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Hearing loss is a common disease due to sensory loss caused by the diseases in the

inner ear. The development of delivery systems for inner ear disease therapy is important

to achieve high efficiency and reduce side effects. Currently, traditional drug delivery

systems exhibit the potential to be used for inner ear disease therapy, but there are still

some drawbacks. As nanotechnology is developing these years, one of the solutions is

to develop nanoparticle-based delivery systems for inner ear disease therapy. Various

nanoparticles, such as soft material and inorganic-based nanoparticles, have been

designed, tested, and showed controlled delivery of drugs, improved targeting property

to specific cells, and reduced systemic side effects. In this review, we summarized

recent progress in nanocarriers for inner ear disease therapy. This review provides useful

information on developing promising nanocarriers for the efficient treatment of inner ear

diseases and for further clinical applications for inner ear disease therapy.

Keywords: nanocarrier, drug delivery system, inner ear disease therapy, soft material nanoparticle, inorganic

nanoparticle

INTRODUCTION

Hearing loss is a common disease due to sensory loss that affects human health and life.
According to World Health Organization (WHO) data, about 250 million patients suffered from
hearing loss in 2005. By 2050, over 5% of the people in the world will suffer from hearing loss
(World Health Organization). The production of hearing begins with the collection of sound waves
by the outer ear. Then, the sound is transmitted to the hair cells of the inner ear through the middle
ear. The inner ear of mammals consists of the vestibule, the semicircular canals, and the cochlea,
which is responsible for hearing (Figure 1). The environmental factors, such as excessive acoustic
stimulation, aging, infection, autoimmune inner ear diseases, and application of ototoxic drugs, will
cause hearing disfunction in the inner ear, directly or indirectly resulting in damage to the cochlear
sensory cells and/or related peripheral neurons (Staecker et al., 2001; Ross et al., 2016; Schilder et al.,
2019).

The ways to deliver drugs into the inner ear include systemic circulation, fromwhich drugs enter
the inner ear through the labyrinth artery, and the round window membrane (RWM). However,
current administering drugs have drawbacks, such as disorders, limited labyrinth artery supply, and
difficulty in accessing RWM. For example, anti-inflammatory drugs are widely used for inner ear
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FIGURE 1 | Structure of the inner ear of humans.

disease therapy; however, the short half-time of drugs in the
cochlea that causes rapid elimination is the main problem.
Scientists have tried different delivery systems, such as systemic
drug delivery systems, intratympanic drug delivery systems, and
hydrogel delivery systems, to deliver drugs into the inner ear
to treat various inner ear diseases, such as Meniere’s disease,
autoimmune inner ear disease, and sudden sensorineural hearing
loss (SHL) (Havia et al., 2002; Salt, 2005; Nakashima et al., 2016;
Rathnam et al., 2019). However, there are drawbacks for each
system. It is urgent to develop a new delivery system for high
efficiency of inner ear disease therapy, high stability of the drugs
before they reach the target cells (outer hair cells as OHC and
inner hair cells as IHC) in the inner ear, and the ability to target
delivery to the inner ear. Very recently, nanoparticle-based drug
delivery systems appeared and attracted the attention of many
scientists. Although these systems provide opportunities to solve
current problems, there are many things that are unclear and
need further investigation. Therefore, a review to summarize
recent developments and drawbacks of current nanocarriers for
inner ear disease therapy is needed.

In this review, we will summarize the nanocarrier systems
for inner ear disease therapy, such as systemic systems,
intratympanic systems, hydrogel systems, and nanocarrier
systems. Then, we will summarize the soft materials and
inorganic nanoparticles that can be used for inner ear disease
therapy. Finally, we will conclude the advantages and current
challenges of nanocarriers for inner ear disease therapy.
This review will provide useful information on nanocarrier
drug delivery systems for inner ear disease therapy, and
these drug delivery systems could also be further used for
other diseases.

CURRENT DRUG DELIVERY SYSTEMS
FOR INNER EAR DISEASE THERAPY

Delivery systems, including systemic drug delivery,
intratympanic injection, hydrogel drug delivery, and nanocarrier
drug delivery systems, have been used for inner ear disease

therapy (Li et al., 2017; Kayyali et al., 2018; Hao and Li, 2019;
Mittal et al., 2019; Rathnam et al., 2019; Gheorghe et al., 2021;
Jaudoin et al., 2021). Among all current inner ear therapies, the
intratympanic injection of liquid drugs is most widely used.
Other delivery systems, such as hydrogel delivery systems and
nanocarrier delivery systems, are also available. At present, we
still need to overcome some barriers.

