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The endothelium is a single layer of epithelium covering the surface of the

vascular system, and it represents a physical barrier between the blood and

vessel wall that plays an important role in maintaining intravascular

homeostasis. However, endothelial dysfunction or endothelial cell death can

cause vascular barrier disruption, vasoconstriction and diastolic dysfunction,

vascular smooth muscle cell proliferation and migration, inflammatory

responses, and thrombosis, which are closely associated with the

progression of several diseases, such as atherosclerosis, hypertension,

coronary atherosclerotic heart disease, ischemic stroke, acute lung injury,

acute kidney injury, diabetic retinopathy, and Alzheimer’s disease. Oxidative

stress caused by the overproduction of reactive oxygen species (ROS) is an

important mechanism underlying endothelial cell death. Growing evidence

suggests that ROS can trigger endothelial cell death in various ways, including

pyroptosis, parthanatos, and ferroptosis. Therefore, this review will

systematically illustrate the source of ROS in endothelial cells (ECs); reveal

the molecular mechanism by which ROS trigger pyroptosis, parthanatos, and

ferroptosis in ECs; and provide new ideas for the research and treatment of

endothelial dysfunction-related diseases.
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1 Introduction

Endothelium is the highly active monolayer of epithelium

that covers the surface of blood vessels. Endothelium plays an

important role in maintaining vasomotor, coagulation and

anticoagulation systems, immune regulation, vascular smooth

muscle proliferation and migration (1–3). Reactive oxygen

species (ROS) in endothelial cells (EC) are mainly derived

from mitochondria, NADPH oxidase (NOXs), eNOS

uncoupling and xanthine oxidase (XO) (4, 5). Under

physiological conditions, ROS are essential for physiological

cellular functions such as host defense, post-translational

processing of proteins, cell signaling, regulation of gene

expression, and cell differentiation (6). However, ROS

overproduction may cause endothelial dysfunction (ED) and

endothelial cell death. The impairment of NO synthesis marks

the onset of ED, which is mainly mediated by the eNOS

uncoupling mechanism (7). In the process of ROS-mediated

ED, the expression of various pro-inflammatory cytokines, i.e.,

interleukin-1b (interleukin-1b), interleukin-18 (interluekin-18,

IL-18), and cell adhesion molecules, i.e., intercellular adhesion

molecule-1 (ICAM-1), vascular cell adhesion molecule-1

(VCAM-1), and E-selectin may be promoted in endothelial

cells. These molecules are closely related to the occurrence of

inflammatory responses (8, 9). In addition, ROS can mediate a

variety of programmed cell death (PCD) in endothelial cells,

such as pyroptosis, parthanatos and ferroptosisis. It is worth

noting that endothelial dysfunction or endothelial cell death is

closely related to the occurrence and development of various

diseases, such as atherosclerosis (10), coronary heart disease

(11), hypertension (12), ischemic stroke (13), acute lung injury

(14), acute kidney injury (15), diabetic retinopathy (16) and

Alzheimer’s disease (17) (Figure 1). This review systematically

elucidates the sources of ROS in EC; covers the molecular

mechanisms of ROS-induced pyroptosis, parthanatos and

ferroptosis in EC cells; and provide new insights for the

research and treatment of endothelial cell death-related diseases.
2 Sources of ROS in ECs

Intracellular ROS are mainly composed of superoxide anions

(O• –
2 ), hydrogen peroxide (H2O2), and hydroxyl radicals (OH•)

(18). O2 forms O• –
2 by capturing an electron, which leads to the

generation of other ROS. O• –
2 is unstable in aqueous solutions

due to its short half-life; therefore, intracellular O• –
2 is quickly

scavenged or converted to other forms of ROS. O• –
2 is cleared or

converted mainly via three pathways:1) O• –
2 generates H2O2

through the action of superoxide dismutase (SOD); 2) low

concentrations (picomolar range) of O• –
2 interact with nitric

oxide (NO) to generate peroxynitrite anion (ONOO•), which

occurs even faster than disproportionation to generate H2O2;

and 3) high concentrations of O• –
2 generate OH• through the
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Fenton reaction with H2O2 (18). In addition, OH• reacts with

fatty acids to generate lipid free radicals (L•). ROS in ECs are

mainly derived from mitochondria, NADPH oxidase (NOX),

endothelial NOS (eNOS) uncoupling, and xanthine oxidase

(XO) (4, 5) (Figure 2).
2.1 Mitochondria

Mitochondria are the source of cellular power and produce

ATP through oxidative phosphorylation (OXPHO), which

accounts for approximately 80% of the energy requirements,

with glycolysis accounting for the remaining 20%.

Mitochondrial ROS production results from oxidative

phosphorylation associated with aerobic respiration within the

mitochondrial electron transport chain (ETC). Mitochondrial

complexes I and III are the major sites for the generation of O• –
2

(19–21). Electron leakage from the ETC results in the reduction

of O2 to O
• –
2 rather than to H2O. SOD further disproportionates

mitochondrial O• –
2 to form H2O2. Approximately 1-2% of O2

entering the ETC is estimated to be converted into ROS (22)

(Figure 2). Moreover, mitochondrial ROS overproduction is one

of the causes of EC dysfunction. For example, Rao et al. showed

that nicotinamide nucleotide transhydrogenase (NNT)

knockout resulted in a significant increase in mitochondrial

ROS production and glutathione peroxidase activity and a

decline in glutathione reductase activity (23).
2.2 NAPDH oxidase

2.2.1 Structure
NAPDH oxidase (NOX) is an important source of ROS in

cells. The NOX family includes NOX1, NOX2, NOX3, NOX4,

NOX5, and dual oxidases (DUOX1 and DUOX2) (22). NOXs

are multi-transmembrane proteins whose C-termini are exposed

in the cytoplasm, and they share common domains, including

six conserved transmembrane domains, four conserved heme-

binding histidines, flavin adenine dinucleotide (FAD)-binding

domains, and NADPH-binding domains (24). NOX in turn

transfers electrons from NADPH to FAD, the heme group, and

then to O2, resulting in O• –
2 and/or H2O2 production (25).

