, QDs,
InP/ZnS QDs and Silicon QDs [10-15], which have already been employed to fabricate the WLED and
have demonstrated a promising application in the display and solid state lighting [16-19].
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However, the inherent toxicity of cadmium-related QDs will limit their applications in commercial
WLEDs and other related fields [20-26]. AgInS;/ZnS core/shell QDs were therefore investigated as
desirable nontoxic substitutes [27-29]. Their photoluminescence (PL) wavelength can be adjusted
from 520 nm to 680 nm with large Stokes shifts [30,31]. These characteristics enable AgInS, QDs as
color-converting materials to fabricate WLEDs.

In this work, we combined blue LED chips with green- and red-emitting AgInS,/ZnS QDs to
construct WLEDs (QD-WLEDs). The PL lifetime of AgInS; QDs was much shorter than that of the
YAG:Ce3* phosphor [32,33], and the corresponding modulation bandwidth was wider, making them
ideal for improving system communication performance in visible light communication (VLC).

2. Experimental Section

2.1. Materials

Silver nitrate (AgNO3, 99%), indium (III) acetylacetonate (In(acac)s, 99.99%), sulfur powder
(S, 99.98%), zinc stearate (10%—12% Zn basis), dodecanethiol (DDT, 98%), oleic acid (OA, 90%),
oleylamine (OLA, 70%), 1-octadecene (ODE, 90%), and trioctylphosphine (TOP, 90%) were purchased
from Sigma-Aldrich (Shanghai, China). UV glue NOA60 was ordered from LIENHE Fiber Optics
(Shanghai, China). All chemicals were used directly without further purification. Blue LED chips
(Amax =450 nm) and YAG:Ce-based WLEDs were purchased from the Cree company (Shenzhen, China).

2.2. Synthesis of AgInS,/ZnS Core/Shell QDs

AgInS, core QDs were synthesized in a procedure performed previously [34]. A mixture of
AgNO3 (0.1 mmol), In(acac)s (0.5 mmol) and OA (1.5 mmol, 0.47 mL) were mixed and added into a
100 mL three-neck flask with ODE (25 mmol, 8.0 mL). The reaction mixture was degassed with N, for
30 min at a room temperature. The solution was heated to 90 °C and DDT (4.0 mmol, 1.0 mL) was
injected into the reaction flask. The mixture was then heated to 130 °C. The sulfur solution (0.80 mmol
S powder dissolved in 1.3 mL OLA (3.1 mol/L)) was quickly injected into the reaction solution, and
the solution continued reacting for 1-12 min. Different emission wavelength AgInS; core QDs were
obtained by changing the reaction time.

For the ZnS shell coating, a ZnS shell stock solution was prepared. Both Zn stearate (0.4 mmol)
and S (0.4 mmol) were dissolved in TOP (4 mmol, 2 mL) and added to a 25 mL three-neck flask.
The solution was degassed for 20 min and heated to 100 °C under a nitrogen flow until a clear
colorless solution was formed. This solution was then quickly injected into the AgInS, core solution
at 130 °C. The temperature was maintained for 2 h. After that, the final solution was purified by
adding anhydrous ethanol in order to remove the unreacted precursors, and this washing process was
repeated three times [35-37]. The final core/shell QDs were dispersed in hexane.

2.3. Fabrication of WLEDs with AgInS,/ZnS Core/Shell QDs

A blue LED chip was used to generate blue light (450 nm) as a pump source. Green- and
red-emitting AgInS,/ZnS core/shell QDs were dissolved in hexane, and UV glue was then added
dropwise into each of the QD solutions. The treatments of vibration and sonication were applied
for 30 min to form homogeneous mixtures. The two mixtures were then put in a vacuum chamber
(2 x 10° Pa) to remove hexane and bubbles. Finally, the two QD/UV glue mixtures were respectively
dropped onto the blue LED chips layer by layer, and each layer was baked for 1 min under 365 nm
ultraviolet light irradiation to harden the liquid on the LED chips.

