
Coordination Changes in Densified Aluminate Glass upon
Compression up to 65 GPa: A View from Solid-State Nuclear
Magnetic Resonance
Shujia Li, Jin Jung Kweon, Seoyoung Lee, A Chim Lee, and Sung Keun Lee*

Cite This: J. Phys. Chem. Lett. 2023, 14, 2078−2086 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Deciphering the structural evolution in irreversibly densified oxide glasses is
crucial for fabricating functional glasses with tunable properties and elucidating the nature of
pressure-induced anomalous plastic deformation in glasses. High-resolution NMR
spectroscopy quantifies atomic-level structural information on densified glasses; however,
its application is limited to the low-pressure range due to technical challenges. Here, we
report the first high-resolution NMR spectra of oxide glass compressed by diamond anvil
cells at room temperature, extending the pressure record of such studies from 24 to 65 GPa.
The results constrain the densification path through coordination transformation of Al
cations. Based on a statistical thermodynamic model, the stepwise changes in the Al
fractions of oxide glasses and the effects of network polymerization on the densification
paths are quantified. These results extend the knowledge on densification of the previously
unattainable pressure conditions and contribute to understanding the origin of mechanical
strengthening of the glasses.

Oxide glasses undergo irreversible deformation upon
extreme compression, permanently modifying the

density and related properties after pressure release.1−3

Deciphering the nature of pronounced irreversible densifica-
tion is a long-standing interest in materials science since
densified glasses tend to show improved hardness and fracture
toughness.4−9 The detailed nature of the permanent
densification of oxide glass is crucial for understanding
deformation mechanisms under sharp contact loading, as
well as manufacturing glasses with tunable physical character-
istics.10 Oxide glasses are among the major constituents of the
basaltic oceanic crust that form deep in Earth’s mid-ocean
ridges and are subject to densification during subduction, while
they may form crystalline materials in contact with aqueous
fluids.11,12 Crystalline and noncrystalline aluminum-rich oxides
in chondrites under shock compression and recovery record
key information on high-pressure (HP) impact events in the
early solar system.13,14 Clarifying the structural transitions in
oxide glass during irreversible densification is, therefore, vital
for rebuilding the geological processes in planetary surfaces
and interiors.

The structural origins of permanent densification in glasses
at ambient temperature (cold compression)15 and high
temperature (hot compression)16 include changes in the
short-range structure, such as the cation coordination environ-
ments,15,17−19 medium-range structure, particularly beyond the
second coordination environment,20−23 and topology of the
network4,24 (see Supporting Information S1 for detailed
information regarding the factors that influence the degree of

densification). Among these structural responses, short-range
scale reconstruction controls the mechanical properties of
glasses.8 Despite its importance, the experimental detection of
densified glass structures is a fundamental challenge owing to
their intrinsic disorder and weak response to common
experimental probes. Solid-state nuclear magnetic resonance
(NMR) directly quantifies the coordination environment of
constituent cations, the connectivity among those cations, and
the topological disorder.25−27 Progress has been made in high-
resolution NMR research of densified oxide glasses, revealing
the cation coordination environments in oxide glasses
quenched from melts up to 16 GPa,17,18,28−32 and preferential
coordination transformation in distinct framework cations
(e.g., Si and B) above 6 GPa.19 These results constrain the
pressure-induced changes in transport properties and config-
urational entropy of compressed glasses. A recent study of
structural transitions in cold-compressed aluminosilicate glass
up to 24 GPa revealed three pressure ranges with distinct
degrees of coordination transformation,15 which represents the
highest pressure of such studies for oxide glasses (see refs 33
and 34 and references therein). Note that all of these
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compressed glasses used in NMR studies have been
synthesized by a large-volume multianvil press (LVP).