Systemic Drug Delivery
Inner ear diseases have been treated by systemic drug delivery
systems via the oral route, intramuscular, or intravenous
(Ruckenstein, 2004; Alexander et al., 2009; Buniel et al., 2009;
McCall et al., 2010; Li et al., 2017). For example, corticosteroids
are widely used to treat sudden SHL and have been found to
be efficient with a recovery rate of 61%, which is much higher
than using a placebo (recovery rate of 32%) demonstrated by
Li and Ding (2020). Recently, it was reported that the recovery
rates of SHL could reach up to 57–66% with oral corticosteroid
(Filipo et al., 2014; Chen et al., 2015). But the limitations of
these studies are the small number of patients and the relatively
short term for investigation. A long-term course was found when
treating autoimmune inner ear disease occurring over weeks to
months (Buniel et al., 2009). Nevertheless, when using systemic
administration, subtherapeutic local concentrations occur due to
the limited blood supply in the inner ear and poor ability to cross
the inner ear barrier. However, large doses lead to severe toxicities
and undesirable side effects. For example, when aminoglycosides
were used, they caused vestibulotoxicity and damage of cochlear,
and SHL occurred due to high doses (Graham et al., 1984; Erol,
2007).

Intratympanic Drug Delivery
Intratympanic systems have also been widely used for inner
ear disease therapy. The tympanic membrane is a thin
membrane between the external and middle ear. For most
of the substances, it is difficult to permeate the tympanic
membrane, which is considered a barrier. However, the tympanic
membrane is easy to be broken during injection of drugs
into the middle ear. Taking steroids as an example, inner
ear disease therapy was first treated by intratympanic delivery
of steroids in the 1990s (Itoh and Sakata, 1991). At present,
intratympanic delivery systems are used for the treatment of
sudden sensorineural hearing loss (SHL), Meniere’s disease,
and vertigo (Chandrasekhar, 2001; Doyle et al., 2004). By
using intratympanic delivery systems, the bony structure of the
tympanic membrane could be prevented. Moreover, physical
barriers, such as the round window membrane, and cellular
barriers need to be overcome, when delivering drugs into the
inner ear. Small molecules enter the inner ear through the RWM
by passive diffusion, which will lead to different concentrations
related to the location of the cochlea (Salt and Plontke, 2009).
In addition, treatment efficacy during intratympanic injections
for inner ear disease therapy will be strongly affected by the
parameters, such as cone angle and depth of the tympanic
membrane of the patients, and various biological, anatomical,
and protocol effects (Volandri et al., 2011).
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Hydrogel Delivery System
To overcome some drawbacks in intratympanic drug delivery
systems, such as short residence time and difficulty in sustained
release of drugs, hydrogel delivery systems, such as hydrophilic
polymeric networks, have been developed for inner ear disease
therapy. Chitosan-glycerophosphate hydrogel was developed for
the first time to achieve sustained drug release and reduce
the variation (Paulson et al., 2008). Chitosan-glycerophosphate
hydrogel was a porous matrix and could be degraded by
lysozymes to achieve the sustained release of drugs into the
inner ear. This hydrogel delivery system showed a low risk of
hearing loss and longer vestibular suppression (Xu et al., 2010). In
hydrogel delivery systems, drugs are loaded in the hydrogel and
located in a certain region, where the drugs can diffuse across the
RWM and are released at meaningful concentrations (El Kechai
et al., 2015). In contrast, hydrogels exhibit high viscosity and
enable a higher residence time of drugs to reach equilibrium in
the inner ear. Hydrogel systems could be designed by controlling
the chemical composition of monomers and formed by both
natural and synthetic products (Li andMooney, 2016). Therefore,
hydrogel delivery systems are potential for inner ear disease
therapy due to good biocompatibility, easy functionality, high
drug loading, and easy degradation (Ahmed, 2015).