2.4. Characterizations

Photoluminescence spectra were measured by a Zolix Omni-A300 luminescence spectrometer
(Zolix, Beijing, China). The UV-vis absorption spectra were obtained using a Shimadzu TU-1810
spectrophotometer (Shimadzu, Kyoto, Japan). Time-resolved photoluminescence spectra were
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measured by a fluorescence spectrometer (mini-t, Edinburgh Photonics (Edinburgh Instruments Ltd.,
Edinburgh, UK) equipped with an EPL405 laser diode. When the decay curve was measured, a 5-us
separation was employed to avoid the PL accumulation. The modulation bandwidths of WLEDs
were acquired using an Agilent 8714E network analyzer (300 KHz-3 GHz) (Agilent Technologies Inc.,
Santa Clara, CA, USA). A photoelectric detector BPW21 (Siemens Semiconductor Group, Shenzhen,
China) was employed to switch the optical signal into an electrical signal. The absolute PL quantum
yields were measured by the same spectrometer with an integrating sphere, with its inner face coated
with BENFLEC®.

3. Results and Discussion

The UV-vis absorption and PL spectra of green- and red-emitting AgInS,/ZnS QDs in hexane are
depicted in Figure 1a,b. The PL peaks of AgInS,/ZnS QDs were 522 and 610 nm with the full width
at half-maximum (FWHM) of 82 and 102 nm, respectively. The large Stokes shift was advantageous
because it eliminated the self-absorption and generated high-color rendering WLEDs. The PL QYs
of green- and red-emitting AgInS;/ZnS QDs were 50% and 40%, respectively. Under the excitation
of 365 nm UV light, the strong green and red light could be clearly observed as shown in the inset of
Figure 1b.
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Figure 1. (a) Absorption spectra and (b) photoluminescence (PL) spectra of green- and red-emitting

AgInS, /ZnS Quantum dots (QDs) in hexane. The inset shows the corresponding real color under
excitation of 365 nm UV light.

Figure 2a shows the schematic structure of the QD-WLEDs with green- and red-emitting
AgInS; /ZnS QDs. A photograph of the WLED operated at a working current of 350 mA is shown in
Figure 2b. Compared to the poor CRI of the YAG:Ce-based WLED, the AgInS,/ZnS QD-WLED has
the improved CRI of 85. Figure 2c shows the electroluminescence (EL) spectra of the as-fabricated
QD-WLED under different currents from 50 mA to 400 mA. Three emission peaks were clearly located
at 450 nm, 540 nm, and 625 nm, respectively. It was noted that a redshift about 20 nm was observed
for the QD peak wavelengths of QD-WLED compared to their PL spectra. Because of the low QD
solubility in the UV glue, QD agglomeration occurred inevitably. The dipole-dipole energy transfer,
which was strongly dependent on QD distance, became enhanced and led to an obvious redshift due to
the energy transfer between QDs. In addition, it is known that the exciton binding energy of QDs can
be affected by the dielectric constant of the surrounding media. Due to the difference in the dielectric
constants of the QD-surrounding dispersion media (hexane for PL versus UV glue for EL), the redshift
can also happen [38]. Figure 2d shows the Commission International de I'Eclairage (CIE) coordinates
of the QD-WLED operated at different currents from 50 mA to 400 mA, which were each calculated
through the EL spectra.