To further delve into the details of the current under-
standing of permanent densification, it is necessary to study the
configuration changes under compression at higher pressures.
Diamond anvil cells (DACs) can be a feasible approach that
generates much higher-pressure conditions (e.g., refs 35 and 36
and references therein). However, they have not been utilized
in high-resolution solid-state NMR studies. This is because the
DAC-compressed sample volume (∼0.007 mm3) is ∼4−6
orders of magnitude smaller than that of the LVP-compressed
sample (∼12 mm3). Probing high-resolution NMR signals
during the spinning of such limited samples has not yet been
achieved. In the present study, we achieved a technological
breakthrough by collecting the high-resolution NMR spectra of
DAC-compressed materials. The pressure condition of the
high-resolution NMR study was significantly extended to 65
GPa (from earlier high-pressure record of 24 GPa15). The
current results provide the first insight into permanent
densification under lower mantle pressures.

Calcium aluminate (CaO−Al2O3) glasses have technological
applications in material physics37 as they show sapphirelike
infrared transparency,38 have a bulk modulus of 123 GPa (1.45
times that of S-glass, which has the highest modulus of
commercial glass fibers),39 and have potential for amorphous
laser emitting materials.40 Ca-aluminate glasses are the parent

compounds of a rare room-temperature electride and a glassy
superconductor.41−43 Furthermore, alumina glass films deform
plastically without brittle fracture under indentation (and thus
densification) at room temperature.44 Previous pioneering
studies of CaAl2O4 glass by high-pressure X-ray scattering,45,46

Raman spectroscopy,47 the decompressed glasses up to 16 GPa
using NMR17 indeed provided key insights, but the structural
origins of peculiar properties remain to be revealed.
Particularly, detailed structural origins of the irreversible
densification paths for Ca-aluminate glasses under pressure
greater than 16 GPa have been anticipated. Here, irreversible
Al coordination changes in 13CaO·7Al2O3 (C13A7) glass are
characterized by 27Al NMR upon extreme compression to 65
GPa, providing the first direct evidence of Al coordination
changes upon lower mantle pressure (at ∼1500 km depth of
the Earth) and insights into the origins of mechanical
strengthening of the prototypical glass formers. Based on a
statistical thermodynamic model,15 we quantified the topo-
logical evolution of Ca-aluminate glass up to 65 GPa and
discussed the effect of network polymerization on the nature of
the irreversible densification paths.

Figure 1A−C shows the experimental procedures and
protocols used in the current study (see Supporting
Information S2 for a detailed description of materials and
methods). The C13A7 glass was loaded into a multianvil
apparatus and compressed at 8 and 12 GPa (Figure 1A). The

Figure 1. Optical photos of densified C13A7 glass and equipment used in 27Al 3QMAS NMR experiments. (A) Glass decompressed from 12 GPa
and the multianvil press. (B) Glass decompressed from 50 GPa and the diamond anvil cell. (C) 50 GPa-decompressed glass and rotor used in 27Al
3QMAS NMR experiments for glasses quenched from 35 to 65 GPa. (D) Raman spectra of C13A7 glass decompressed from various peak
pressures, as labeled. The spectra were collected at ambient pressure. (E) Evolution of Raman band positions with increasing peak pressures. The
data points represent the frequencies where Raman bands have the maximum intensity. The gray shaded area indicates the pressure range in which
the Raman bands drastically change. The lines are guides for the eye.
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densified C13A7 glasses recovered from 35, 50, and 65 GPa
were pressed by DACs with 300 and 400 μm culet diamonds at
room temperature (Figure 1B). Because of the size limitation
of the sample chamber in the DAC, the synthesis process was
repeated 15−20 times at each pressure to obtain enough
densified glasses for NMR measurements. The total weight of
the DAC-compressed glasses was less than 0.02 mg. The
densified glasses were packed into a 1.3 mm diameter rotor for
NMR measurements (Figure 1C). To collect NMR signals
from such a small sample mass, additional effort was made to
optimize the measurement parameters, and an extended
collection time was adopted to reduce the signal-to-noise
ratio. Two-dimensional (2D) NMR spectra under magic-angle
spinning (MAS) at 50 GPa were collected for 48 days.

