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Abstract: Klebsiella is a genus of nosocomial bacterial pathogens and is placed in the most critical
list of World Health Organization (WHO) for development of novel therapeutics. The pathogens
of the genus are associated with high mortality and morbidity. Owing to their strong resistance
profile against different classes of antibiotics and nonavailability of a licensed vaccine, urgent efforts
are required to develop a novel vaccine candidate that can tackle all pathogenic species of the
Klebsiella genus. The present study aims to design a broad-spectrum vaccine against all species of
the Klebsiella genus with objectives to identify the core proteome of pathogen species, prioritize
potential core vaccine proteins, analyze immunoinformatics of the vaccine proteins, construct a
multi-epitopes vaccine, and provide its biophysical analysis. Herein, we investigated all reference
species of the genus to reveal their core proteome. The core proteins were then subjected to multiple
reverse vaccinology checks that are mandatory for the prioritization of potential vaccine candidates.
Two proteins (TonB-dependent siderophore receptor and siderophore enterobactin receptor FepA)
were found to fulfill all vaccine parameters. Both these proteins harbor several potent B-cell-derived
T-cell epitopes that are antigenic, nonallergic, nontoxic, virulent, water soluble, IFN-γ producer,
and efficient binder of DRB*0101 allele. The selected epitopes were modeled into a multi-epitope
peptide comprising linkers and Cholera Toxin B adjuvant. For docking with innate immune and
MHC receptors and afterward molecular dynamics simulations and binding free energy analysis, the
vaccine structure was modeled for tertiary structure and refined for structural errors. To assess the
binding affinity and presentation of the designed vaccine construct, binding mode and interactions
analysis were performed using molecular docking and molecular dynamics simulation techniques.
These biophysical approaches illustrated the vaccine as a good binder to the immune receptors and
revealed robust interactions energies. The vaccine sequence was further translated to nucleotide
sequence and cloned into an appropriate vector for expressing it at high rate in Escherichia coli K12
strain. In addition, the vaccine was illustrated to generate a good level of primary, secondary, and
tertiary immune responses, proving good immunogenicity of the vaccine. Based on the reported
results, the vaccine can be a good candidate to be evaluated for effectiveness in wet laboratory
validation studies.

Keywords: Klebsiella; pan-proteome; multi-epitopes vaccine; immunoinformatics; molecular dynam-
ics simulations

1. Introduction

The genus Klebsiella is ubiquitous in nature and comprises Gram-negative, rod shaped,
and oxidase negative bacteria, and has a prominent polysaccharide capsule [1]. The genus
is named after Edwin Klebs, a German–Swiss microbiologist. Species of this genus are
part of animal and humans normal flora found in the mouth, nose, and intestines [2].
They are 0.5 to 5.0 µm long and 0.3 to 1.5 µm wide [3]. From a medical perspective, the
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genus contains the following important species: K. aerogenes, K. granulomatis, K. oxytoca,
K. michiganensis, K. pneumoniae (K. p. subsp. Ozaenae, K. p. subsp. Ozaenae, K. p. subsp.
Pneumoniae, K. p. subsp. Rhinoscleromatis), K. quasipneumoniae (K. q. subsp. quasipneumoniae,
K. q. subsp. similipneumoniae), K. grimontii, K. variicola, and K. planticola [4]. Klebsiella species
are responsible for different diseases; notably, they cause pneumonia but also urinary
tract infections, meningitis, diarrhea, sepsis, and peritonitis and soft tissue infections [5].
The bacterial species mentioned are also implicated in spondyloarthropathies and anky-
losing spondylitis pathogenesis and in most cases, K. pneumoniae and K. oxytoca are the
main causative agents of Klebsiella-associated diseases [6]. Klebsiella pneumoniae is of prime
concern as it is a major cause of nosocomial infections and the isolated clinical strains
are found to be resistant against a broad range of antibiotics [7]. The pathogen is also
responsible for community acquired infection especially in individuals with underlying
conditions or who are immunocompromised [8].

β-lactam antibiotics are often used to treat K. pneumoniae infections and resistance emer-
gence against β-lactam made the treatment options limited [9]. Moreover, the K. pneumoniae
is naturally more resistant as they produce more β-lactamases including extended-spectrum
β-lactamases (ESBLs) [10]. These enzymes are capable of hydrolyzing cephalosporin and
penicillin thus making them ineffective. Consequently, the meropenem and imipenem
(carbapenem antibiotics) are applied for ESBL-producing Klebsiella species [11]. However,
the heavy use of antibiotics in clinical settings pushed the gut commensal Klebsiella species
to acquire carbapenem-resistance [12]. These strains harbor carbapenemase, a plasmid
encoded enzyme, to hydrolyze all carbapenems and make the strains super resistant
to all β-lactam antibiotics [13]. The two most prevalent carbapenems enzymes include
New Delhi metallo-beta-lactamase (NDM-1) and K. pneumoniae carbapenemase (KPC) [14].
Carbapenem-resistant Klebsiella species are the common carbapenem-resistant Enterobac-
teriaceae and are mainly responsible for high morbidity and mortality [15]. The epidemi-
ology success of KPC–K. pneumoniae strains is evident by the strain ST258 that is abun-
dant worldwide and account for ∼70% carbapenem resistance in the United States [16].
This multi-drug resistance by K. pneumoniae is a major hurdle in treating carbapenem-
resistant K. pneumoniae isolates in fatal cases where the bacteria were resistant to 26 an-
tibiotics [17]. The last line of therapy including tigecycline and colistin when used in
combination therapy has been revealed successful [18]. Nevertheless, because of nephro-
toxicity caused by colistin, such treatment is not a good option [19]. In addition, the use of
excessive colistin can result in the emergence of colistin resistance.