2.2.2 NOXs activation in ED
The main subtypes of NOX in ECs include NOX1, NOX2,

NOX4, and NOX5 (25, 26). The catalytic product of NOX1,

NOX2, and NOX5 is O• –
2 , while the catalytic product of NOX4 is

H2O2 (Figure 3). NOX complexes consist of catalytic subunits

(NOX) and regulatory subunits, with the exception of NOX5,

which consists of only one catalytic subunit (22). NOX2 is the

first NOX isoform identified in ECs and represents the most

widely and deeply studied isoform; therefore, we first discuss its

activation mechanism. Under resting conditions, NOX2 and
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p22phox are located on the membrane as inactive complexes

while p40phox, p67phox, and p47phox subunits are located in

the cytoplasm (22). Activation of NOX2 also requires the small

GTPase Rac1. Activation of Rac1 initiates NOX2, and Rac1 is

recruited to the membrane and then recruits other cytosolic

components (27). p47phox is then phosphorylated by protein

kinase C (PKC) and transferred to the membrane together with

p67phox and p40phox (28). Next, the phosphorylation of

p47phox can combine with p22phox to realize the assembly

and activation of the NOX2 complex (29). The basal activity of

NOX2 in ECs is low, although it is rapidly activated by

pathological causative factors, such as hyperlipidemia,

hypertension, and hyperglycemia (30). EC injury in the early

stages of vascular disease has been reported to be mediated by

excess NOX2-derived superoxide (31). Similar to NOX2, NOX1

activation requires the assembly of multiple subunits. During

NOX1 activation, the activation function of p67phox is

performed by NOXA1 and the organizer function of p47phox

is performed by NOXO1 (32, 33). Compared with p47phox,
Frontiers in Immunology 03
NOXO1 does not contain an auto-inhibitor domain; therefore,

the NOX1-NOXO1-NOXA1 complex has high basal activity

(29). Reports have indicated that endothelin-1 (ET-1)

overexpression in ECs promotes atherosclerosis progression

through NOX1 in type 1 diabetes, perivascular oxidative stress,

and inflammation (34). Furthermore, NOX1 is involved in

eNOS uncoupling in ECs. For example, Youn et al. found that

NOX1 activation in streptozotocin-induced diabetic mice is

dependent on p47phox and NOXO1 and mediates eNOS

uncoupling. NOX1 knockout mice are protected from ED

(35). NOX4 is the most highly expressed NOX homolog in

ECs. Compared to NOX1 and NOX2, activation of NOX4

requires only p22phox and polymerase delta-interacting

protein 2 (Poldip2) (30, 36). Several studies have suggested

that NOX4 plays an important role in ED. For example, Jiang

et al. found that NOX4 knockdown attenuated pulmonary ROS

production in septic mice, attenuated redox-sensitive activation

of the CaMKII/ERK1/2/MLCK pathway, and restored the

expression of the tight junction proteins ZO-1 and occludin to
FIGURE 1

Endothelial dysfunction and Disease. Endothelial dysfunction is involved in the pathophysiological process of various diseases (10-17), such as
atherosclerosis, hypertension, coronary atherosclerotic heart disease, ischemic stroke, acute lung injury, acute kidney injury, diabetic
retinopathy, and Alzheimer’s disease.
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FIGURE 2

Sources of ROS in ECs. ROS in ECs are mainly derived from mitochondria, NOXs, eNOS uncoupling, and XO. ETC electron transport chain,
eNOS endothelial nitric oxide synthase, FAD flavin adenine dinuc-leotide, Fe-S iron-sulfur center, Mo-co molybdenum cofactor, MOMP mi-
tochondrial outer membrane permeabilization, NOX NADPH oxidase, SOD superoxide dismutase, GPX glutathione peroxidase, PRX peroxired-
oxin, CAT catalase, O• –

2 superoxide, ONOO• peroxynitrite anion, H2O2 hydrogen peroxide, OH• peroxyl radical, L lipid, L• lipid free radical, LOO•

lipid peroxy radical, LOOH lipid peroxide, UA uric acid, X xanthine, XO xanthine oxidase.
FIGURE 3

The structure of NOXs. The main subtypes of NOX in ECs include NOX1, NOX2, NOX4, and NOX5. The catalytic product of NOX1, NOX2, and
NOX5 is O•–

2 , while the catalytic product of NOX4 is H2O2.
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maintain the integrity of the EC barrier (37). Zhao et al. showed

that tert-butyl hydroperoxide (t-BHP) induces EC apoptosis

through NOX4 (38). However, there are also reports that

NOX4 protects ECs during oxidative stress. This may be

related to the generation of H2O2 by NOX4. H2O2 is

considered an important signaling intermediate because of its

ability to selectively and reversibly oxidize reactive cysteine

residues, thereby altering the function of protein targets

including phosphatases, kinases, ion channels, and

transcription factors (39). In EC, these effects ultimately lead

to increased expression and activi ty of important

angioprotective enzymes, including eNOS (40). Furthermore,

unlike superoxide, H2O2 does not react appreciably with NO,

and thus does not reduce NO bioavailability (39). Unlike NOX1,

NOX2, and NOX4, the activation of NOX5 does not depend

on other subunits. NOX5 contains an N-terminal calmodulin-

like domain with four Ca2+ binding sites (EF hands) (39).