The in situ Raman spectra of the C13A7 glass up to 50 GPa
and the pressure-induced shift of spectral patterns up to 13
GPa are shown in Figures S1 and S2 (data processing details
can be found in Supporting Information S3). The Raman
spectra for C13A7 glass at ambient pressure and those up to 8
GPa show two main bands: a high-frequency (HF) band in the
region of 700−850 cm−1 and a low-frequency (LF) band at
∼500−600 cm−1. The HF and the LF band were attributed to
Al−O stretching vibrations and to the delocalized vibrations of
the intertetrahedral Al−O−Al linkage, respectively.47−50 In
previous Raman studies of Ca-aluminate glasses, the bands
centered at ∼730, 780, and 780−910 cm−1 stem from [4]Al−O
stretching vibrations of the Q2, Q3, and Q4 groups (Qn

describes the AlO units coordinated by n number of bridging

oxygens.)48 Therefore, the pressure-induced increase in the
855 cm−1 band is attributed to a decrease in Q2 and Q3 groups
and the increasing number of Q4 group. From 8 to 13 GPa, the
LF (and HF) bands shifted to higher (and lower) frequencies;
the pressure-induced LF band shift indicates a decreasing Al−
O−Al angle and/or an increasing fraction of smaller rings.47

The HF band shift toward a lower frequency suggests a gradual
pressure-induced increase in the average Al−O bond length.47

Above 12 GPa, the band intensities decreased dramatically and
became negligible, after which (>15 GPa) a broad band at
∼750 cm−1 dominated. These changes are due to the presence
of highly coordinated Al,47 while confirming the proportions of
[5,6]Al species is necessary (see below). With a further increase
in pressure, the change in Raman patterns is quite ambiguous,
mostly due to pressure-induced weakening and broadening of
the Raman characteristics of glasses and the interference of the
diamond window.51

Figure 1D,E shows the Raman spectra and position of the
LF/HF bands of glasses decompressed to ambient pressure
from various peak pressures (i.e., the highest pressure where
decompression started), revealing the topological evolution of
the glassy network during decompression and irreversible
densification. When decompressed from 8 GPa, the HF band
shifted to a lower frequency. When decompressed from
pressures ≥12 GPa, the LF band intensity decreased. The
HF and LF bands shifted to lower and higher frequencies,
respectively, which reflects changes in the Al−O bond length

Figure 2. (A) 1D 27Al MAS NMR spectra for irreversibly densified C13A7 glasses with various peak pressures as labeled. (B) 27Al MAS NMR
spectra with simulation results for decompressed glasses up to 65 GPa. The NMR spectra for the empty rotor and Teflon inset used in the 27Al
NMR measurements are shown in Figure S5. Considering negligible 27Al signals from the rotors and stators, all the spectral intensities are
contributed solely by the C13A7 glasses.
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or the Al−O−Al angle upon permanent densification. The
change in the spectra mainly occurred in the pressure range 8−
12 GPa. As the peak pressure increased, the left shoulder of the
HF band (∼700−750 cm−1) diminished while the right side of
the HF band (∼850 cm−1) was enhanced, indicating the
increase in Al Q4 species and thus the degree of polymer-
ization. It should also be noted that the overall profile of ex situ
Raman spectra of glasses decompresses from P > 12 GPa are
different from the in situ Raman spectra under the
corresponding pressures, but rather similar to that at lower
pressures. This observation confirms that the pressure-induced
structural change at peak pressure is overly relaxed back to that
at lower pressure conditions. Despite the utility, the Raman
results do not provide information regarding the explicit Al
coordination numbers in the densified glasses, particularly
above 12−15 GPa.