During the last several years, many trials have been conducted to evaluate K. pneumoniae
vaccines; however, no licensed vaccine is currently available [20]. Thus, urgent efforts
are required to combat this public health crisis. A 24 valent capsular polysaccharide
(SPC) vaccine in trials was unveiled to provide 80% of protection against K. pneumoniae
isolates, but the purified polysaccharide vaccines are weak immunogens [20]. Vaccines
containing four common Klebsiella O polysaccharides have been proposed as conjugate
vaccines that reported good immunogenicity in mice studies [20]. Traditional immuniza-
tion studies involve isolation of pathogen specific antigen, and reinjection into subject
organisms to evaluate protective immune responses [21]. Such procedures are costly and
time consuming. One disadvantage of the conventional vaccinology is that it is not ap-
propriate for pathogens such as Klebsiella species, as the genus comprises diverse species
each having variety of strains [22]. The search for finding conserved antigens, together
with their processing and assessment, would be exhaustive. Significant advancements
in DNA sequencing technologies, along with system biology, genomics, and proteomics
have allowed scientists to gain a better understanding of vaccine design [23]. By using
this integrated approach, it is now possible to test all antigens of a pathogen for their im-
munogenicity. Computational based genome mining to identify potential vaccine proteins
is now done through a technique called reverse vaccinology [24]. Meningococcus B was
the first pathogen that successfully was addressed by reverse vaccinology. The bacterium
surface proteins are extremely variable and homology exists between the pathogen capsular
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polysaccharide and human self-antigens [21]. Genomics based methods predicted 90 previ-
ously unknown antigens. Meningococcus B and 29 out of them were found to stimulate
antibodies that were able to kill the bacteria. In addition, the reverse vaccinology technique
is used for development of protein-based vaccines against Streptococcus pneumoniae and
Staphylococcus [21]. This technique can be integrated with several other approaches such
as pang-genomics, immunoinformatics, and different biophysical analysis to construct
a novel multi-epitope peptide [25,26]. The core vaccine proteins were identified using
pan-proteome analysis and used for broad spectrum epitopes prioritization [23]. Further,
it was ensured that the selected epitopes are vital for the pathogen survival that are not
human homologs, and are exposed to the host immune system for efficient recognition and
processing. Ideally, conserved epitopes that were found to generate specific B- and T-cell
responses were selected to enable indication of pathogen specific immune responses.

2. Methodology

The methodology of the study can be explained in a stepwise fashion and is illustrated
in Figure 1.
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Figure 1. Complete flow of work done to prioritize potential vaccine candidates from pan-proteome of Klebsiella species.

2.1. Proteome Retrieval and Subcellular Localization

Primarily, the reference proteomic data of all the seven species of Klebsiella were
retrieved from the NCBI database [27]. These seven species of Klebsiella include K. aerogenes,
K. oxytoca, K. michiganansis, K. pnemoniae, K. quasipneumoniae, K. grimontii, and K. variicola.
The proteomes were subjected to pan-proteome analysis to retrieve the core sequence.
The Bacterial Pan Genome Analysis (BPGA) tool [28] was used to perform pan-proteome
analysis. The core sequence retrieved through BPGA was then clustered through CD-
Hit [29] to remove redundant proteins from the core sequence. The threshold was set at
0.5, so all the sequences having 50% similarity were clustered together. The subcellular
localization of selected proteins was predicted through PSORTb 3.0 subcellular localization
prediction tool [30]. The surface proteins were then filtered using several parameters to
prioritize potential vaccine candidates for the pathogen [31–34].

2.2. Vaccine Candidate Prioritization Phase

Virulent proteins are a primary target for vaccine candidates because they play a
significant role in pathogenesis [35,36]. The nonredundant set of proteins were used in
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BLASTp search against the core virulent factor database (VFDB) [37] and those having
sequence identity ≥30% and bit score >100 were selected. Subsequently, the physiochemical
properties of proteins were checked using ProtParam tool [38]. The proteins having
molecular weight <110 kDa and thermostability index >40 are considered as ideal vaccine
candidates as they can be easily purified [39,40]. The proteins were then subjected to
transmembrane helices prediction by using HMMTOP 2.0 [41]. The proteins predicted to
show (1 or 0) outside transmembrane helices were selected [42]. The shortlisted proteins
were then BLAST against reference human proteome, which has “taxonomic ID: 9606” in
the BLASTp of NCBI and those with E-value < 1, bit score >100 and sequence identity
>30% were discarded [43]. All the homologous proteins were discarded to avoid the host’s
autoimmune reactions. Antigenicity of the proteins was predicted next through VaxiJen
2.0 with the threshold of 0.4 [44]. All proteins depicting an antigenicity score >0.5 were
selected as antigenic proteins and the other proteins were discarded. Thus, these proteins
that are highly antigenic towards T-cell receptors and antibodies are potential vaccine
targets. The next step was to predict the adhesive nature of selected protein candidates as
proteins having adhesive property are effective meditators of prompting pathogenesis. The
adhesive nature of proteins was checked using SPAAN server keeping all the settings at
default [45]. The AllerTOP2.0 [46] was then used to check the allergenicity of proteins that
had IC50 values ≤ 100 nM [43]. All the allergen proteins were removed to avoid allergic
reactions, leaving only nonallergen proteins. Another BLASTp search of NCBI against
Lactobacillus rhamnosus, Lactobacillus casei, and Lactobacillus johnsonii was performed to check
homology of proteins with the mentioned probiotic species [32]. All the proteins that were
showing no similarity were selected for epitope mapping analysis.

2.3. B-Cell and T-Cell Epitopes Prediction

Successively, the liner B-cells epitopes were then predicted by using Bepipred Linear
Epitope Prediction 2.0 [47], which is accessible at Immune Epitope Database (IEDB) with a
threshold of 0.5 [48]. The resulting peptides were then used in T-cell epitopes mapping in
IEDB T-cell epitopes prediction tools to predict subsequences that bind to alleles of major
histocompatibility complex (MHC) class I and II alleles [49]. The peptides with a percentile
score <10 are high affinity binders [40]. The MHCPred 2.0 analysis [50] was then executed
to calculate the binding affinity of the predicted epitopes for DRB*0101 allele and only those
with IC50 values ≤ 100 nM were selected [43]. Antigenicity, allergenicity, and virulence of
the common peptides finally selected were checked using VaxiJen [44], AllerTOP 2.0 [51],
and VirulentPred [52], respectively. The solubility of peptides was then checked using the
Innovagen tool, which is used as a peptide solubility calculator. All the peptides showing
good water solubility were selected. Subsequently, ToxinPred [53] was used to check the
toxicity of antigenic nonallergen virulent epitopes [54]. All the nontoxic peptides were
selected and subjected to check whether these epitopes can prompt IFN-gamma or not
using the IFN epitope server [55].