Therefore, NOX5 activity can be directly regulated by

changes in the intracellular [Ca2+]. Evidence suggests that

NOX5 plays an important role in ED. Silva et al. found

that lysophosphatidylcholine drives NOX5-dependent ROS

production in ECs via calcium influx, leading to ED (40).

Elbatreek et al. found that NOX5 overexpression in mice

caused eNOS uncoupling, thus leading to ED (41). Therefore,

ROS derived from NOXs play an important role in

mediating ED.

2.3 eNOS uncoupling
Nitric oxide (NO) plays an important role in maintaining

vascular homeostasis owing to its vasodilatory effects. Nitric

oxide synthase (NOS) is synthesized from l-arginine and O2 and

represents a key enzyme involved in nitric oxide (NO) synthesis.

There are three subtypes of NOS: neuronal NOS (nNOS),

inducible NOS (iNOS), and endothelial NOS (eNOS) (42).

NOS functions as a homodimer during NO biosynthesis. Each

monomer has an oxygenase domain at the N-terminus and a

reductase domain at the C-terminus. The oxygenase domain

consists of binding sites for FAD, FMN, and NADPH and is

linked to the reductase domain through a calmodulin

recognition site. The reductase domain contains binding sites

for heme, tetrahydrobiopterin (BH4), and l-arginine. The

formation of NO requires electron flow, which starts at the

flavin level in the reductase domain and ends at the heme level in

the oxygenase domain (7). Specifically, NADPH releases

electrons in the reductase domain and transfers them to heme

via FAD and FMN. In the presence of l-arginine and cofactor

BH4, electrons can reduce O2 to form NO and l-citrulline (43,

44). The presence of BH4 is critical for NO formation because it

is involved in l-arginine binding and electron transfer. During

ED, BH4 depletion is considered the main mechanism by which

eNOS uncoupling generates ROS (45, 46). In fact, in the absence
Frontiers in Immunology 05
of BH4, l-arginine cannot bind to its site and the terminal

electron acceptor becomes O2, thus forming O• –
2 instead of

NO, a process defined as eNOS uncoupling (47, 48). Notably,

ROS derived from the NOX system are closely related to the

depletion of BH4 (30). Furthermore, O• –
2 reacts with NO to form

ONOO•, which can lead to the oxidation of iron-sulfur centers

and eNOS core ZnS4 (4, 49). Taken together, these results

suggest that eNOS decoupling is closely associated with

ED (Figure 2).
2.4 Xanthine oxidase

Xanthine oxidoreductase (XOR) exists in two different

forms, xanthine dehydrogenase (XDH) and XO, and they

represent the rate-limiting enzymes in purine metabolism (50).

Normally, XOR exists in the cells in the form of XDH. XDH is a

homodimer of approximately 300 kDa, with four redox centers

in each subunit: a molybdenum cofactor (Mo-co), two iron-

sulfur (Fe-S) centers, and a flavin adenine dinucleotide (FAD)

domain (51). XDH catalyzes the oxidation of hypoxanthine to

xanthine and xanthine to uric acid at the Mo-co site, and

electrons shuttle through two Fe-S centers to the FAD binding

site, where NAD+ is reduced to NADH (51). Under

physiological conditions, XOR is mainly present in ECs in the

form of XDH (52). XDH can break down hypoxanthine into uric

acid (53) and reduce nitrite to produce NO, which helps regulate

vasodilation and blood pressure (53). However, under oxidative

stress conditions, ROS can oxidize cystine thiols on XDH,

resulting in the conversion of XDH to XO (30, 54). The main

difference between XO and XDH is their oxidative substrate

affinity, where XO has a reduced affinity for NAD+ and more

than 11-fold increased affinity for O2 (54). While promoting the

decomposition of hypoxanthine into uric acid, XO generates O• –
2

through one-electron reduction, and H2O2 through two-electron

reduction (55). Reports have indicated that XO-induced ED is

closely related to its by-products, including ROS and uric acid

(56, 57). Intracellular uric acid can exacerbate oxidative stress in

ECs, thereby causing ED (52). Therefore, XO is an important

source of ROS in ECs and closely related to ED (Figure 2).
3 Pyroptosis

Pyroptosis is a type of programmed cell death caused by

various stimuli. The molecular features of pyroptosis include

inflammasome assembly and activation, membrane pore

formation, and pro-inflammatory cytokine maturation and

release. Depending on whether pyroptosis requires caspase-1

activation, it can be divided into the classical and non-classical

inflammasome pathways.
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3.1 Inflammasome

The inflammasome is composed of the intracellular

recognition receptor, adaptor protein apoptosis-associated

speck-like protein (ASC), and effector protein caspase-1 (57).

The intracellular recognition receptors that constitute the

inflammasome include the NOD-like receptor (NLR) protein

family of AIM2-like receptors (ALRs) and pyrin, which can

directly or indirectly activate ASC to activate caspase-1 (58, 59).