The structural transitions in the irreversibly densified C13A7
glass were captured in the 27Al NMR results. Figure 2A shows
the 27Al MAS NMR spectra of the C13A7 glass at ambient
pressure and glass decompressed from various pressures up to
65 GPa. At 1 atm, a predominant 73 ppm peak was observed,
corresponding to [4]Al. As the peak pressure increased above 8
GPa, a spectral intensity at 39 ppm developed, which
corresponds to [5]Al. When the peak pressure increased
above 12 GPa, a small feature with a maximum at 9 ppm
was also observed corresponding to [6]Al (see refs 17, 28, and
52 and references therein). Peaks due to [4,5,6]Al’s are
unambiguously observed in the NMR spectra of the aluminate
glasses decompressed from 35, 50, and 65 GPa. The [5,6]Al
peak intensities increased with increasing pressure up to 35
GPa, but above 35 GPa, the increase in [5,6]Al peaks was
negligible (despite the uncertainty in measurements). A
comparison of the spectra at ambient pressure and 65 GPa
(Figure 2A, right) clearly shows the formation of [5,6]Al peaks,

providing explicit evidence for the structural evolutions
involving the coordination environment in the densified
C13A7 glasses. The observed presence of [5,6]Al species
quenched to ambient pressure can serve as a useful structural
proxy of the permanent deformation of densified aluminate
glass.

To obtain quantitative fractions of the [4,5,6]Al sites in C13A7
glasses, the one-dimensional (1D) 27Al MAS NMR results
were fitted using the CzSimple function for [4,5,6]Al sites in
DmFit software.53 Figure 2B shows the simulated results (see
below for the fractions of [n]Al versus pressures); when
decompressed from 8 GPa, ∼2.7% of [5]Al was observed. From
ambient pressure to 8 GPa, the [5]Al fraction increased at an
average pressure dependence of ∼0.3%/GPa. With further
compression to 12 GPa, the fraction of [5,6]Al dramatically
increased to 8.0%, with approximately 1.3%/GPa. Above 12
GPa, the increasing rate of the fractions of [5,6]Al slowed and
reached a plateau. When decompressed from 35 GPa, the
fraction of [5,6]Al increased to 10.0%. When decompressed
from 50 and 65 GPa, the [5,6]Al fractions were ∼11−12%. The
average pressure dependence of the [5,6]Al fractions in the large
pressure range of 12−65 GPa was quite low (0.06%/GPa).
Therefore, the observed coordination transformations of Al in
the compressed C13A7 glass showed three distinct pressure
ranges. First, when decompressed from lower pressures (below
8 GPa), the structural changes were rather minor. The
detection limit of Al coordination environments in the current
study is approximately 0.3%. Therefore, a minor fraction of
[5,6]Al (below the detection limit) may be present at lower
pressure conditions. In the transition pressure region (i.e., from
∼8 to 12 GPa in the current study), the atomic arrangement
underwent a steep change, whereas pressure-induced coordi-
nation changes were relatively minor when decompressed from
pressures above 12 to 65 GPa.

Figure 3. Total isotropic projection (top) and full 2D 27Al 3QMAS NMR spectra (bottom) for decompressed C13A7 glasses after cold
compression up to 50 GPa. The area in the dashed square corresponds to the [5]Al species.
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Figure 3 shows the total isotropic projections of the 2D 27Al
triple quantum (3Q) MAS NMR results and full 2D spectra for
decompressed C13A7 glasses under pressure. While [4]Al is
predominant at 1 atm, the spectrum at 12 GPa reveals three
well-resolved peaks due to 4,5,6-coordinated Al species. As the
sample volume decreases, the intensity of the whole spectrum
and the signal-to-noise ratio declined at 50 GPa. Nevertheless,
the results revealed the presence of [5]Al in the C13A7 glass.
The current spectra highlight that high-resolution 2D 3QMAS
NMR can be realized for the compressed ∼0.01 mg sample.