2.4. Designing and Processing of Vaccine Construct

The conventional vaccines using whole organism or large proteins engender nonspe-
cific immune responses as it carries unnecessary antigenic load [56]. The development of a
peptide vaccine, as a substitute to conventional vaccines, generates highly specific immune
responses as it depends on short peptides that are free from allergenic reactions [34,57].
However, peptide vaccines are weakly immunogenic [58]. To overcome this problem, all
the epitopes selected were fused using GPGPG linkers to induce an immune response
sufficiently strong to combat pathogens. This multi-epitope vaccine construct was then
joined to an adjuvant cholera toxin B (CTB) [59] using EAAAK linker. The computation of
various chemical and physical parameters of the vaccine construct was calculated using
the ExPASy Protparam tool [38]. It permits calculation of various parameters such as
instability index, amino acid composition, theoretical pI, molecular weight, and grand
average of hydropathicity (GRAVY). After this, a file was created in which all the epitopes
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were added with alleles in order to check worldwide population coverage by additionally
using population coverage, which is accessible at Immune Epitope Database (IEDB) [60].
The designed multi-epitopes vaccine construct should show extensive human population
coverage. The multi-epitopes vaccine construct was subjected to tertiary structure predic-
tions using 3Dpro of SCRATCH protein predictor [61]. The structure refinement was done
through GalaxyRefine of GalaxyWeb [62,63].

2.5. Blind Docking Analysis

Blind molecular docking is executed to analyze and observe the binding affinity of
multi-epitopes vaccine construct with immune receptors. If the designed vaccine construct
is showing interactions with host receptors and immune cells, then good immune responses
can be established. The blind docking of multi-epitopes vaccine construct was performed
by choosing TLR4, MHC-I, and MHC-II as receptors in PatchDock server [64]. The 3D
structure of TLR4, MHC-I, and MHC-II were retrieved from Protein Data Bank (PDB)
using code 4G8A, 1I1Y, and 1KG0, respectively. Additionally, the PatchDock complexes
were assembled through RMSD, which was set to default at 4.0 Å. The protein–protein
docking output generated through PatchDock was further subjected for refinement by
using a FireDock (Fast Interaction Refinement in Molecular Docking) [65]. The FireDock
helps to provide an effective platform for producing refined PatchDock complexes. After
this, all of the complexes that were showing lowest global energy were ranked at the top
and subjected to further evaluation. UCSF Chimera 1.13.1 [66] was used to investigate
intermolecular interactions among the immune receptors (TLR4, MHC-I, and MHC-II) and
the vaccine construct.

2.6. Molecular Dynamics Simulation Assay

The molecular dynamics simulation assay helps to analyze the stability and dynamics
of all the docked complexes in three steps: (a) system preparation, (b) preprocessing, and
(c) production phase. A 100 ns simulation run for the docked complexes was performed
using AMBER20 [67]. The first phase of the simulation was to prepare the complexes
parameters using antechamber module. To solvate the complexes into TIP3P solvation
box, the leap module of AMBER was used and the input value for size was set at 12 Å.
To study the intermolecular and intramolecular interactions in molecular dynamics assay,
a force field of ff14SB was applied [68]. Na+ ions as counter ions were incorporated into
the system for neutralization of charges. In the second round of the preprocessing phase,
energies of the systems were minimized: energy minimization of hydrogen atoms (500
cycles), water box (1000 cycles), complete system atoms (1000 cycles), and nonheavy atoms
(300 cycles). Subsequently, using NVB ensemble, the heating process was initiated and
temperature was maintained at 300 K. To maintain temperature and hydrogen bonds of the
systems, the Langevin dynamics [69] and SHAKE algorithm [70] were used, respectively.
Then, in the next step, the complexes pressure was maintained for 100 ps to achieve
pressure equilibrium using NPT ensemble. The CPPTRAJ module [71] was used to evaluate
simulation trajectories.

2.7. Estimation of Binding Free Energy

MMPBSA.py module [72] was employed to calculate the solvation and associated
binding free energies produced as an outcome of interactions between the vaccine and all
three receptors. The binding free energy was calculated on total of 100 frames taken from
the molecular dynamics simulation’s trajectories. The equation used to determine the total
binding energy for all the docked complexes follows:

∆G bind = ∆G bind, vaccum + ∆G solv, − (∆G solv, vaccine+ ∆G solv, receptor)
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2.8. In Silico Immune Profiling of Multi-Epitopes Vaccine Construct

Consequently, the C-Immune Simulation server (or C-ImmSim) [73] was used to check
the in silico immune profiling of the multi-epitopes vaccine construct. The algorithm
used in this server is mainly based on position-specific matrix (PSSM) to evaluate the
immunogenic potential of a given antigen. All the input parameters were set as default
except number of steps, which were set to 1000 [74].

2.9. Codon Adaptation and Cloning

The sequence of vaccine was back-translated to generate DNA sequence and then
codon usage was adapted to E. coli K-12 strain to achieve high expression of the vaccine.
This was done through Java Codon Adaptation Tool (JCat) server [75]. Expression of
the construct was assessed by codon adaptation index (CAI) and GC-content. This was
followed by in silico cloning of the vaccine in E. coli pET28a vector by Snapgene tool.

2.10. Disulfide Engineering

The stability of protein was increased by introduction of disulfide bonds [76]. Design
2.0 [77] was used to perform disulfide engineering.