Structurally, these intracellular recognition receptors contain a

CARD or PYD domain at their N-terminus. ASC contains a PYD

structure and a CARD domain, and caspase-1 contains a CARD

domain (60). The intracellular recognition receptors NLRP1,

NLRP3, NLRP6, AIM2, and pyrin all contain PYD at their N-

termini, whereas NLRP1 and NLRC4 contain CARD (57,

61) (Figure 4).
3.2 Gasdermin D: A mechanism of cell
swelling in pyroptosis

Gasdermin D (GSDMD), a family of pore-forming effector

proteins, is thought to be the executor of pyroptosis. GSDMD is

a member of the gasdermin protein family, which includes

GSDMA, GSDMB, GSDMC, GSDMD, GSDME (also known

as DFNA5), and PJVK (also known as DFNB59). Most members

of this family have been shown to exhibit pore-punching effects

(62). Among these, the most extensive and in-depth research has

been performed on GSDMD. GSDMD is composed of a pore-

forming domain (PFD), linker, and repressor domain (RD) (62,
Frontiers in Immunology 06
63) (Figure 4). The PFD (also known as N-GSDMD) is located at

the N-terminus and consists of 242 amino acids. This part is an

important structure for the GSDMD to perform the punching

function. RD (also known as C-GSDMD) is located at the C-

terminus and consists of 199 amino acids, which is an important

structure for inhibiting GSDMD function (63). The linker

between PFD and RD is composed of 43 amino acids, and this

part is the switch for GSDMD activation (63). During

pyroptosis, the linker of GSDMD can be cleaved by activated

caspase-1 or caspase-4/5/11, and C-GSDMD dissociates from

GSDMD, releasing its inhibitory effect on N-GSDMD (64, 65).

Subsequently, N-GSDMD was integrated into the cell

membrane, and approximately 16 PFD monomers were

oligomerized to form membrane pores with a diameter of 10-

15 nm. The formation of membrane pores causes a loss of cell

membrane integrity and breaks the osmotic pressure barrier of

the plasma membrane (62, 66). Under normal circumstances,

intracellular sodium ions are low and potassium ions are high.

However, extracellular fluid is high in sodium ions and low in

potassium ions. The formation of this intracellular and

extracellular ion concentration difference is dependent on the

Na+ pump (Na+-K+-ATPase). Na+-K+-ATPase is widely

expressed on the cell membrane surface and acts as a sodium-

potassium antiporter. Each Na+-K+-ATPase can transport three

sodium ions from the intracellular to extracellular space and two

potassium ions into the cell by consuming one molecule of ATP

(67). This asymmetric cation transport mechanism plays an

important role in maintaining differences in the chemical

concentration gradients of sodium and potassium ions inside

and outside the cell. Notably, this asymmetric cation transport
FIGURE 4

Molecular structures involved in pyroptosis. The inflammasome is composed of the intracellular recognition receptor, adaptor protein ASC, and
effector protein caspase-1. GSDMD, a family of pore-forming effector proteins, is thought to be the executor of pyroptosis. ASC apoptosis-
associated speck-like protein, CARD, caspase-recruitment domain, FIIND function-to-find domain, GSDMD Gasdermin D, LRR leucine-rich
repeat domain, NBD nucleotide-binding domain, PFD pore-forming domain, PYD pyrin domain, RD repressor domain.
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mechanism mediates cell swelling together with N-GSDMD.

Specifically, when N-GSDMD forms pores in the cell membrane,

the force generated by the concentration gradient expelling

potassium ions out of the cell is roughly offset by the electric

field force that pulls potassium ions into the cytoplasm, resulting

in the passage of potassium ions through the membrane pores.

Therefore, the flux is minimized. In contrast, both the sodium

ion concentration gradient and electric field force promote the

entry of sodium ions into cells, resulting in a large influx of

sodium ions (62). The influx of sodium ions is accompanied by

the entry of water molecules, which causes cells to swell or

even rupture.

Physiologically, interleukin-1b (IL-1b) and interleukin-18

(IL-18) exist in inactive precursor forms, namely pro-IL-1b and

pro-IL-18 (62). However, during pyroptosis, activated caspase-1

cleaves pro-IL-1b and pro-IL-18 to produce mature IL-1b and

IL-18 (53). Unlike other cytokines, mature IL-1b and IL-18 are

not secreted out of cells via the endoplasmic reticulum-Golgi

pathway; rather, this action depends on N-GSDMD (68, 69).

Therefore, N-GSDMD is an important channel for the secretion

of mature IL-1b and IL-18 into the extracellular space

during pyroptosis.
3.3 Pyroptosis pathway

Depending on whether pyroptosis requires caspase-1

activation, it can be divided into the classical and non-classical

inflammasome pathways (Figure 5). The classical inflammasome

pathway mainly includes the assembly and activation of

inflammasomes, formation of porins, and maturation and

secretion of IL-1b and IL-18. Specifically, intracellular and

extracellular PAMPs or DAMPs (e.g., viral dsDNA, bacterial

lipopolysaccharide, extracellular ATP, ox-LDL, and cholesterol

crystals) can promote inflammasome assembly and activation.

Inflammasomes activate pro-caspase-1 via self-cleavage.

