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Abstract

Objectives: Advances in artificial intelligence (AI) technology have increased the

feasibility of classifying voice disorders using voice recordings as a screening tool.

This work develops upon previous models that take in single vowel recordings by

analyzing multiple vowel recordings simultaneously to enhance prediction of vocal

pathology.

Methods: Voice samples from the Saarbruecken Voice Database, including three sus-

tained vowels (/a/, /i/, /u/) from 687 healthy human participants and 334 dysphonic

patients, were used to train 1-dimensional convolutional neural network models for

multiclass classification of healthy, hyperfunctional dysphonia, and laryngitis voice

recordings. Three models were trained: (1) a baseline model that analyzed individual

vowels in isolation, (2) a stacked vowel model that analyzed three vowels (/a/, /i/, /u/)

in the neutral pitch simultaneously, and (3) a stacked pitch model that analyzed the /a/

vowel in three pitches (low, neutral, and high) simultaneously.

Results: For multiclass classification of healthy, hyperfunctional dysphonia, and laryn-

gitis voice recordings, the stacked vowel model demonstrated higher performance

compared with the baseline and stacked pitch models (F1 score 0.81 vs. 0.77 and

0.78, respectively). Specifically, the stacked vowel model achieved higher perfor-

mance for class-specific classification of hyperfunctional dysphonia voice samples

compared with the baseline and stacked pitch models (F1 score 0.56 vs. 0.49 and

0.50, respectively).

Conclusions: This study demonstrates the feasibility and potential of analyzing multi-

ple sustained vowel recordings simultaneously to improve AI-driven screening and

classification of vocal pathology. The stacked vowel model architecture in particular

offers promise to enhance such an approach.
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Lay Summary: AI analysis of multiple vowel recordings can improve classification of

voice pathologies compared with models using a single sustained vowel and offer a

strategy to enhance AI-driven screening of voice disorders.

Level of Evidence: 3
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1 | INTRODUCTION

Interest in the evaluation and classification of voice disorders is long-

standing in both the basic and clinical literatures. Vocal function can

be quantified using a range of objective instrumental measures includ-

ing acoustic and aerodynamic analyses, as well as examination and

visual description using laryngoscopy and stroboscopy.1 However,

because alterations in voice quality are complex and multidimensional,

crossing the domains of frequency (pitch), intensity (loudness), and

duration (temporal) features, classification of vocal pathology is chal-

lenging. While changes in voice quality may be identified using

auditory-perceptual methods, subjective judgments by listeners may

be influenced by multiple factors including listener experience, per-

ceptual bias, the type of stimuli evaluated, measurement methods,

etc.2–5 Thus, contemporary objective applications that seek to exploit

computerized prediction models to identify vocal fold pathologies

have become of substantial interest in recent years.6,7

It is well documented that changes in voice quality can serve as a

critical element in the diagnostic process. In fact, in some instances the

underlying laryngeal abnormality may serve to characterize specific clas-

ses of voice disorders. Because voice disorders may evolve over time

with subsequent changes in voice quality or intermittent loss of voice,

compensations also may occur. In some instances, a volitional increase in

laryngeal adductory force may be required to meet voicing requirements

when the speaker experiences a reduction in voice efficiency or changes

in quality.8,9 These types of changes will have a direct influence on vocal

fold vibration and subsequently on voice quality. Similarly, disorders that

involve incomplete adduction of the vocal folds will result in varied

degrees of air leakage with the perceptual identification of breathiness.