3. Results and Discussion
3.1. Pan-Proteome Analysis and Prioritization of Potential Vaccine Candidates

Advances in sequencing technologies and the field of metagenomics resulted in
a paradigm shift in microbial genomics, thus allowing comparison of large scale pan-
genomics studies. This further facilitates estimation of genomic diversity and determina-
tion of highly conserved core genomes. In vaccine designing, this core genome has broad
spectrum applications to select the most conserved antigen for a broad spectrum vaccine
design [28,78]. A total number of 973 proteomes were retrieved from the NCBI genome
database, the details of which are tabulated in Table S1, and only reference proteome of
each Klebsiella species was used for pan-proteome analysis because the reference proteome
is completely annotated. The core-proteome of the referenced species contains ~22,393 pro-
teins with an average of 3635 proteins for each strain. The core–pan plot total genes and
core genes for each analyzed genome are presented in Figure 2. The core proteome was
then filtered for several parameters that were set to prioritize potential vaccine candidates.

These parameters can be briefly discussed as nonredundancy check, subcellular lo-
calization, homology check against human host, antigenicity check, allergenicity check,
virulent analysis, adhesion analysis, physicochemical characterization, and BLASTp check
against human probiotic bacteria. First, redundancy check was performed that predicted
5864 proteins as nonredundant and ensured that only one copy of each protein is present
in the core genome sequence file [79]. Furthermore, only 43 protein sequences were found
secretory and exoproteome in nature. The surface-localized proteins are good candidates
for vaccine design [80]. Virulent proteins have been reported to have an important role in
the pathogenesis of the organism and play a vital role as a good vaccine candidate [34].
Virulent peptides can provoke immune response properly, so virulent protein analysis
was performed in order to predict virulent proteins. Virulent analysis indicated that 19
proteins are virulent and these proteins were used for further analysis. The 19 virulent
proteins are tabulated in Table 1. Next, transmembrane helices check and physicochemical
analysis was carried out that filtered 18 proteins as thermodynamically stable, have few
transmembrane helices, and exhibit good physicochemical properties. To avoid cross
reactivity and autoimmune reactions inside the host, all core proteins sequences were
subjected to comparative homology analysis, among which 15 proteins were predicted
as nonhomologous to humans. From 15 human nonhomologous proteins, 34 proteins
were homologues to human normal intestinal flora, which were discarded from the study.
Antigenic proteins are important for designing a vaccine as they are the prime component
to stimulate host immune responses against any antigen. Five proteins were predicted
as virulent and forwarded to additional analysis. Similarly, an allergenicity check was
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performed to discard proteins that are able to generate allergic reactions. As such proteins
are discouraged during vaccine design, they were not picked and only nonallergic protein
candidates were opted. Only two proteins were picked as nonallergenic and used in down-
ward analysis. Adhesion analysis was important in part to ensure selection of proteins
that are key in pathogen attachment to the host cells and significant for initiating infection
pathway [81]. In the past, adhesive proteins were unveiled to be important candidates
for vaccine development [82]. Herein, both the proteins were found to play adhesive role
and were selected. Lastly, to avoid accidental inhibition of the good bacteria, the filtered
proteins were also tested for homology against different probiotic species. Proteins with
no significant hits were only selected. The BLASTp results concluded both proteins as
nonhomologous to the host probiotic bacteria. These two proteins were TonB-dependent
siderophore receptor and siderophore enterobactin receptor FepA.
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3.2. Mapping of B and T Cell Epitopes

In B and T cell epitope mapping phase, all the prioritized shortlisted proteins sequence
were analyzed for epitope prediction. Consequently, three B cell epitopes were predicted
for both proteins and predicted B cell epitopes were further screened for B cell derived T
cell epitopes, as shown in Table 2. Antigenicity of the predicted epitopes was checked. Only
those epitopes were selected whose predicted antigenic prediction score was greater than
0.5 and were considered as good candidates for vaccine development. Three epitopes were
predicted as good antigenic epitopes for TonB-dependent siderophore receptor while four
epitopes were selected for siderophore enterobactin receptor FepA. The epitopes selected
fulfill different good antigenic epitope properties, such as antigenic, soluble, nonallergenic,
nontoxic, and virulent. The population coverage of the epitopes is 82.86%. Further details
on the population coverage can be found in Table S2.
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Table 1. Different set of parameters used to prioritize potential vaccine candidates. In the table, only virulent proteins are shown along with the value for all the vaccine parameters.

Proteins

Transmembrane
Helices Physiochemical Properties NCBI Blast(Human) Antigenisity Adhesion Allergenisity NCBI Blast(L. Rhamnosus) NCBI Blast(L. Casei) NCBI Blast(L. L. Johnsonii)

TMHMM No of
Residues MW Theoretical

PI

Negatively
Charged
Residues

Positively
Charged
Residues

Gravy Aliphatic
Index

Instability
Index Stability Coverage Id E-value Vexijen/0.7 Vaxign - Coverage Id E-

Value Coverage Id E-
Value Covarge Id E-

Value

>core/178/1/Org1_Gene2817 0 871 94,813.23 6.36 76 71 −0.385 74.71 27.91 Stability no simi-
larity

no simi-
larity

no simi-
larity 0.6441 - - - - - - - - - - -

>core/538/1/Org1_Gene4990 0 618 68,660.6 5.2 71 57 −0.58 69.72 26.43 Stability no simi-
larity

no simi-
larity

no simi-
larity 0.6041 - - - - - - - - - - -

>core/644/1/Org1_Gene1920 0 581 62,110.64 5.85 66 58 −0.22 81.79 27.91 Stability 88% 33.27% 1.00E-
80 - - - - - - - - - - - -

>core/870/1/Org1_Gene3696 0 528 55,681.97 5.9 51 39 −0.071 91.27 42.67 unstable - - - - - - - - - - - - - - -

>core/5642/1/Org1_Gene690 0 206 22,970.88 6.23 25 22 −0.386 77.38 31.68 Stability 100% 43.60% 5.00E-
56 - - - - - - - - - - - -

>core/5897/1/Org1_Gene256 0 193 21,147.69 5.76 19 14 −0.141 78.08 22.96 Stability 100% 43.14% 2.00E-
47 - - - - - - - - - - - -