Activated caspase-1 cleaves the porin GSDMD to generate

mature N-GSDMD (70) and cleaves pro-IL-1b and pro-IL-18

to generate mature IL-1b and IL-18 (70). Compared with the

classical inflammasome pathway, activation of the non-

canonical inflammasome pathway does not require the

assembly and activation of the inflammasome. The bacterial

cell wall component lipopolysaccharide can activate caspase-11

(human) or caspase-4/5 (murine) (71, 72). Activated caspase-4/

5/11 cleaves GSDMD to generate mature N-GSDMD (64, 65).

Subsequently, N-GSDMD is integrated into the cell membrane

to form membrane pores that mediate pyroptosis.
4 ROS trigger pyroptosis in EC

Among the classical inflammasome pathways, NLRP3

inflammasome-mediated pyroptosis is the most extensively
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studied. The NLRP3 inflammasome is composed of the

intracellular sensor protein NLRP3, adaptor protein ASC, and

effector protein pro-caspase-1 (70, 73). NLRP3 inflammasome

activation is thought to include multiple upstream signals, most

of which are not mutually exclusive, including potassium (K+)

efflux (74, 75), calcium flux (76), endoplasmic reticulum stress

(77), mitochondrial dysfunction (78), ROS (79), and lysosomal

disruption (80). Notably, ROS, as upstream signals of NLRP3

inflammasome activation, play an important role in NLRP3

inflammasome activation (81–83). Overall, the mechanism by

which ROS activate the NLRP3 inflammasome involves two

important processes: the initiation phase and the activation

phase. The initiation signal indicates that ROS can upregulate

the expression of NLRP3, pro-caspase-1, and pro-IL-1b (79).

During the activation stage, ROS can promote the assembly and

activation of the NLRP3 inflammasome, and thioredoxin-

interacting protein (TXNIP) plays an important role in this

process. TXNIP has been identified as a reduced thioredoxin

protein (Trx) binding protein. When cells are in a quiescent

state, TXNIP interacts with the redox domain of Trx and is

considered a negative regulator of Trx. However, when

intracellular ROS are increased, Trx is oxidized, thus leading

to the dissociation of TXNIP from Trx, which subsequently

interacts with NLRP3, leading to the assembly and activation of

the NLRP3 inflammasome (84, 85).

Numerous recent studies have shown that NLRP3

inflammasome activation plays an important role in mediating

ED (61). Increasing evidence has shown that certain stimuli,

such as oxidized low-density lipoprotein, hyperglycemia, and

nicotine, can activate the NLRP3 inflammasome in EC, thus

leading to endothelial cell death. For example, Wu et al. found

that ox-LDL induced the upregulation of NLRP3, caspase-1, and

IL-1b in ECs in a dose-dependent manner (86). Hang et al.

found that ox-LDL stimulated NLRP3 inflammasome activation,

increased IL-1b and IL-18 maturation and secretion, increased

intracellular ROS, and increased lactate dehydrogenase (LDH)

release in ECs (87). Chen et al. found that ox-LDL could induce

increases in ROS and upregulate the expression of ICAM-1,

TXNIP, NLRP3, and caspase-1 in ECs (88). Zhuang et al. found

that forkhead box P transcription factor 1 (Foxp1) is a negative

regulator of NLRP3 inflammasome activation in ECs, and they

also revealed found that Foxp1 is significantly downregulated in

atherosclerosis-susceptible endothelium and Foxp1 knockout in

ApoE-/- mice exacerbates atherosclerosis. Subsequently, NLRP3,

caspase-1, and pro-IL-1b were significantly upregulated and IL-

1b secretion was increased. The team further demonstrated that

Foxp1 is a gatekeeper of vascular inflammation and a

transcriptional repressor; moreover, it can inhibit the

expression of NLRP3, caspase-1, and pro-IL-1b from the

transcription initiation level (60). Numerous studies have

shown that NOX4 plays an important role in mediating

endothelial dysfunction in type 2 diabetes (89). For example,

Liao et al. performed in vitro and in vivo experiments and found
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that high glucose levels can promote the generation of ROS in

ECs by upregulating NOX4 (90). Li et al. found that high levels

can upregulate the expression of NOX4, NLRP3, and caspase-1

in ECs and showed that high glucose-induced NLRP3

inflammasome activation was dependent on NOX4 and

mediates EC tight junction barrier disruption (91). Dunn et al.

found that high glucose levels can upregulate TXNIP expression

to induce endothelial dysfunction. In addition, the team found

that knockdown of TXNIP could alleviate high glucose-

mediated endothelial dysfunction (92). Chen et al. found that

silencing NLRP3 could reverse the high glucose-induced

upregulation of NLRP3, caspase-1, IL-1b, IL-18, and ICAM-1,

and they further found that ROS scavengers could reverse the

high glucose-induced upregulation of IL-1b and IL-18 in ECs.

Furthermore, the team found that TXNIP knockdown inhibited

IL-1b and IL-18 maturation (8). Wu et al. found that nicotine

could induce upregulation of NLRP3, caspase-1, ASC, IL-1b, and
IL-18 expression in ECs, DNA damage, and LDH release, and

they also found that N-acetylcysteine (NAC) could inhibit

nicotine-induced inflammasome activation and alleviate DNA

damage, indicat ing that nicot ine mediates NLRP3

inflammasome activation in ECs through ROS. The team

further found that the knockdown of NLRP3 or ASC could

inhibit nicotine-induced activation of the NLRP3 inflammasome

in ECs. Similarly, the caspase-1 inhibitor VP-765 also inhibits

nicotine-induced activation of the NLRP3 inflammasome in ECs
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(93). Zhang et al. found that nicotine could activate the NLRP3

inflammasome in EC. The team further found that NLRP3

inflammasome activation can promote the destruction of tight

junction proteins between ECs, resulting in increased vascular

permeability (94). Cau et al. found that Ang-II induces

endothel ia l dysfunction, vascular remodel ing, and

hypertension through NLRP3 inflammasome activation (95).