Although classification of voice disorders based on objective and

subjective characteristics has been longstanding,10,11 the application

of deep learning approaches may provide valuable information. How-

ever, to date, limited work has been performed with the objective of

classifying the underlying categories of voice disorders. Empirical

efforts may provide additional insights for both identifying and classi-

fying a range of vocal fold abnormalities. Ultimately, assessment

methods that move beyond the binary distinction between healthy

and pathologic voices can be of substantial importance. Because of

this need, machine learning methods may offer valuable insights. Such

approaches generally rely on the analysis of either a sustained vowel

sample, or in some cases standardized sentences.12 Because vowels

are relatively steady state, quasiperiodic entities, they offer a distinct

advantage over the use of sentences or other types of running

speech. Additionally, use of vowel stimuli for vocal analysis is increas-

ingly being used in situations of nonoptimized recording conditions.13

Based on existing data, deep learning algorithms may be used to

identify latent relationships between vowel samples which can then

assist in the classification of different vocal abnormalities. Classifica-

tion models built from voice samples have been developed utilizing

various strategies, including both deep learning and more traditional

machine learning approaches.14 Briefly, many current models utilize

support vector machines, multilayer perceptrons, and random forests,

with deep learning models gaining in popularity.7 Feature extraction

using deep learning almost always occurs as a distinct step before

training and prediction. Presently, Mel-frequency cepstral coefficients

(MFCCs) remain the most common features that are relied on for

voice prediction.6,7,15–18 Alternatively, the analysis of spectrograms

has also been explored in analyzing auditory data for similar tasks.19

The current popularity of the “2 step approach” (i.e., expert

derived feature extraction followed by training) leaves open the ques-

tion of the efficacy of a fully end-to-end approach (i.e., training with

minimally processed, raw data) to classification. Recent research has

reported accuracy as high as 92% in identifying vocal patterns associ-

ated with Parkinson's disease17 and 89% for classification of environ-

mental sounds with an end-to-end approach.20 Yet, potential features

that may be useful for classifying other types of voice pathology remain

overlooked solely by extracting MFCCs. In addition, the use of MFCCs

is also dependent on the temporal window size applied in the transfor-

mation process.6 Consequently, the use of raw audio samples instead of

MFCCs to train a deep neural network may better predict categories of

vocal fold pathology when employing a fully end-to-end approach.

Therefore, the present project sought to develop an end-to-end

deep learning framework, named VocalPathNet, for detecting and clas-

sifying vocal fold pathology using recordings of multiple sustained

vowels. To do this, we trained a baseline model that took individual

vowel recordings as inputs and compared its results for vocal fold

pathology classification with the proposed framework; this involved a

process that analyzed stacked vowels recordings to classify healthy

and pathological voice recordings and distinguish vocal pathologies of

hyperfunctional dysphonia and laryngitis.21

2 | METHODS

Voice data used in this project was accessed from the Saarbruecken

voice database (SVD) hosted by Saarland University.21 This database
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contains labeled healthy and pathological audio samples consisting of

both sustained vowels (/a/, /i/, and /u/) and sentences.22,23 The

vowel samples were recorded in three different pitches: low, neutral,

and high. The database includes recordings from over 2000 German-

speaking individuals with over 70 class labels.21 We used a subset of

the voice recordings, including recordings from healthy patients and

patients with two vocal fold pathologies: hyperfunctional dysphonia

and laryngitis. These pathologies were chosen based on their pres-

ence in related works.15 Only pathologic voice recordings with tags of

either hyperfunctional dysphonia or laryngitis were included (i.e.,

voice recordings with tags of both laryngitis and hyperfunctional dys-

phonia were excluded). Voice recordings of the vowels /a/, /i/, and

/u/ produced at a low, neutral, and high pitch were used. These

vowels and pitches were chosen because of their availability in the

SVD dataset. Altogether, our dataset consisted of 687 healthy partici-

pants, 207 hyperfunctional dysphonia patients, and 127 laryngitis

patients, with up to 9 vowel recordings per participant, depending on

the model (Table 1). Age and sex demographic characteristics of par-

ticipants are shown in Table 2.

The raw audio data were extracted at a sampling rate of

44,100 Hz using the librosa package in Python.24 Due to the variability

in the recording lengths, this sampling rate was chosen to provide a

relatively large number of data points that could be included even

after trimming. We also examined the presence of silence in the raw

audio data and did not find substantial periods of silence. All record-

ings were trimmed to clips of a duration of 0.50 s.