The evolution of the NMR parameters used in the
simulations of 27Al 1D MAS spectra can be found in Table
S1 and Figure S6. The 27Al quadrupolar coupling constant
(Cq) measures the extent of deviation from perfect cubic
symmetry.54 The Cq of [4]Al increased from 6.9 MHz (1 atm)
to 7.8 MHz (65 GPa). The Cq of [5]Al increased from 6.8 MHz
(8 GPa) to 7.7 MHz (65 GPa). The intense increase of [4]Al
Cq and [5]Al Cq occurred in the pressure range 8−12 GPa,
which is the identical pressure range in which the Al
coordination number increased sharply. These changes
indicate that the network distortion and the topological
disorder around Al increased prominently at elevated peak
pressure along the transition region. As network polymer-
ization often increases by annihilating nonbridging oxygen
(NBO),15,18,26 the following mechanism for the aluminate glass
is established: Ca-NBO (Ca−O−[4]Al) + [4]Al−O−[4]Al ⇒

[4]Al−O−[5]Al−O−[4]Al···Ca*, where Ca* refers to a charge-
balancing cation.

The current 27Al NMR results for compressed C13A7 glass
can be compared with those of other oxide glasses irreversibly
densified under lower pressure conditions. Figure 4A,B shows
the pressure-induced changes in the [n]Al fraction of the
C13A7 glass in the current study and of the permanently
densified CaAl2O4

17 (up to 16 GPa) and Mg3Al2Si3O12
15 (up

to 24 GPa) in previous 27Al NMR studies. The current study
more than doubled the pressure record of high-pressure NMR
studies (from 24 to 65 GPa). The molar ratio of the network
modifier and framework Al atoms [R = (MgO+CaO)/Al2O3]
is used as an index to describe the polymerization degree of
aluminate glass networks; a smaller R represents a more
polymerized network up to 1, where the network is fully
polymerized.55 The presence of modifiers with large cationic
potential (c/r, where c and r are the charge and ionic radius of
cations), e.g., Mg2+, increases the fraction of [5]Al at 1 atm.54

Compared with the current C13A7 glass (R = 1.86), CaAl2O4
with R of 1 and Mg3Al2Si3O12 glass (R = 3) with Mg2+ as a
network modifier showed a larger [5]Al fraction at 1 atm. After
decompression from high pressures, the [5,6]Al fractions in
these glasses were higher than those of the C13A7 glass. This
confirms that the polymerization degree and the [5,6]Al
fractions in the glasses at ambient pressure affect the overall
configurational changes of the decompressed glasses, as
explored by the earlier pioneering studies.28

Figure 4. (A) Variation of the proportions of four- (blue ◆), five-, and six-coordinated Al (red ◇) ([5,6]Al, red ◆) of decompressed C13A7 glasses
after cold compression up to 65 GPa. The gray shaded area indicates the pressure range of drastic coordination environmental changes. The lines
are guides for the eye. (B) Comparison of the [4]Al and [5,6]Al fraction of C13A7 (current study), CaAl2O4

17, and Mg3Al2Si3O12
15 glasses. The lines

are guides for the eye. (C) Variation of normalized [4,5,6]Al fraction, X[n]Al(p), with varying peak pressures (i.e., [X[n]Al(p) − X[n]Al24GPa]/
[X[n]Al1atm − X[n]Al24GPa]). The red lines are simulated results using eq 1. The blue lines are calculated by X[4]Al(p) = 1 − X[5,6]Al(p). Normalized
fractions of [5,6]Al [X[5,6]Al(p)] with (D) the p′ = p − p0.5 and (E) the normalized pressure (p̅ = p/2p0.5). The lines are simulated results using eq 1.
The error bars in panels A and B only represent the uncertainties of CzSimple simulations. The uncertainties of NMR measurements caused by the
small sample mass are unknown.
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Whereas the fractions of [4,5,6]Al are all different for these
glasses, the formation paths of [5,6]Al in all three glasses show
similar patterns, with a sharp increase in the [5,6]Al population
in the pressure range ∼6−12 GPa (i.e., transition zone), and
then reaching a saturation value above ∼12−15 GPa, above
which the fractions are unchanged.15 The current study,
together with those results at lower pressure conditions,15,17