In conclusion, stimulatory factors, such as ox-LDL,

hyperglycemia, nicotine, and Ang II, can cause an increase in

ROS in ECs. In endothelial cells, ROS acts as a bridge between

pathological stimuli such as ox-LDL, hyperglycemia, Ang II, and

nicotine and the activation of the NLRP3 inflammasome. The

ROS-triggered NLRP3 inflammasome activation process in ECs

involves two key steps: the initiation and activation phases. The

initiation phase refers to the ROS-induced upregulation of

NLRP3, caspase-1, IL-1b, and IL-18 in EC. The activation

phase refers to ROS promoting the assembly and activation of

the NLRP3 inflammasome through TXNIP. NLRP3

inflammasome activation promotes the maturation of IL-1b
and IL-18 and can mediate the formation of porin N-GSDMD,

thus causing cell swelling and even rupture, which lead to cell

death. In addition, the formation of membrane pores promotes

the release of cellular components, including IL-1b, IL-18, and
HMGB1, which are involved in inflammatory responses. IL-1b,
IL-18, and HMGB1 can bind to the EC surface at IL-1R, IL-18R,

and TLR, respectively, and upregulate the expression of ICAM-1
FIGURE 5

Pyroptosis pathway. Depending on whether pyroptosis requires caspase-1 activation, it can be divided into the classical and non-classical
inflammasome pathways. ASC, apoptosis-associated speck-like protein, ER endoplasmic reticulum, GSDMD Gasdermin D, HMGB1 high mobility
group box 1, IL-1b interleukin-1b, IL -18 interleukin- 18, MyD88 myeloid differentiation primary response gene 88, NLRP3 NLR-family pyrin
domain-containing protein 3NF-kB nuclear factor kappa B, NLRP3 NLR-family pyrin domain-containing protein 3, ox-LDL oxidized low density
lipoprotein, ROS reactive oxygen species, TLR Toll-like receptors.
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and VCAM-1 via the Myd88/IRAK-1/TRAF-6/NF-kB pathway.

In addition, NLRP3 inflammasome activation can disrupt tight

junction proteins between EC, resulting in increased vascular

permeability (Figure 6).
5 ROS trigger parthanatos in ECs

Parthanatos is a type of programmed cell death that is

dependent on poly (ADP-ribosome) polymerase 1 (PARP-1)

(96, 97). PARP-1 is an ADP-ribosyltransferase that transfers

ADP ribose from nicotinamide adenine dinucleotide (NAD+) to

receptor proteins (98, 99). PARP-1 was originally described as a

DNA nick sensor enzyme activated by DNA single- and double-

strand breaks (100). DNA damage-induced activation of PARP-

1 is considered the classical pathway for the activation of this

enzyme. ROS, ionizing radiation, and alkylating agents are

common causes of DNA fragmentation (101–103). PARP-1

activation depends on the degree of DNA damage. However,

when DNA is extensively damaged, the overactivation of PARP-

1 causes the accumulation of poly (ADP-ribose) (PAR), a

process that consumes large amounts of NAD+. NAD+ is a

direct substrate for the synthesis of PAR and a cofactor in many

redox reactions, such as the tricarboxylic acid cycle, glycolysis,

and pentose phosphate pathway (104, 105). Furthermore, the

translocation of PAR from the nucleus to the mitochondria
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causes the release of apoptosis-inducing factor (AIF) (106, 107).

After AIF leaves the mitochondria, it forms a complex with the

macrophage migration inhibitory factor (MIF) in the cytoplasm.

Subsequently, nuclear translocation of the AIF/MIF complex

causes chromatin condensation and DNA fragmentation,

ultimately leading to cell death (108–110) (Figure 7).

In recent years, many studies have shown that stimuli such

as ROS, Ang II, ox-LDL, and hyperglycemia can trigger the

occurrence of parthanatos in ECs. For example, Mathews et al.