>core/6413/1/Org1_Gene5320 0 161 16,537.39 5.15 10 8 0.096 89.69 32.37 Stability no simi-
larity

no simi-
larity

no simi-
larity 0.9532 0.965 ALLERGEN - - - - - - - - -

>core/178/3/Org3_Gene3169 0 878 94,683.95 6.04 75 68 −0.366 75.02 24.93 Stability no simi-
larity

no simi-
larity

no simi-
larity 0.6563 - - - - - - - - - - -

>core/276/3/Org3_Gene2971 0 789 86,600.87 5.41 81 66 −0.583 60.04 31.03 Stability no simi-
larity

no simi-
larity

no simi-
larity 0.6852 - - - - - - - - - - -

>core/325/3/Org3_Gene4813 0 753 82,490.82 5.72 75 62 −0.573 66.99 29.48 Stability no simi-
larity

no simi-
larity

no simi-
larity 0.8125 0.856 NONALLERGEN

no
simi-
larity

no
simi-
larity

no
simi-
larity

no
simi-
larity

no
simi-
larity

no
simi-
larity

no
simi-
larity

no
simi-
larity

no
simi-
larity

>core/538/3/Org3_Gene4136 0 618 68,572.26 5.07 69 51 −0.586 69.72 25.21 Stability no simi-
larity

no simi-
larity

no simi-
larity 0.625 - - - - - - - - - - -

>core/870/3/Org3_Gene994 0 527 55,704 5.75 53 40 −0.089 89.39 37.5 Stability 95% 27.03% 2.00E-
21 0.4053 - - - - - - - - - - -

>core/538/4/Org4_Gene3945 0 622 69,756.5 5.22 71 56 −0.668 64.55 25.01 Stability no simi-
larity

no simi-
larity

no simi-
larity 0.5795 - - - - - - - - - - -

>core/3258/4/Org4_Gene4637 0 300 31,253.99 9.01 10 15 0.064 85.13 31.98 Stability no simi-
larity

no simi-
larity

no simi-
larity 0.7627 0.908 ALLERGEN - - - - - - - - -

>core/6413/4/Org4_Gene2075 0 167 17,112.08 5.03 9 7 0.095 84.73 23.68 Stability no simi-
larity

no simi-
larity

no simi-
larity 0.8816 0.959 ALLERGEN - - - - - - - - -

>core/591/6/Org6_Gene4047 0 597 61,743.78 7.64 37 38 −0.123 85.28 15.68 Stability no simi-
larity

no simi-
larity

no simi-
larity 0.6161 - ALLERGEN

>core/325/7/Org7_Gene2597 0 742 82,442.17 5.42 86 73 −0.68 64.78 33.5 Stability no simi-
larity

no simi-
larity

no simi-
larity 0.8217 0.807 NONALLERGEN

no
simi-
larity

no
simi-
larity

no
simi-
larity

no
simi-
larity

no
simi-
larity

no
simi-
larity

no
simi-
larity

no
simi-
larity

no
simi-
larity

>core/538/7/Org7_Gene4577 0 615 68,043.77 5.17 66 51 −0.481 70.99 26.7 Stability no simi-
larity

no simi-
larity

no simi-
larity 0.5512 - ALLERGEN - - - - - - - - -

>core/870/7/Org7_Gene4277 0 527 56,010.35 6.05 49 40 −0.117 89.73 41.54 unstable - - - - - - - - - - - - - - -
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Table 2. Final set of selected epitopes that were filtered based on several parameters.

Proteins B-Cell Epitopes T-Cell Epitopes Percentile
Rank MHC II Percentile

Rank
Common
Peptides Antigenicity/0.5 Allergenicity Solubility MHC Pred Toxicity Virulent IFN

Gamma Final

>core/325/3/Org3_Gene4813
(TonB-dependent

siderophore receptor)

YGRQKPKRFNYKGESVSGSELNEV RQKPKRFNY 1.3 RQKPKRFNYKGESVS 54 RQKPKRFNY 0.9784 Antigen nonallergen Good water
solubility 2.37 nontoxin Virulent positive Selected

YSRQGNLYAGDTQNTNTSTLVKSMYGKETNRLY NTNTSTLVK 2.3 QNTNTSTLVKSMYGK 55 NTNTSTLVK 0.7856 Antigen nonallergen Good water
solubility 55.98 nontoxin Virulent positive Selected

SKTQADAQDINSGHEAARTGSYAGSYPAGREGVVNKDIHG QADAQDINS 7.5 QADAQDINSGHEAAR 85 QADAQDINS 1.4865 Antigen nonallergen Good water
solubility 4.83 nontoxin Virulent positive Selected

>core/325/7/Org7_Gene2597
(siderophore enterobactin

receptor FepA)

SRQGNLYAGDTQNTNSNDLVKENYGKETNRLYR SNDLVKENY 0.24 SNDLVKENYGKETNRLYR 59 SNDLVKENY 0.8435 Antigen nonallergen Good water
solubility 46.99 nontoxin Virulent positive Selected

QTNPNYILYSKGQGCYASKSGCYLQGNDDLKAE YLQGNDDLK 3.4 GCYLQGNDDLKA 41 YLQGNDDLK 1.4275 Antigen nonallergen Good water
solubility 21.73 nontoxin Virulent positive Selected

LDKTQADAWDINQGHQSERTGIYADTLPAGREGVE

QSERTGIYA 1.7 QSERTGIYADTL 55 QSERTGIYA 0.5139 Antigen nonallergen Good water
solubility 33.19 nontoxin Virulent positive Selected

QADAWDINQ 4.5 QADAWDINQGHQS 71 QADAWDINQ 0.8036 Antigen nonallergen Good water
solubility 10.09 nontoxin Virulent positive Selected
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3.3. Multi-Epitopes Vaccine Construct