To explore the efficacy of our proposed deep learning framework,

we trained three different model architectures: (1) a baseline model

architecture that takes in individual neutral-pitch vowel recordings as

inputs; (2) a VocalPathNet stacked-vowel model architecture that

takes in stacked recordings of three vowels (/a/, /i/, and /u/) in the

neutral pitch as inputs; (3) a VocalPathNet stacked-pitch model archi-

tecture that takes in stacked recordings of the three pitches (low, neu-

tral, and high) for each vowel (/a/, /i/, and /u/). Conceptually, stacked

recordings were constructed in a way that would be akin to playing

the recordings simultaneously albeit via different input streams so

that the recordings were separable by the listener. All model architec-

tures were used to train candidate models for the task of 3-class mul-

ticlass classification of healthy, hyperfunctional dysphonia, and

laryngitis voice recordings.

For the baseline model architecture, a total of 3063 neutral pitch

vowel audio samples (/a/, /i/, and /u/) from all included participants

were split into training, validation, and testing datasets in a 60:20:20

ratio, stratified by class labels. For the VocalPathNet stacked-vowel

model architecture, neutral pitch vowel recordings of the vowels were

stacked in the order of /a/, /i/, and /u/. The final sample count after

stacking was 1021. For the VocalPathNet stacked-pitch model archi-

tecture, the three pitch vowel recordings of each vowel were stacked

in the order of low, neutral, and high. The final sample count after

stacking was 3063.

For our deep learning frameworks, we utilized a 1-dimensional

convolutional neural network (1-D CNN) model architecture. This

model architecture uses convolutional filters and weight sharing to

analyze the one-dimensional, time domain audio data. The sequential

nature of the audio data and presence of semi-repetitive qualities,

such as jitter and shimmer, makes the 1-D CNN architecture apropos

for identifying relevant features within the recordings. Following the

convolutional and pooling layers, the sex and age demographic data of

each speaker were combined with the audio data. These were then

fed into fully connected layers utilizing the rectified linear unit activa-

tion function. The prediction layer utilized three outputs, one for each

class. The architectures of the baseline and VocalPathNet CNN models

are shown in Figure 1. The key difference between the baseline and

VocalPathNet model architectures is that the latter had input layers

that accepted a quasi-one-dimensional input of the three-channel

stacked vowel and stacked pitch input data. Models were implemen-

ted using the Keras deep learning library.25 Models used the categori-

cal cross entropy loss function for three-class multiclass classification

of healthy, hyperfunctional dysphonia, and laryngitis class labels.

For model training, the Adam optimization algorithm was used to

update the initial learning rate using exponentially weighted moving

averages of the gradient and squared gradient of each learnable

parameter.26 Hyperparameter tuning was done via a combination of

the random search feature in the keras_tuner package, as well as man-

ual training and error analysis to optimize the validation loss. The

hyperparameters that were tuned were the number of filters, filter

size, size of the pooling layers, batch size, and the initial learning rate.

For model evaluation, the best performing candidate models of

each model architecture were compared for each voice classification

task using two performance metrics: area under the receiver operating

TABLE 1 Counts of participants by condition and sex.

Class Male Female Total

Healthy 259 428 687

Hyperfunctional dysphonia 42 165 207

Laryngitis 75 52 127

Total pathological (hyperfunctional

dsyphonia and laryngitis)

117 217 334

TABLE 2 Counts of the age bin distribution across the participant dataset by sex.

Sex

Age brackets

1–10 11–20 21–30 31–40 41–50 51–60 61–70 71–80 81–90 Total

M 75 29 122 74 43 16 17 0 0 376

F 1 197 217 67 70 54 28 10 1 645

Abbreviations: M, male; F, female.
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curve (AUROC) and the F1 score. To address class imbalance, the

AUROC was weighted by the number of samples representing each

class label. The F1 score was calculated as the harmonic mean of the

precision and recall. The F1 score metric was chosen because it works

well for imbalanced datasets. Overall, F1 score metrics for models

were calculated using the micro-average weighting scheme, to further

account for the class imbalance. The precision and recall scores used

to calculate F1 scores were also evaluated.