found that H2O2 and ONOO could activate PARP-1 in ECs,

leading to EC death. Knockdown of PARP-1 inhibits H2O2 or

ONOO• triggered EC death (111). Liang et al. observed DNA

damage and increased PARP-1 expression and activity in a

model of Ang II-induced EC oxidative stress (112). Zhang

et al. found that ox-LDL can induce coronary EC damage that

is independent of caspase but dependent on the nuclear

translocation of AIF (113). Wang et al. found that PARP1 was

a key factor in the upregulation of arginase II (Arg II) induced by

ox-LDL (114). Arg II results in reduced NO synthesis by

competing with eNOS for the same substrate, l-arginine (115–

117). PARP1 deficiency results in suppressed Arg II expression,

enhanced eNOS expression, and improved NO production and

endothelial function (114). Choi et al. found that enhanced

PARP-1 activity is closely related to coronary artery

endothelial dysfunction in mice with type 2 diabetes. The team

further found that inhibition of PARP-1 activity restored eNOS
FIGURE 6

ROS trigger pyroptosis in EC. ASC, apoptosis-associated speck-like protein, ER endoplasmic reticulum, GSDMD Gasdermin D, HMGB1 high
mobility group box 1, Hsp heat shock protein, ICAM-1 intercellular adhesion molecule-1, IL-1b interleukin-1b, IL-18 interleukin- 18, IL-1R IL-1
receptor, IL-18R IL-18 receptor, IRAK IL-1R-associated kinase, MCP-1 monocyte chemoattractant protein-1, MyD88 myeloid differentiation
primary response gene 88, NF-kB nuclear factor kappa B, NLRP3 NLR-family pyrin domain-containing protein 3, ox-LDL oxidized low density
lipoprotein, RAGE the receptor for advance glycation end products, ROS reactive oxygen species, TLR Toll-like receptors, Trx thioredoxin
protein, TRAF TNF receptor-associated factor, TXNIP thioredoxin-interacting protein, VCAM-1 intervascular adhesion molecule-1.
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phosphorylation and alleviated DNA damage, thereby

improving ED (118). Taken together, ROS can cause extensive

DNA damage that leads to the hyperactivation of PARP-1 and

triggers parthanatos in EC.
6 ROS trigger ferroptosis in ECs

Ferroptosis is an iron-dependent process involving

programmed cell death. Lipid peroxidation, which is the

process by which OH• attacks the carbon-carbon double

bonds of lipids, particularly polyunsaturated fatty acids

(PUFAs) (119), is an important marker for ferroptosis.

Therefore, the production of OH• is a key factor in the lipid

peroxidation process. O• –
2 reacts with H2O2 under the catalysis

of Fe2+ to form Fe3+, OH•, and OH-, which is called the Fenton

reaction. In addition, O• –
2 reacts with Fe3+ to form Fe2+ in a

process called the Haber-Weiss cycle. Lipid peroxidation can be

divided into three stages: initiation, propagation, and

termination. In the initial stage, OH• interacts with lipids to

form carbon-centred lipid radicals (L•). L• reacts with oxygen to

generate a lipid peroxy radical (LOO•), which further generates a

new L• (propagating phase) and lipid hydrogen peroxide

(LOOH) from another molecular lipid. L• and LOOH

produced during the propagation stage can be terminated by

antioxidant molecules of the mevalonate pathway, such as

coenzyme Q10 (CoQ 10) and vitamin E (VitE) (120–122). In

addition, studies have shown that iron chelators, such as

deferoxamine (DFO) and ciclopirox olamine (CPX), can

inhibit the occurrence of ferroptosis by inhibiting lipid

peroxidation (122–125).
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Lipid peroxidation is regulated by the glutathione

antioxidant system, which is composed of glutathione (GSH),

glutathione peroxidase (GPX), and glutaredoxin (GRX), and it

can effectively prevent ROS overgeneration (126, 127).

Glutamate, cystine, and glycine are the raw materials used for

the synthesis of GSH. Cystine enters the cell through the amino

acid antiporter Xc system, which is composed of the light chain

subunit SLC7A11 and the heavy chain subunit SLC3A2. The Xc

system exchanges cystine with glutamate in such a way that

cystine enters the cell and is further reduced to cysteine (128).

Glutamate cysteine ligase (GCL) catalyzes the formation of g-
glutamate-cysteine from glutamate and cysteine, which is the

rate-limiting step in GSH synthesis. Subsequently, g-glutamic

acid cysteine and glycine are catalyzed by GSH synthase (GSS) to

generate GSH (129). GSH effectively maintains Gpx in a reduced

state. Gpx can effectively scavenge intracellular hydrogen

peroxide and peroxide to maintain intracellular redox

homeostasis (130). Eight different Gpxs (Gpx1-8) have been

found in humans, and Gpx1-4 and Gpx6 are selenoproteins

(131). Compared with other members of the Gpx family, Gpx4 is

a lipid peroxidation-repair enzyme, and it can convert lipid

peroxides (LOOH) to their corresponding alcohols (LOH) (122,

132). Therefore, Gpx4 is considered a central inhibitor of

ferroptosis. Numerous studies have shown that inhibiting the

Xc-GSH-Gpx4 antioxidant system can induce ferroptosis in

cells. For example, erastin, sulfasalazine (SAS), and sorafenib

initiate ferroptosis in cells by inhibiting the Xc system (133, 134).

Butionine sulfoxamine (BSO) induces ferroptosis by inhibiting

GCL (134), while RSL3 can initiate ferroptosis in cells by

inhibiting the activity of Gpx4 (135) (Figure 8).

In recent years, studies have shown that ferroptosis is closely

related to endothelial cell death. For example, Qin et al. found
FIGURE 7

ROS trigger parthanatos in EC. AIF-1 apoptosis-inducing factor 1, ATP Adenosine triphosphate, MIF macrophage migration inhibitory factor, NAD
+ nicotinamide adenine dinucleotide, ox-LDL oxidized low density lipoprotein, PAR poly (ADP-ribose), PARP-1 poly (ADP ribosome) polymerase
1, ROS reactive oxygen species.
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that zinc oxide nanoparticles (ZnONPs) could induce iron and