A multi-epitopes vaccine construct was engineered that comprises different epitopes
from the prioritized vaccine proteins and fused in order to generate substantial immune
responses. In total, seven epitopes (noted in Table 2) were selected based on their ability to
fulfill several different parameters, as presented in Table 2. The selected epitopes are capable
of eliciting both humoral- and cell-mediated immunity as the epitopes contain sequences
of both B and T cells. In addition, the epitopes are free from allergic sequence, which
ensures avoiding allergic reactions. The epitopes are nontoxic and predicted to not cause
any toxicity inside the cells. Similarly, the epitopes are water soluble and have high affinity
for the most prevalent DRB*0101 alleles, thus providing them with an efficient ability to
binding to the host immune receptors [40]. The epitopes are antigenic and vital in binding
with the products of immune system. Further, the epitopes are virulent, which ensures the
epitopes to activate infectious pathway and allow the host immune system to respond to
the antigen. The epitopes were joined via GPGPG linkers that allow easy presentation of
the epitopes to the host immunity and keep the epitopes separated [32]. The final epitopes
peptide was then joined to an adjuvant molecule to further boost the immune simulation
ability of the designed vaccine [83]. The cholera B subunit was considered as the adjuvant
molecule herein as the adjuvant is safe to be used in humans and allows active stimulation
of cytotoxic T cells, which is a key player in destroying foreign pathogens inside the human
body [59,84]. The designed vaccine molecule is 222 amino acid long, spanning epitopes
from two vaccine proteins. The designed vaccine construct is schematically presented in
Figure 3A.
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3.4. Three Dimensional Structure Modeling and Processing

The secondary and 3D structure of the vaccine is presented in Figure 3A,B. The 3D
structure of the vaccine was modeled ab initio as no appropriate template structure was
available for homology-based structure prediction. The plot analysis presented by Ra-
machandran has shown the residues of the vaccine are in highly preferred zones, with 84.5%
in most favored regions, 12.3% in additionally allowed regions, and 2.8% in generously
allowed regions (Figure 3D). The ERRAT score of the vaccine is 80.24 and the Verify-3D
score is 81.98. From the secondary structure point of view, the vaccine has 36.9% of alpha
helix, 5.4% 3–10 helix, and 57.7% of beta turns, gamma turns, and helix–helix interactions.
Once the vaccine model was achieved, loop modeling was performed to obtain the most
optimal structure. In this regard, the residues-range Gln158-Asp160, Ala161-Ser172, and
Pro182-Gly199 loop regions were loop modeled using Galaxyloop. Next, the structure
was refined for structural errors. The refined structures along with the initial structure are
given in Table 3. The top one structure was selected because of improved galaxy energy of
−3648.56 kcal/mol. The structure also has improved residues in the Rama-favored region,
i.e., 90.5%. The refined model also has improved rotamer and clash scores.

Table 3. Refined vaccine models together with different parameters. The refined models are ranked
on basis of galaxy energy.

Model RMSD MolProbity Clash
Score

Poor
Rotamers

Rama
Favored

GALAXY
Energy

Initial 0 3.91 109.2 9.7 84.5 24,937.41

MODEL 1 0.89 1.48 1.9 0.6 90.5 −3648.56

MODEL 2 1.29 1.56 3 0 92.3 −3646.33

MODEL 3 0.88 1.50 2.4 0 92.3 −3638.63

MODEL 4 0.88 1.35 1.4 0 91.8 −3624.25

MODEL 5 0.95 1.47 1.9 0 90.9 −3623.95

MODEL 6 0.85 1.56 2.4 0 90.5 −3618.86

MODEL 7 1.65 1.57 3 0 91.8 −3617.76

MODEL 8 2.75 1.62 3.2 0 91.4 −3617.33

MODEL 9 1.45 1.51 2.7 0 92.7 −3616.55

MODEL 10 1.05 1.66 3.5 0.6 90.9 −3616.14

3.5. Physiochemical Analysis of the Vaccine

The overall weight of the vaccine is 23.89 kDa. This small-size vaccine allows its easy
purification during experimental studies. The vaccine construct was found to be positive
for antigenicity score of 0.93. In addition, the vaccine construct was further checked
for its solubility prediction that revealed good water solubility. The vaccine was further
reported to be a nonallergen. Stability index value of the vaccine is 26.23 showing that
the vaccine construct is stable. The GRAVY index (−0.546) highlighted that the vaccine
hydrophilic. The pI value of the vaccine is 8.41 while its aliphatic index score is 69.10.
The physicochemical properties of vaccine are presented in Figure 4.
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3.6. Interaction Analysis

Molecular docking approach was used to dock the vaccine construct with immune
receptors in order to check its binding affinity and presentation ability to the host immune
system for robust production of immune responses [85]. The PATCHDOCK solutions are
given in Tables S3–S5, respectively. The top 10 best solutions of the vaccine with TLR4,
MHC-I, and MHC-II are tabulated in Table 4.

For each complex, the best solution in term of global energy was selected. For TLR4,
solution 4 of PATCHDOCK was selected as the best complex as its global binding energy
score is −16.01 kcal/mol, which can be split into −31.00 kcal/mol from attractive van der
Waals energy, 8.99 kcal/mol from repulsive van der Waals energy, 10.72 kcal/mol from
atomic energy contact, and −4.13 kcal/mol from hydrogen bond energy. The vaccine was
disclosed to form multiple hydrogen bonds with the TLR4 receptor via interaction with
Gln81, Thr106, Lys130, Lys153, Ser207, His229, Lys351, Ser352, Phe573, Asn575, Val602,
Val604, and Glu605 (Figure 5A). Similarly, in the case of MHC-I, solution 7 was selected
because of global energy of −2.22 kcal/mol, with contribution of −2.06 from attractive van
der Waal energy, 0.04 kcal/mol from repulsive van der Waals energy, 0.98 kcal/mol from
atomic contact energy, and −0.50 kcal/mol energy from hydrogen bond. The following
residues of the MHC-I interact through hydrogen bond with Asp77, Leu81, Gly83, Tyr84,
Asn86, Glu89, Arg97, Met98, Tyr99, His114, Gln115, Tyr116, Tyr118, Ile124, Lys127, Thr134,
Thr143, Trp147, and Val152 (Figure 5B). Solution 7 was selected for MHC-II. The global
energy of this complex is −39.32 kcal/mol. The vaccine interacts with Pro16, Asp17, Gln18,
Gly20, Asp35, Lys39, Ala64, Leu66, Glu71, Ile72, Lys75, and Ala61. Asn118, Pro127, Thr129,
and Glu134 (Figure 5C).
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Table 4. Refined docked solutions of vaccine with TLR4, MHC-I, and MHC-II. All values are given in kcal/mol.