3 | RESULTS

For the task of multiclass classification of healthy and dysphonic

voices, the baseline model and VocalPathNet stacked-pitch model

achieved similar F1 scores (F1 score 0.77 vs. 0.78, respectively), while

the VocalPathNet stacked-vowel model's F1 score was higher (0.80).

The baseline model, stacked vowel and stacked pitch models had simi-

lar AUROC scores (0.90, 0.90, and 0.89, respectively; Table 3). These

AUROC values should be interpreted with caution because our data-

set was imbalanced.27 As a reference, human expert classification of

related vocal pathologies achieved an accuracy around 0.6.18

We further examined class-specific classification performance

metrics for each model (Table 4). For the classification of hyper-

functional dysphonia, the stacked vowel model achieved a higher

F1 score than the baseline and stacked pitch models (F1 score

0.56 vs. 0.49 and 0.50, respectively). The baseline, stacked vowel,

and stacked pitch models achieved similar F1 scores for the classi-

fication of healthy and laryngitis voice recordings (Table 4). Preci-

sion and recall values for the models’ test performance results are

shown in Tables 3 and 4. Confusion matrices showing the test

performance of the baseline, stacked vowel, and stacked pitch

models are shown in Figure 2.

4 | DISCUSSION

Advances in artificial intelligence have aided the objective analysis of

voice samples to predict vocal pathology. Most prior machine learning

models for detecting vocal pathology have two characteristics. First, a

two-stage approach is used in which expert-derived voice features,

most commonly the MFCC,6,12,15,16 are calculated from the raw voice

data and used to predict vocal pathology.28 Second, a single sustained

vowel recording (e.g., selected vowel /a/ samples) is used as the initial

raw data input.15,16,29 Even when the model is trained with different

sustained vowel recordings (e.g., selected vowel /a/, /i/, or /u/ sam-

ples), only an individual vowel recording is input to generate a predic-

tion of vocal pathology. Our neural network model, VocalPathNet, is

distinguished in both aspects as it directly learns from voice data via

an end-to-end deep learning approach and uses stacked vowel

F IGURE 1 Schematic of convolutional neural network architectures for baseline, VocalPathNet stacked-vowel, and VocalPathNet stacked-
pitch models. The convolution layers are 1-dimensional for the baseline model and 2-dimensional for the VocalPathNet models.

TABLE 3 Comparison of test performance of multiclass
classification by the three models.

Model Precision Recall F1 score

Area under the receiver

operating curve

Baseline 0.78 0.78 0.77 0.90

Stacked vowel 0.81 0.79 0.80 0.90

Stacked pitch 0.78 0.78 0.78 0.89

Note: Reported precision, recall, and F1 scores are weighted by class using

the microaverage weighting scheme.
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recordings (/a/, /i/, and /u/ in neutral pitch) or stacked pitch record-

ings as inputs to simultaneously analyze multiple sustained vowels to

generate vocal pathology predictions. To our knowledge, this is the

first investigation of a deep learning strategy that combines end-

to-end learning and stacked vowel inputs for vocal pathology classifi-

cation. The primary contribution of this work is the proof-of-concept

demonstration of a novel CNN model architecture that can input

stacked vowels and potentially improve classification of vocal pathol-

ogy compared with the conventional use of single vowel inputs. We

also believe that the product of this work sets the stage for future

investigations.

The proposed framework offers several advantages. The rationale

for using stacked vowel inputs is that the different vowels, analyzed

together, provide a richer set of information than single vowel record-

ings for analyzing the effects of vocal pathology on different expres-

sion patterns. For example, muscle tension dysphonia is associated

with problems with tonal pitch variation, particularly with targeting

higher pitches.30 The use of an end-to-end deep learning approach is

apropos for analyzing the stacked vowel inputs, as voice features for

stacked vowel inputs have not yet been derived. Further, an end-

to-end learning approach also can assess all potentially relevant voice

features which overcomes limitations of a two-step approach which

requires pre-selection of expert derived voice features that can sub-

stantially affect the performance of the machine learning classifier,

such as the choice of the temporal window size for the use of

MFCCs.6 The VocalPathNet framework requires minimal additional

preprocessing to concatenate single vowel recordings into a stacked

vowel input. Sustained vowel recordings are relatively steady state

and quasiperiodic, so recordings can be stacked without the need to

match phases and temporally align them.