lipid peroxidation in ECs in a dose- and time-dependent manner

(136). The team further applied the lipid reactive oxygen species

scavenger ferrostatin-1 and the iron chelator DFO to alleviate

ZnONP-induced ferroptosis in ECs (22). Luo et al. showed that

ferroptosis is related to ED and that the p53-xCT-GSH axis can

regulate the process of EC ferroptosis (137). Sheng et al. showed

that lysophosphatidylcholine (LPC) can induce increased

intracellular iron and lipid peroxide levels and mitochondrial

atrophy in EC. This process can be reversed by astragaloside IV

(AS-IV) (138). Therefore, ferroptosis is an important

mechanism by which ROS trigger programmed cell death in EC.
7 Outlook

In conclusion, hyperlipemia, hyperglycemia, nicotine and

hypertension are common pathogenic factors causing impaired

NO synthesis in EC, up-regulated expressions of pro-

inflammatory cytokines and intercellular adhesion factors in

EC, and EC death. ROS may be the common mechanism for

these pathological activities (8, 9, 86, 91, 93, 95). Under

pathological conditions, ROS in EC mainly originates from

mitochondria, NOXs, eNOS uncoupling, and XO (4, 5). In

addition, these pathways may independently or jointly cause

excessive accumulation of ROS in EC. ROS can cause impaired

NO synthesis through the eNOS uncoupling mechanism,

thereby causing vasomotor dysfunction (7). ROS can up-
Frontiers in Immunology 11
regulate the expression of pro-inflammatory cytokines and

intercellular adhesion factors in endothelial cells, such as IL-

1b, IL-18, ICAM-1, VCAM-1, and E-selectin, which are

participates the process of monocyte-endothelial cell adhesion,

increased vascular permeability, and monocyte differentiation to

macrophages (8, 9). Therefore, ROS is an important signal that

mediates the involvement of EC in inflammatory responses.

Furthermore, ROS can trigger endothelial cell death through

different molecular mechanisms, including pyroptosis,

parthanatos, and ferroptosis, which have been demonstrated in

some animal models of disease. For example, Zhuang et al. found

that Foxp1 expression was significantly downregulated in

atherosclerosis-susceptible endothelium. The team further

demonstrated that knockout of Foxp1 in ApoE-/- mice

promoted the up-regulation of NLRP3, caspase-1 and Pro-IL-

1b, increased IL-1b secretion, and enhanced monocyte adhesion,

migration and Infiltrates into the vessel wall of the aortic root,

thereby exacerbating the formation of atherosclerotic plaques

(60). Wu et al. found that nicotine can mediate the pyroptosis of

aortic endothelial cells and exacerbate the formation of

atherosclerotic plaques by constructing an ApoE-/- mouse

atherosclerosis model (93). Kong et al. found that targeting the

P2X7/NLRP3 signaling pathway prevents retinal endothelial cell

pyroptosis in diabetic retinopathy (139). Kasson et al. showed

that enhanced NF-kB activity impairs vascular function in male

type 2 diabetic mice through a PARP-1, Sp-1 and COX-2-

dependent mechanism (140). Abdul et al. found that

ferroptosis in brain microvascular endothelial cells of diabetic
FIGURE 8

ROS trigger ferroptosis in EC. BSO Butionine sulfoxamine, CoQ 10 coenzyme Q10, CPX ciclopirox olamine, DFO deferoxamine GCL glutamate
cysteine ligase, Gpx glutathione peroxidase, GSH glutathione, GSS GSH synthase, HMG-CoA 3-hydroxy-3-methyl-glutaryl-coenzyme A, Se
selenium, SOD superoxide dismutase, SAS Sulfasalazine, VitE vitamin E, O•−

2 superoxide, H2O2 hydrogen peroxide, OH• peroxyl radical, L lipid, L•

lipid free radical, LOO• lipid peroxy radical, LOOH lipid peroxide.
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mice is closely related to vascular degeneration and

neurovascular remodeling after stroke, and this process can be

reversed by DFO (141). Therefore, how to effectively scavenge

ROS may be an important target for the treatment of endothelial

cell death-related diseases. For example, N-acetylcysteine (NAC)

is a potent ROS scavenger. Studies have shown that NAC

inhibits pyroptosis, parthanatos, and ferroptosis by scavenging

ROS (93, 142, 143). However, the following question about ROS-

triggered EC death is unresolved and remains to be further

explored: Do pyroptosis, parthanatos, and ferroptosis processes

occur independently or simultaneously in the process of ROS-

triggered EC death?
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Glossary

ASC apoptosis-associated speck-like protein

ALR AIM2-like receptors

Ang II angiotension

AIF apoptosis inducing factor

Arg II arginase II

ATP Adenosine triphosphate

BSO Butionine sulfoxamine

CARD caspase-recruitment domain

CoQ 10 coenzyme Q10

CPX ciclopirox olamine

DFO deferoxamine

DUOX dual oxidases

EC endothelial cell

ED endothelial dysfuction

ER endoplasmic reticulum

ET-1 endothelin-1

ETC electron transport chain

FAD flavin adenine dinucleotide

FIIND function-to-find domain

Foxp1 Forkhead box P transcription factor 1

GSDMD Gasdermin D

Gpx glutathione peroxidase

Grx glutaredoxin

GSH glutathione

GSS GSH synthase

HMGCoA 3-hydroxy-3-methyl-glutaryl-coenzyme A

HMGB1 high mobility group box 1

Hsp heat shock protein

ICAM-1 intercellular adhesion molecule-1

IL-1b interleukin-1b

IL-18 interleukin-18

IL-1R IL-1 receptor

IL-18R IL-18 receptor

IRAK IL-1R-associated kinase

LDH lactate dehydrogenase

LPS lysophosphatidylcholine

MIF macrophage migration inhibitory factor

Mo-co molybdenum cofactor
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