confirms a universal densification pathway for permanent
structural changes in glass networks. To model such evolution
paths, we explored the pressure-driven increase in normalized
[n]Al coordination number.15 In Figure 4C, the fractional
changes of [4,5,6]Al in C13A7, CaAl2O4,

17 and Mg3Al2Si3O12
15

glass were normalized to the fractions at the highest pressures
in the corresponding studies [X[4,5,6]Al(p)]; thus, consistent
trends in the fractions of various glasses are clearly shown. The
differences between the various glasses are mainly in the
central pressure and width of the transition zone. The three-
step changing paths of the normalized fraction, X[5,6]Al(p), of
various glasses are described by the following model:15

(1)

where p0.5 represents the central pressure where the X[n]Al(p)
reaches half of its maximum; and α is a dimensionless constant
corresponding to the width of the transition zone, which
reflects the extent of rigidity of the Al network in the pressure-
induced coordination transition. The red lines in Figure 4C
show the best simulations of the normalized fractions using eq
1 (see Supporting Information S5). In earlier studies, the
observed trend in the [5,6]Al fractions was positively correlated
with variations of the residual density of glasses,15 suggesting a
correspondence between the short-range structures and
macroscopic densification of oxide glasses. Because we do
not have the bulk density data for the current glasses, further
confirmation between Al coordination number in the decom-
pressed glass and bulk density may not be fully established.
Nevertheless, the identical patterns for normalized Al
coordination numbers indicate that a similar correlation
might be driven for the Ca−Al glass. Further experimental
data with bulk density information may confirm the postulate.

By analyzing the variation of α and p0.5 in different glasses
(Table 1), the factors affecting the permanent densification
path can be determined. In Figure 4D, the true pressure, p, is

adjusted to p′ = p − p0.5 to effectively highlight the difference
in α values of different glasses. The depolymerized C13A7 (R
= 1.86) and Mg3Al2Si3O12 glasses (R = 3) correspond to
remarkably larger α (wider transition zones) than the more
polymerized CaAl2O4 (R = 1) and CaAl2Si2O8 glasses (R = 1)
(the latter from ab initio simulations56); based on this trend, it
can be concluded that more depolymerized networks are more
susceptible to coordination transformation upon compression
and decompression. It is currently unclear whether the
presence of a modifier with large cationic potential, such as
Mg2+ (c/r of ∼2.8), affects α, as more experimental data are
necessary. Nevertheless, the presence of Mg2+ also led to a
smaller p0.5 [compared to Ca2+ (c/r of ∼2.0)] and induced
structural modification (i.e., Al coordination change) at lower
pressure conditions (see Table 1). This can be attributed to
the additional degree of disorder induced by Mg2+.54 Figure 4E
shows the evolution of the normalized fractions with
normalized pressure (p/2p0.5). All [5,6]Al fractions of glasses
can be described using eq 1, confirming the universal
irreversible densification path for oxide glasses, in which the
clear effect of the concentration of non-network formers on
network densification is also highlighted.