This study is preliminary and has limitations. As in many proof-

of-concept studies, the size of the training dataset is small which may

limit the performance of models. This may explain in part differences

in the performance between the VocalPathNet stacked vowel and

stacked pitch models, as the baseline, stacked vowel, and stacked

pitch models have successively higher numbers of model parameters

and higher risks of overfitting to a small training dataset size. Prior

research suggests that a training dataset size of 20,000 chest x-rays

may be sufficient to enable CNN models to perform binary classifica-

tion triaging of normal versus abnormal chest x-rays.31 Our processed

voice recordings had 10,000 samples which is two orders of magni-

tude smaller than the number of pixels in a 2000 � 2500 pixels x-ray.

A back of the envelope calculation suggests, therefore that a training

dataset size of around 1000 voice recording samples may be sufficient

to train a voice classification model; this is approximately the size of

our entire dataset. It would be reasonable to expect that VocalPathNet

model classification results would improve with expansion of our

training dataset size by an order of magnitude.

TABLE 4 Comparison of class-specific metrics in test classification performance by the three models.

Model

Healthy Hyperfunctional dysphonia Laryngitis

Precision Recall F1 Precision Recall F1 Precision Recall F1

Baseline 0.83 0.90 0.86 0.51 0.46 0.49 0.94 0.65 0.77

Stacked vowel 0.88 0.86 0.87 0.50 0.63 0.56 0.94 0.65 0.77

Stacked pitch 0.83 0.89 0.86 0.51 0.49 0.50 0.94 0.65 0.77

F IGURE 2 Confusion matrices of test classification results from the unstacked (baseline), stacked vowel, and stacked pitch models on
reserved test subsets.
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The present work used the SVD dataset, one which contained a

class imbalance with more healthy than dysphonic voice recordings

and among vocal pathology recordings, more hyperfunctional dyspho-

nia than laryngitis recordings. We explored the use of class weighted

loss functions and over- and under-sampling of classes to address

imbalance in the dataset, however these strategies did not improve

our classification results likely because of the small dataset size

(data not shown). Other methods to address class imbalance, such

as future development of algorithms for data augmentation of

voice recordings,32 could potentially help address this issue in

future work. The generalizability of the current model was also

only evaluated on a test hold-out set from a single open dataset

(SVD21); future iterations of the models could be validated using

additional open labeled datasets of voice recordings, such as the

MEEI Voice Disorders Database33 and/or the VOICED database.34

The training dataset could further be broadened to expand the

application and generalizability of the VocalPathNet framework.

This could be done by including recordings of sustained vowels in

different pitches, additional vocal pathologies, and recordings in

other languages.

A longstanding challenge in the practical application of deep

learning models is interpretability. Visualization techniques, such as

saliency maps and occlusion maps,35 are well established in computer

vision for providing insight into the specific regions of images that are

used for image classification and detection.36–38 Approaches using

spectrograms19 could allow application of visualization techniques to

delineate areas of spectrograms that are influential on vocal pathology

predictions. Visualization methods are also being developed for audio

deep neural networks and may be more available in the future.39

Lastly, the issue of voice classification and associated terminology

poses a challenge.39 As an example, the term “hyperfunctional”
voice disorders8,9 represents a pathophysiologic process that may

result in a range of glottal pathology. That is, such disorders may

represent changes to the vocal fold(s) that could result in varied

levels of edema, lesions on the membranous glottis (i.e., nodules or

polyps), or pathology at the posterior glottis (contact ulcers). Conse-

quently, as deep learning models progress, more specific information

on the presence and location of pathology in ground truth class

labels would be beneficial.

5 | CONCLUSION

A deep neural network framework, VocalPathNet, can input multiple

sustained vowel recordings simultaneously to potentially improve

classification of vocal pathologies using raw audio recordings. This

preliminary work sets the groundwork to improve voice pathology

classification using more of the available voice recording data in future

deep learning applications.
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