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Abstract: We theoretically investigate Fano resonance in the absorption spectrum of a quantum
dot (QD) based on a hybrid QD-nanomechanical resonator (QD–NR) system mediated by Majorana
fermions (MFs) in superconducting iron (Fe) chains. The absorption spectra exhibit a series of
asymmetric Fano line shapes, which are accompanied by the rapid normal phase dispersion and
induce the optical propagation properties such as the slow light effect under suitable parametric
regimes. The results indicated that the slow light induced by MFs can be obtained under different
coupling regimes and different detuning regimes. Moreover, we also investigated the role of the NR,
and the NR behaving as a phonon cavity enhances the slow light effect.
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1. Introduction

Majorana fermions (MFs) have witnessed significant progress in the past few decades
in condensed matter systems due to their potential applications in decoherence-free quan-
tum computation and quantum information processing [1] because they obey non-Abelian
statistics. Although proposed originally as a model for neutrinos, MFs have recently been
predicted to occur as quasi-particle bound states in engineered solid state systems [2], such
as semiconducting nanowire/superconductor (SNW/SC) hybrid structure [3–6], ferromag-
netic atomic chains on a superconductor [7], iron-based superconductor hybrid devices [8],
topological superconductors [9,10], and topological insulator structures [11]. To observe
Majorana-like signatures in the hybrid solid-state systems, a few significant and represen-
tative experimental schemes have been proposed, such as the zero-bias peaks (ZBPs) in
tunneling spectroscopy [3–7], the Josephson effect [12], Coulomb blockade spectroscopy [9],
and the spin-resolved measurements [13].

On the other hand, due to the significant progress in modern nanoscience and nan-
otechnology, artificial atoms, i.e., quantum dots (QDs) [14], indicate the ideal intermediary
to detect and investigate MFs both theoretically [15–19] and experimentally [20]. We found
that QDs are always treated as only a resonant level [15–19] in the detection of MFs with
QDs in the electrical domain. Different from the previous schemes for detecting MFs, we
presented an optical scheme for probing MFs with QD treated as a two-level system (TLS)
and driven by the optical pump–probe technology [21,22], which may provide a potential
supplement for detecting MFs. In order to investigate MF-induced coherent optical propa-
gation, such as the slow light effect, we designed a hybrid QD–SNW/SC ring device [23,24],
and to reach the enhanced coherent optical spectra, we considered putting the QD into
a nanomechanical resonator (NR) system [21,22]. However, the NR enhancement of the
coherent optical propagation, such as the fast and slow light effects [25–27] mediated by
MFs, have not yet been explored to the best of our knowledge.

In this paper, motivated by the above-mentioned optical schemes for detecting MFs,
we investigated the Fano resonance and slow light in the hybrid system discussed in [22],
where a two-level QD was implanted in an NR to probe MFs in ferromagnetic atomic chains
on a superconductor. Previous works for detecting MFs by optical means have shown that
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both the linear [22] and nonlinear [21] optical spectra are enhanced significantly when the
NR is introduced. In the present paper, we first investigated the absorption spectra of the
QD in the hybrid QD–NR system and the iron chains on the superconducting Pb surface,
as shown in Figure 1, under different system parameters including the QD–MF coupling
strength β, the QD–NR coupling strength g, the Majorana–pump field detuning ∆M, and
the exciton–pump field detuning ∆c. Especially, the absorption spectra display a series of
asymmetric Fano line shapes when considering QD–MF coupling, which can be illustrated
using the interference effect with the dressed state theory. Due to Fano resonances being
characterized by a rapid, steeper dispersion, the group velocity index ng of light pulses
can be accelerated and decreased significantly, which correspond to the negative and
positive dispersion, respectively, and then reach the fast and slow light effects. Second,
we investigated the slow light effect by numerically calculating the group delay of the
probe field around the transparency window accompanied by the steep phase dispersion,
and we found that a tunable and controllable slow light propagation can be achieved
by manipulating the parametric regimes. Moreover, the slow light effect was enhanced
significantly compared with previous work [24] because, here, the NR was introduced in
the present system, which acts as a phonon cavity, enhancing the slow light effect.

Figure 1. (a) The schematic of the hybrid device, where a two-level QD is coupled to a nearby MF in
the iron chains on the superconducting Pb surface. (b) The QD driven by two-tone fields is embedded
in an NR.