NANOPARTICLE-BASED DRUG DELIVERY
SYSTEMS FOR INNER EAR DISEASE
THERAPY

Although the delivery systems mentioned earlier could deliver
regulated drugs into the inner ear, they face problems for the
delivery of new types of drugs, such as biomolecules. Compared
to the regulated drugs, these new types of drugs are less stable
within the extracellular compartments. Therefore, it is difficult
to deliver new types of drugs to the targeted locations or cells in
the inner ear using the delivery systems discussed earlier. Novel
drug delivery systems that could overcome these drawbacks are
highly demanded in the treatment of inner ear diseases. Recently,
various types of nanoparticles, such as nanosized polymer,
peptides, silicas, and metal-organic frameworks (MOFs), have
been widely employed as drug delivery systems for different kinds
of therapies, such as anticancer therapies, anti-inflammatory,
and antibacterial therapies. These nanocarriers have a particle
size in the nano range, and the particle size could be controlled
during the synthesis. For efficient drug delivery, a particle
size of <300 nm is usually required to avoid opsonization and
elimination (Ulbrich et al., 2016). They also possess a tunable
surface with modifiable physicochemical properties for different
applications. The nanoparticle-based drug delivery systems could
increase the solubility of the drugs, protect the drugs from
degradation, prolong the half-life of the drugs during circulation,
and allow low passage of the loaded drugs across physiological
barriers. Furthermore, these nanocarriers could protect drug
properties from degradation, increase the solubility of drugs,
difficulty in crossing physiological barriers. Nanoparticle-based
delivery systems could also deliver a sustained release of
drugs and provide targeted delivery to certain cells. Therefore,

nanoparticle-based delivery systems have a great potential for
inner ear disease therapy. Nanocarriers for inner ear disease
therapy will be discussed in detail in the following section.

Soft Material Nanoparticle-Based Delivery
System
Among different nanocarrier delivery systems that can be
used for inner ear disease therapy, soft materials, such as
polymeric, liposome, micelles, and lipid nanoparticle-based
delivery systems, are widely used to load different kinds of drugs
(Figure 2; Lu et al., 2011). These soft material nanoparticle-
based delivery systems could increase the half-life of drugs and
achieve sustained or targeted release of drugs. As demonstrated
by Food and Drug Administration (FDA), poly(lactic-co-glycolic
acid) (PLGA) was a biodegradable polymer and can be easily
functionalized for target delivery. When being conjugated with
rhodamine, the rhodamine-conjugated PLGA nanoparticles were
observed in the cochlea of guinea pigs and long-term residence
in the liver due to tissue-specific barriers and fast degradation
of PLGA nanoparticles (Figure 3; Palao-Suay et al., 2015; Cai
et al., 2017; Szeto et al., 2019). Then, scientists tried to decrease
the particle size of the nanocarriers to the range of 150–300 nm,
which would enhance the entry of nanoparticles into the inner
ear. Further functionalization of the surface with pluronic F127
(PEO106-PPO70-PEO106) increased the accumulation of particles
(Zou et al., 2010; Leso et al., 2019). PEGylated polymers could
increase the half-life, biocompatibility, and solubility of the
loaded drugs and decrease the side effects, as well as the immune
reactions, to drugs (Veronese and Mero, 2008). The selected
location of nanoparticles in the inner ear was also achieved
by modifying the nanoparticles with chitosan, which changed
the surface charge and hydrophilicity of the nanoparticles.
These modifications could help nanoparticles reach the inner
ear before endocytosis. Other types of polymeric nanoparticles,
such as dendriplexes and chitosan-based nanoparticles, poly(L-
lactic acid) (PLLA), PLLA-PEG, polycaprolactone (PCL), and
polyethylene glycol (PEG), have also been used for inner ear
disease therapy to encapsulate drugs via electrostatic interaction
or hydrophobic-hydrophobic interaction (Dash et al., 2011;
Wang et al., 2011; El Kechai et al., 2015; Lajud et al., 2015; Vigani
et al., 2019).

Micelles and liposomes are formed by molecules with both
hydrophobic and hydrophilic parts. Micelles have a hydrophobic
environment inside micelles and enable the loading and delivery
of hydrophobic drugs encapsulated inside, while the hydrophilic
property of the outer surface of micelles increases their
solubilization in aqueous solutions. Furthermore, micelle-based
delivery systems could also protect unstable drugs from biological
attacks during circulation.When liposome nanoparticles are used
as delivery systems for inner ear disease therapy, both the external
and internal surface of the liposome are hydrophilic with the
same structure as the phospholipid bilayer (Panahi et al., 2017;
Zylberberg et al., 2017). Amphiphilic liposomes can carry them
across the RWM and deliver them into the cells (Uri et al., 2003;
Meyer et al., 2012). Liposomes degrade readily in cells, resulting
in low toxicity of liposomal drugs. Multifunctional liposome
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FIGURE 2 | Types of soft material nanoparticle-based delivery systems for inner ear drug delivery.