TLR4

Rank Solution
Number Global Energy Attractive van der

Waals Energy
Repulsive van der

Waals Energy
Atomic

Contact Energy
Hydrogen

Bonds Energy

1 4 −16.01 −31.00 8.99 10.72 −4.13

2 2 −8.24 −30.86 13.13 15.55 −4.23

3 1 −3.81 −33.73 10.52 21.45 −6.01

4 10 4.69 −45.43 21.19 20.21 −1.33

5 5 8.46 −24.26 14.75 19.26 −1.50

6 9 10.47 −0.37 0.00 1.03 0.00

7 6 17.68 −18.48 22.97 8.59 −1.86

8 7 23.80 −20.71 10.74 11.10 −0.81

9 3 31.16 −12.53 25.41 11.03 −0.30

10 8 44.88 −21.53 7.66 10.71 −2.45

MHC-I

Rank Solution
Number Global Energy Attractive van der

Waals Energy
Repulsive van der

Waals Energy
Atomic

Contact Energy
Hydrogen

Bonds Energy

1 7 −2.22 −2.06 0.04 0.98 −0.50

2 9 12.40 −0.55 0.00 0.34 0.00

3 8 13.34 −31.79 53.87 6.76 −5.68

4 4 48.19 −31.31 94.84 6.68 −8.33

5 2 603.03 −55.26 811.32 5.43 −5.36

6 10 654.52 −25.48 850.38 7.08 −5.82

7 5 697.54 −49.00 968.22 −2.34 −3.14

8 3 1338.16 −36.09 1705.36 9.00 −6.47

9 1 1394.24 −29.34 1801.68 −2.37 −1.68

10 6 4166.32 −67.09 5348.85 −7.31 −7.27

MHC−II

Rank Solution
Number Global Energy Attractive van der

Waals Energy
Repulsive van der

Waals Energy
Atomic

Contact Energy
Hydrogen

Bonds Energy

1 7 −39.32 −35.52 14.84 6.51 −2.57

2 9 −32.36 −28.35 9.77 −1.69 −0.95

3 4 −25.80 −29.69 12.42 15.73 −4.94

4 2 −18.97 −41.15 34.17 3.31 −5.99

5 1 −9.05 −7.99 1.86 1.04 −0.31

6 8 3.14 −13.88 1.90 6.13 −0.67

7 10 7.17 −22.42 45.49 −0.73 −1.11

8 3 13.32 −0.85 0.00 −0.73 0.00

9 5 13.70 −2.59 1.00 2.27 −0.41

10 6 1319.04 −56.48 1760.85 6.51 −6.93
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3.7. Molecular Dynamics Simulation Analysis

Taking into account the effectivity of molecular dynamics simulation in validating
complexes dynamics and stability, 200 ns long all atom MD simulations was performed for
the best docked vaccine and immune receptors complex. This analysis was essential for
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understanding the valuable information regarding the system’s dynamics and to shed light
on key vaccine binding interactions with the receptors. The trajectories of MD simulations
were evaluated for different structural parameters such as root mean square deviations
(RMSD) [86], root mean square fluctuations (RMSF) [87], and radius of gyrations (RoG) [88].
All these analyses were carried out considering carbon alpha atoms of the systems. RMSD
was calculated first for all systems to decipher the extent of deviations the complexes can
experience, considering the initial complex conformation as a reference. Higher RMSD
is the output of significant instability and can be correlated to conformational changes of
the investigated system. As depicted in Figure 6A, the systems are undergoing consistent
conformational changes as the time proceeds; however, the changes are not sudden and
minor regarding the docked conformation. These changes are within the limits and are
not affecting overall intermolecular binding and interactions. The inspection of the steady
RMSD increase reveal large and complexity of the systems and the presence of large
number of loops that is flexible in nature and more dynamic. The TLR4 vaccine complex
was found to show high RMSD compared to the MHC-I and MHC-II vaccine complexes.
The maximum RMSD reached by the systems were as follows: TLR4 vaccine complex
(8 Å), MHC-I vaccine complex (5 Å), and MHC-II vaccine complex (4 Å). Further insights
were gained by knowing residue stability of the docked site. For this purpose, the systems
RMSDs were split as per residue. The majority of the interacting receptor residues with
the vaccine molecule unraveled a highly stable nature, as can be interpreted by the lower
RMSF value shown in Figure 6B. The terminal residues in contrast to the core residues
were found to have more fluctuations, which are expected due to the flexible nature of the
biomolecule terminals. Overall, the average RMSF of the systems is <3 Å, which indicates
formation of highly stable complexes and good affinity of the vaccine molecule for the
receptors. Lastly, conformational equilibrium of the complexes was evaluated by RoG
analysis. Lower RoG value implies a tight packing of the complexes while a higher value
implies and corresponds to a loose packing of system’s atoms. The RoG analysis results
were in line with that of RMSD (Figure 6C). The TLR4 vaccine complex was reported to
produce a higher RoG value, which is obvious because of the heavy nature of the complex.
The highest RoG for the TLR4 vaccine complex reaches 90 Å, while for the MHC-I and
MHC-II vaccine complexes the maximum RoG value is 60 and 45 Å, respectively.