The [5,6]Al fractions in the decompressed glasses were well-
correlated with the residual glass density.15 Furthermore, the
bulk modulus of anorthite glass under low pressure (<10 GPa)
and that under high pressure (>10 GPa) are largely different,
consistent with the changes in Al coordination in the glasses.56

These findings suggests that the fractions of [5,6]Al in these
glasses can be useful to infer the elastic properties of the
glasses. While further experimental and modeling efforts are
certainly necessary to confirm the nature of irreversible
structural transitions in decompressed oxide glasses, the
current results up to the unprecedented pressure condition
of 65 GPa suggest that disequilibrium densification accom-
panied by extreme compression may render a greater degree of
instability in oxide glass networks, compared with those
compressed at lower pressure conditions as also addressed in
earlier studies of glasses and amorphization of high-pressure
polymorphs during compression and/or decompression.57,58

We expect that decompressed aluminate glass may experience
a second steep increase to another plateau in the Al
coordination environment, which may occur when the glass
undergoes cold compression to extreme conditions, forming
[>6]Al species or network domains with larger fractions of
[5,6]Al. As glass undergoing compression at an elevated
temperatures exhibits a greater degree of densification than
glass undergoing cold compression (at room temperature),16

the second plateau may be achieved by compressing glass
under higher temperatures. We note that the focus of the
current study is to show pressure-induced structural changes in
coordination number (i.e., short-range structures). Those
associated beyond second coordination shells (i.e., medium-
range structures) may also contribute to the overall changes in
density as demonstrated in earlier studies of glass densification
at high temperatures.59

We report the first high-resolution NMR spectra for
aluminate glass that underwent permanent densification up
to 65 GPa. This unambiguous experimental evidence
constrains the densification path of Al cations and confirms
the contribution of short-range structural changes to
permanent densification. The coordination environment of
Al changed remarkably in a narrow transition zone from 8 to
12 GPa, characterized by a sharply increasing [5,6]Al fraction. In

Table 1. Fitting Parameters (p0.5 and α) for the [5,6]Al
Fraction and the Molar Ratio of Non-Network Former and
Al Ions R [(CaO+MgO)/Al2O3] for Diverse Aluminate
Glassesa

composition p0.5 (GPa) α R ref

13CaO·7Al2O3 10.5 5 ± 1 1.86 current study
Mg3Al2Si3O12 7.9 3 3 Lee et al. (2020)15

CaAl2O4 11.1 1.5 1 Amin et al. (2012)17

CaAl2Si2O8
b 9 (10.3) 2 (2.1) 1 Ghosh et al. (2018)56

aThe Al coordination was gained from the NMR studies (13CaO·
7Al2O3, Mg3Al2Si3O12, and CaAl2O4) and first-principles molecular
dynamics simulations (CaAl2Si2O8) of glasses undergoing cold
compression. bAs the fraction data near the transition zone being
deficient, the simulated parameters p0.5 and α for the [5,6]Al fraction of
CaAl2Si2O8 glass have uncertainties larger than those of the other
glasses. For reference, the fitted p0.5′ and α′ for the residual densities
of CaAl2Si2O8 glass are provided in parentheses.
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contrast, the Al coordination environment did not change over
a wide range from ∼35 to 65 GPa. This indicates that lower-
pressure densification up to ∼12 GPa is sufficient to deform
glass plastically. This may increase the yield strength of
densified oxide glass, inducing mechanical hardening. More
extensive studies with varying compositions and pressures are
required to test the aforementioned hypothesis and the
applicability of glasses under extreme conditions. Subsequent
exploration may be able to achieve a tunable activation
pressure for the large-degree densification of glass. The degree
of rigidity of the Al network under pressure can be effectively
modulated by changing the ratio of the framework and
modifier and the type of modifier, which provides significant
insights for tuning the processing technology and expanding
the application scenarios of glass materials. In terms of
geoscience, aluminum and calcium oxide are also among the
most abundant components in the partial melts formed in the
Earth’s lower mantle.60,61 The dramatic change of Al
configuration in the upper mantle region may contribute to
mechanical hardening and extend the elastic limit of the
subducted noncrystalline oxides and silicates within basaltic
crusts, while these glasses may be hydrated to form crystalline
silicates. We expect that our ongoing studies of compressed
glasses with varying compositions and temperatures under
much extended pressure conditions may reveal additional
mechanisms for permanent densification, such as second stage
changes in Al and/or Si coordination numbers.
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