FIGURE 3 | Poly(lactic-co-glycolic acid) (PLGA) nano-based systems with cell-penetrating peptides for cochlear drug delivery. Reprinted with permission from Cai

et al. (2017). Copyright 2017 Published by Elsevier B.V.

nanoparticles could be prepared by modifying the surface with
polyethylene glycol, carbohydrates, and folic acid.

There are many other soft materials of nanometer size that
could also be used for inner ear disease therapy. Cubosomes
formed by a lipid core with a single lipid bilayer and a
polymeric shell were very efficient for loading drugs (Barriga
et al., 2019). Solid lipid nanoparticles and lipid nanocapsules have
also been reported (Gao et al., 2015; Yang et al., 2018). Protein
nanoparticles are another option to increase the delivery to the
tissue and reduce the toxicity of compounds (Lohcharoenkal
et al., 2014).

Inorganic Nanoparticle-Based Delivery
System
Compared to soft materials, inorganic nanoparticle-based
delivery systems are still in the developing stage. Inorganic
nanoparticle-based delivery systems could provide unique
properties, such as antimicrobial and magnetic properties
(Figure 4). Although inorganic nanoparticles provide
opportunities for inner ear disease therapy due to some
useful qualities, there are many drawbacks, such as high price
and limited biological stability.

Superparamagnetic Fe3O4 nanoparticles are a kind
of inorganic material. These materials could pass the
round window by magnetic force and arrive at the inner

ear (Guigou et al., 2021). Superparamagnetic iron oxide
nanoparticles are easy to synthesize and exhibit low toxicity
and intrinsic antimicrobial activity for effective delivery
systems (Rodrigues et al., 2019). Superparamagnetic iron oxide
nanoparticles have no pores to encapsulate drug molecules, while
in combination with polymers, such as PLGA and chitosan,
superparamagnetic iron oxide nanoparticles could adsorb drugs
via the electrostatic/hydrophobic interaction for inner ear drug
delivery (Grumezescu et al., 2013; Sangaiya and Jayaprakash,
2018). Other metal-oxide-based nanoparticles have shown
effective inner ear disease therapy-related infectious diseases.
For example, TiO2 nanoparticles are photosensitive and show
activity against fungi and bacteria (Luksiene, 2017). Zinc oxide,
copper oxide, calcium oxide, silver oxide, aluminum oxide, and
zirconium oxide have also been widely investigated as carriers
for biomedical applications (Narayanan et al., 2012; Karimiyan
et al., 2015; Swaminathan and Sharma, 2019). However, the
particle size of these metal oxides is still difficult to control,
and the target delivery systems using these metal oxides are
needed to be designed to specifically locate nanoparticles in the
inner ear.

Porous nanoparticles, such as mesoporous silica
nanoparticles, and MOF nanoparticles possess pores for
the encapsulation of both hydrophobic and hydrophilic drugs.
These materials are usually easy to prepare, have large pore
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FIGURE 4 | Types of inorganic nanoparticle-based delivery systems for inner ear drug delivery.

volumes, and can be easily functionalized. Mesoporous silica
nanoparticles are biocompatible and could slowly degrade
under physiological conditions (Zheng et al., 2011, 2013;
Bernardos et al., 2019). These materials can be used to construct
“smart” delivery systems, which are sensitive to changes in
the environment, including changes to the pH, thermal, and
magnetic fields. Recently, mesoporous silica nanoparticles could
be used to control the encapsulation and release of antibiotics
(Selvarajan et al., 2020). Furthermore, the surface of porous silica
nanoparticles could be functionalized to target the designed
tissues and used for inner ear disease therapy (Tang et al., 2012).
When loaded with a brain-derived neurotrophic factor, porous
silica nanoparticles could target the spiral ganglion neurons
and release drugs for a long time period (Schmidt et al., 2018).
More recently, MOFs have been designed and studied for many
applications, including biomedical applications (Zheng et al.,
2016; Kaneti et al., 2017; Wu and Yang, 2017; Lu et al., 2018).
Recently, Xu et al. (2020) encapsulated methylprednisolone (MP)
in ZIF-90 nanoparticles for the treatment of inner ear disease for
the first time. ZIF-90 prevents the degradation of drugs during
circulation after intraperitoneal injection and delivers MP into
the inner ear. These MOF nanoparticles exhibit good protection
from noise, low damage to the inner ear structure, and low
nephrotoxicity during therapy.