3.8. Calculation of Binding Free Energies

The MMGB/PBSA method is a popular technique and commonly employed to ac-
curately predict the binding free energies of complexes [89]. This method is less com-
putationally expensive and more productive than most molecular docking approaches.
MMGB/PBSA infers net binding free energy, where negative binding free energy is an
indication of high receptor–ligand affinity, while positive net binding energy demonstrates
low-docked stability. It was estimated that the TLR4 and MHC-I vaccine complexes report
that both gas phase and solvation energy highly dominate the intermolecular interactions.
In particular, the van der Waals energy, followed by electrostatic energy, was favorable in
complex formation. Likewise, the polar solvation energy showed significant domination
while nonpolar solvation energy is also supporting complex formation. The net binding
free energy of complexes greatly supports intermolecular affinity by securing energy values
of −714.28 kcal/mol (MMGBSA) and −678.52 kcal/mol (MMPBSA) for the TLR4 vaccine
complex and −610.69 kcal/mol (MMGBSA) and −649.36 kcal/mol (MMPBSA) for the
MHC-I vaccine complex. For the MHC-II vaccine complex, the van der Waals energy
played a significant role in binding affinity while electrostatic energy is nonsignificant. The
polar and nonpolar solvation energy demonstrates favorable contribution to intermolecular
affinity. The net binding energy of the MHC-II vaccine complex is −73.29 kcal/mol in case
of MMGBSA and −74.82 kcal/mol in MMPBSA. The contribution of each energy term in
MMGBSA and MMPBSA for complexes is tabulated in Table 5.
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Table 5. MMGB/PBSA binding free energies of receptor(s)–vaccine complex. All values are given
in kcal/mol.

MMGBSA MMPBSA

TLR4 Vaccine Complex

Energy Component Average Energy Component Average

VDWALLS −324.47 VDWALLS −324.47

EEL −172.48 EEL −172.48

EGB −198.69 EPB −159.57

ESURF −18.64 ENPOLAR −22.00

Delta G gas −496.95 Delta G gas −496.95

Delta G solve −217.33 Delta G solve −181.57

Total −714.28 Total −678.52

MHC-I Vaccine Complex

Energy Component Average Energy Component Average

VDWALLS −311.42 VDWALLS −311.42

EEL −172.58 EEL −172.58

EGB −105.66 EPB −147.83

ESURF −21.03 ENPOLAR −17.53

Delta G gas −484 Delta G gas −484

Delta G solve −126.69 Delta G solve −165.36

Total −610.69 Total −649.36

MHC-II Vaccine Complex

Energy Component Average Energy Component Average

VDWALLS −80.35 VDWALLS −80.35

EEL 90.16 EEL 90.16

EGB −67.33 EPB −73.09

ESURF −15.77 ENPOLAR −11.54

Delta G gas 9.81 Delta G gas 9.81

Delta G solve −83.1 Delta G solve −84.63

Total −73.29 Total −74.82

3.9. In Silico Expression Analysis of Multi-Epitope Vaccine Construct

Codon optimization defines genetic engineering methodologies that optimize codon
to assure a maximum level of targeted protein production and expression. Before codon
optimization, the peptide sequence of the final vaccine construct was reverse transcribed
to DNA sequence for codon optimization by using the java codon optimization tool (JCat
tool), and the expression system was investigated by CAI (codon adaptation index) and
GC content of construct. The CAI value of the vaccine is 0.96 and GC content is 52.4%.
The CAI value is considered good and the vaccine sequence can be inferred to have good
expression rate. Lastly, the optimized vaccine construct was cloned into pET-28a(+) and
the expression vector, as shown in Figure 7.
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3.10. Immune Simulation

C-Immune simulation was conducted in order to predict putative immune responses
of the model vaccine construct. Both primary and secondary responses with respect to
days and major immune players are shown in Figure 8A. Robust level of IgM and IgG
can be seen, and combined IgM and IgG ratios reached 25,000 counts/mL. Among the
interleukins and cytokines, the IFN-g was found in high concentration in response to the
antigen (Figure 8B).
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3.11. Disulfide Engineering of the Vaccine

Disulfide engineering is considered an important tool and used extensively in im-
proving protein stability and modifying functional characteristics. The designed vaccine
construct was subjected to disulfide engineering to highlight less stable regions of the vac-
cine and improve it for future applications. Concerning the nine residue pairs (Lys44-Arg56,
Gln70-Ser76, Leu98-Lys102, Val103-Ile120, Asn144-Thr149, Gly155-Asp163, Gln158-Asp160,
Ala161-Ser172, and Pro182-Gly199), the binding energy is an important contributor to
vaccine instability and was high for all the residues (>2 kcal/mol). The wild and mutant
structure of the vaccine is presented in Figure 9.
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4. Conclusions

Klebsiella species are responsible for variety of infections, including life threatening
respiratory, bloodstream, and liver infections. Since no FDA licensed vaccine is available
for preventing Klebsiella infections, there is an urgent need to propose novel vaccine candi-
dates to be experimentally tested for immune protection efficacy. The traditional vaccine
design strategy is expensive and very slow. Computational approaches in this regard can
accelerate vaccine development process by providing ideal vaccine candidates against
Klebsiella. In this present study, we applied a computational vaccine design approach on all
reference genome of Klebsiella genus species and as such identified two highly conserved
and potential vaccine candidates that fulfilled several vaccine candidacy parameters. These
proteins are TonB-dependent siderophore receptor and siderophore enterobactin receptor
FepA. Both proteins were subjected to epitope mapping phase where only seven epitopes
were highly ranked and used in a multi-epitope peptide vaccine construction. Further, the
designed vaccine ensemble revealed robust interaction energy and has a stable binding
conformation with the tested immune receptor. The application of computer aided vaccine
design can significantly reduce the vaccine development cost and in less time. The process
can also aid in identifying the correct vaccine candidates for experimental evaluations.
The results of the study are promising and must be evaluated experimentally to validate
biological effectiveness of the designed vaccine construct.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/vaccines9101087/s1. Table S1. Statistics of species; Table S2. Population coverage statistics;
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Table S3. Results of multi-epitope vaccine binding with TLR4; Table S4. Results of multi-epitope
vaccine binding with MHCI; Table S5. Results of multi-epitope vaccine binding with MHCII.
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