Figure 3 shows the output spectra (EL) peaks and the corresponding FWHMSs of green- and
red-emitting AgInS, /ZnS QDs coated on a blue LED chip as a function of the applied current (original
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data from Figure 2c). The blue line shows the FWHMSs of the WLED emissions broadened from 82 to
86 nm for green-emitting QDs (Figure 3a) and from 101 to 107 nm for red-emitting QDs (Figure 3b)
under the different currents, respectively. The EL peaks of green- and red-emitting AgInS, /ZnS QDs,
which were excited by blue LED, were 539 nm and 624 nm at 50 mA as shown in Figure 3 (black
line), respectively. As the current increased, the peak position appeared slightly redshifted. When the
current increased from 50 mA to 400 mA, the spectra of two QDs shifted from 539 to 540.3 nm and
624 to 625.7 nm, respectively. The peak positions showed small variations of only 1.3 nm and 1.7 nm,
respectively. This result indicated that the variations of the EL spectra and the FWHM for QD-WLEDs
were very small in spite of the large changes in current, which means that the AgInS,/ZnS QD-WLEDs
were quite stable under the typical LED operating currents. Figure 3c exhibits the PL spectra of the
WLED at different working time. The PL intensity of AgInS, /ZnS QDs decreased slightly, which was
mainly due to the increased temperature on the surface of blue chips.
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Figure 2. (a) The device structure for generating white light from green- and red-emitting AgInS, /ZnS
QDs; (b) the real emitting color picture operated at 350 mA; (c) electroluminescence (EL spectra) of
AgInS, Quantum dot white light-emitting diode (QD-WLED) at different working currents from 50 mA
to 400 mA; (d) the corresponding CIE coordinates of the QD-WLED.
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Figure 3. The peak positions and the full width at half-maximum (FWHM) of QDs in the white
light emitting diode (WLED) under different currents from 50 mA to 400 mA for (a) green- and
(b) red-emitting AgInS,/ZnS QDs; (c) PL spectra of the WLED at different working time when the
working current was 350 mA.

The modulation bandwidth of a WLED depends on the bandwidth of pumping blue GaN LED.
However, the phosphors on the surface of blue LED also had a great influence on the modulation
bandwidth. As shown in Figure 4a, the converted output voltage intensity of the blue LED, the
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as-fabricated QD-WLED and the commercial YAG:Ce WLED were measured as the frequency increased
from 100 Hz to 10 MHz. It can be seen that the modulation bandwidths were 2.59 MHz for the
commercial YAG:Ce WLED and 7.65 MHz for the blue LED, because the long decay time of the YAG:Ce
phosphor limited the available bandwidth.

The PL mechanisms of YAG:Ce phosphors and QDs are different. The radiative relaxation of
YAG:Ce is related to the trap energy state with certain depth, which causes the long afterglow with the
lifetime of a few microseconds [39]. Donor-acceptor (D-A) pair recombination and/or near-bandedge
emission have been proposed to explain the PL mechanism of AgInS, or CulnS; QDs with the PL
lifetime of typically a few hundred nanoseconds [34,36]. This emission lifetime was longer than that
of band-edge emission materials [40], and the large “global” Stokes shift between the PL band and
the band-edge absorption feature indicate that the radiative recombination in these NCs involves a
localized intragap state, which can be an internal defect. Therefore, this PL decay time demonstrates
the existence of defect-related recombination in the QDs, including the donor-acceptor (D-A) pair
recombination and/or near-band-edge recombination.

Figure 4b shows the PL decay curves of our green- and red-emitting AgInS, /ZnS QDs with the
PL lifetimes of 77 ns and 193 ns, respectively, which was shorter than that of YAG:Ce [34-39,41].
Obviously, the PL lifetimes of AgInS,/ZnS QDs were much shorter than that of the yellow
YAG:Ce phosphor [32,33]. The modulation bandwidth of AgInS,/ZnS QD-WLED was measured
as approximately 5.4 MHz, which was much higher than the bandwidth of the commercial
YAG:Ce WLED.
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Figure 4. (a) The frequency responses of blue GaN LED (black line), AgInS; /ZnS QD-WLED (red line),
and YAG:Ce WLED (blue line) at 350 mA, respectively; (b) PL decay curves of green- and red-emitting
AgInS; /ZnS QDs.

4. Conclusions

In summary, WLEDs were fabricated, combining green- and red-emitting AgInS,/ZnS QDs
with blue GaN LEDs. The CRI was improved to 85 in comparison to the commercial YAG:Ce
WLED, meaning that the AgInS;/ZnS QDs were suitable to fabricate WLEDs as down conversion
materials. The EL spectra of QD-WLEDs showed a good stability. Finally, the modulation bandwidth
of QD-WLEDs was greatly improved compared to that of YAG:Ce WLEDs. Therefore, these results
suggest that AgInS; /ZnS QDs are promising phosphors, not only in terms of generating high quality
white light, but also improving the bandwidth in visible light communication.
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