Metallic and metal oxide nanoparticles are one group of the
most promising inorganic materials for inner ear disease therapy
(Paladini et al., 2015). Silver (Ag) nanoparticles could interact
with the surface of bacterial cells and break the cell membranes
to achieve permeability (Hamad et al., 2020). Ag nanoparticles
could enter the inner ear after intraperitoneal injection and break
pathogens with antibiotic formulations, which could overcome
the drawbacks and achieve high efficacy in the ear therapy
(Muhsin and Hachim, 2014; Zou et al., 2015). Similar situation
happens to gold (Au) nanoparticles, which are used for loading
drugs and imaging applications. Au nanoparticles have shown
potential to be used as inner ear contrast agents and are located
in cochlear cells (Kayyali et al., 2017). However, at present,
Ag and Au nanoparticles have not yet been used for inner
ear disease therapy. Quantum dots, such as semiconductor
nanocrystals, show unique optical properties and are considered
another option (Liu et al., 2010). Due to their advantages of good
biocompatibility, biodistribution, stability, and long half-life,
metallic and metal oxide nanoparticles and their combinations

with polymers and/or proteins are highly potential for inner ear
disease therapy in the near future.

Targeting Modification of
Nanoparticle-Based Delivery System
Nanoparticles could increase circulation time and prevent the
degradation of drugs. Moreover, a specific surface modification
could further enable the nanoparticle-based drug delivery
systems with target properties to reach a specific type of cell,
which is ideal for inner ear therapies to deliver the drugs to a
specific type of inner ear cell. Ligands have a specific interaction
with certain cells and, thus, could be used for cell-specific
targeting of nanoparticles for inner ear disease therapy (Frutos
et al., 2018; Valero et al., 2018). For example, in an in vitromodel
prepared from the mouse cochleae, peptide-based nanoparticles
could interact with spiral ganglion cells through tyrosine kinase
and p75 neurotrophin receptors (Roy et al., 2010). Cy3-labeled
silica nanoparticles were demonstrated to be located within the
inner ear of RWM of mice compared to the control group of
mice (Praetorius et al., 2007). Cy3-labeled silica nanoparticles
could also reach central auditory nuclei and superior olive
through retrograde axon transport. To target OHCs, prestin
was connected to peptides and coupled to nanoparticles. The
cellular uptake of these nanoparticles in the OHCs of rat cochleae
was achieved (Surovtseva et al., 2012). Using a similar method,
nanoparticles were found to be taken up by OHCs in vivo
(Wang et al., 2018). Using this method, the nanoparticles were
located into designed cells, and the uptake efficiency could also
be improved.

Moreover, a deep understanding of a suitable ligand for
targeting delivery is needed. The interaction between ligand-
loaded nanoparticles, and the receptor in the inner ear should
be further investigated. The targeting delivery system is also
interesting and with high potential to be developed for inner ear
disease therapy (Li et al., 2017).

CONCLUSION AND PROSPECTS

In this review, we summarized the currently used systems for
inner ear disease therapy, including themost widely used delivery
systems (i.e., systemic, intratympanic, and hydrogel delivery
systems) and nanotechnology-based systems. To overcome the
barriers of these systems in overcoming barriers in the inner
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ear, nanoparticle-based drug delivery systems, which have
shown many advantages in the treatment of various diseases,
have gained increasing attention in inner ear diseases during
the past years. Several soft materials and inorganic-based
nanoparticles have been investigated and shown to improve
the efficiency of drugs, enhance antimicrobial performance,
and reduce the side effects of inner ear disease therapy.
Nanoparticles could cross the barrier in the inner ear, deliver
drugs into the inner ear with low side effects, and remain
harmless for healthy tissues. Furthermore, we discussed the
targeting drug delivery systems using nanoparticles by modifying
the surface with ligands, proteins, and so on. Developing
multifunctional nanoparticles that could target specific cells
and release drugs in a controlled manner is the way for
the future.

Although nanocarriers have been used for inner ear disease
therapy, there are still many works that need to be carried out
in the future. First, the information on the interaction between
nanoparticles and ear toxicity, such as effects on organs, is
still unclear. The long-term investigation of health effects could

be studied in the future. Second, the critical physicochemical
characteristics that affect their biodistribution and the way to
overcome physical and cellular barriers are not well-defined. The
rational design of nanoparticles to achieve target delivery to the
inner ear needs more effort. In summary, nanoparticle-based
delivery systems have brought potential solutions and paved a
novel way for inner ear disease therapy, but it still has a long way
to go for real clinical applications.
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