2. Model and Theory
2.1. The Hamiltonian of the System

The schematic setup studied in this work is shown in Figure 1, where iron (Fe) chains
are overlaid on the superconducting Pb(110) surface [7], and we employed a two-level
QD driven by two-tone fields to investigate the coherent optical properties mediated by
MFs [23]. To obtain the enhanced coherent optical properties, we considered that the
two-level QD is implanted in an NR system to make up a hybrid QD–NR system [22]. Here,
based on the hybrid system as shown in Figure 1, we investigated MF-induced coherent
optical propagation. The QD was treated as a TLS consisting of the ground state |g〉 and the
single exciton state |e〉 in the hybrid QD–NR system, and HQD = h̄ωexSz with the exciton
frequency ωex is the Hamiltonian of the QD, where Sz and S± are the pseudospin operators
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with commutation relations [Sz, S±] = ±S± and [S+, S−] = 2Sz. For the NR [28,29], which
can be characterized by a harmonic oscillator with Hamiltonian HNR = h̄ωmb+b (where
b and ωm are the annihilation operator and frequency of the phonon mode), due to the
thickness of the beam being much smaller than its width, and then, the lowest-energy
resonance corresponding to the fundamental flexural mode will constitute the phonon
mode. In the hybrid QD–NR system [28], the flexion induces extensions and compressions,
and then, the longitudinal strain will modify the energy of the electronic states of QDs via
deformation potential coupling with the coupled Hamiltonian Hcou = h̄ωmβSz(b+ + b)
with the coupling strength β [28]. As a result, we obtain the Hamiltonian of the hybrid
QD–NR system as:

HQD−−NR = h̄ωexSz + h̄ωmb+b + h̄ωmβSz(b+ + b). (1)

For the QD–MF coupling, due to each MF being its own antiparticle, then an operator
γ with γ† = γ and γ2 = 1 is introduced to describe MFs. We obtain that the Hamiltonian
of the QD couples to the nearby MF γ1 as follows [15–19,21–24]:

HQD−−MF = iεMγ1γ2/2 + ih̄g(S− − S+)γ1, (2)

where the first term in Equation (2) is the interaction of the two MFs in Fe chains on the
superconducting Pb. εM = h̄ωM ∼ e−l/ξ is the coupling energy with l being the length
of the Fe chains and ξ the superconducting Pb coherent length with Majorana frequency
ωM. If the length l is large enough, we find the coupling energy εM ∼ e−l/ξ ∼ 0. Therefore,
we need to discuss the two cases, i.e., εM 6= 0, termed coupled Majorana edge states, and
εM = 0, termed uncoupled Majorana edge states. The second one in Equation (2) gives
the near by MFs γ1 coupled to the QD with the coupling strength β, which relate to the
distance of the QD and superconducting device. For simplicity, we introduce the regular
fermion creation and annihilation operators f † and f with the anti-commutative relation{

f , f †} = 1; thus, according to the relation of γ1 = f † + f and γ2 = i( f † − f ), Majorana
operator γ can be transformed into the regular fermion operator f . Then, the second
term in Equation (2) reduces to ih̄g(S− f † − S+ f ) by neglecting the non-conservation terms
of energy ih̄g(S− f − S+ f+) based on the rotating wave approximation [30]. Therefore,
Equation (2) can be reduced to:

HQD−−MF = h̄∆M( f † f − 1/2) + ih̄g(S− f † − S+ f ). (3)

When the hybrid QD–NR system is driven by two-tone fields [31], the Hamiltonian of
QD coupled to the two fields is given by [32]:

HDri−QD = −µεp(S+e−iωct + S−eiωct)− µεs(S+e−iωst + S−eiωst), (4)

where µ is the dipole moment of the exciton, ωc (ωs) is the strong pump (weak probe) field
frequency, and εc and εs are the slowly varying envelope of the pump field and probe field,
respectively. In a rotating frame of frequency ωp, we obtain the total Hamiltonian of the
system as:

H = h̄∆cSz + h̄ωmb+b + h̄ωmβSz(b+ + b) + h̄∆M( f † f − 1/2) + ih̄g(S− f † − S+ f )

− h̄Ωc(S+ + S−)− µεs(S+e−iδt + S−eiδt), (5)

where ∆c = ωex − ωc (δ = ωs − ωc, ∆M = ωM − ωc) is the detuning of the exciton
frequency (probe field, the MF frequency) from the pump frequency. Ωc = µεc/h̄ is the
Rabi frequency of the pump field.

2.2. Quantum Langevin Equations

According to the Heisenberg equation of motion ih̄∂ρ/∂t = [ρ, H] (ρ = Sz, S−, f ,
Q), we can obtain the Heisenberg–Langevin equations (H-LEs) of the operators with the
corresponding noise and damping terms as follows:
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Ṡz = −Γ1(Sz + 1/2)− g(S− f † + S+ f ) + iΩc(S+ − S−) + (iµεs/h̄)(S+e−iδt − S−eiδt), (6)

Ṡ− = −[(i∆c + ωmβQ) + Γ2]S− + 2gSz f − 2iΩcSz − 2iµεsSze−iδt/h̄ + τ̂(t), (7)

ḟ = −(i∆M + κM/2) f + gS− + ς̂(t), (8)

Q̈ + γmQ̇ + ω2
mQ = −2ω2

mβSz + ξ̂(t), (9)

where Γ1 (Γ2) is the exciton spontaneous emission rate (dephasing rate), Q = b† + b
is the position operator, and γm (κM) is the decay rate of the NR (MF). τ̂(t) is the δ-
correlated Langevin noise operator with zero mean and obeys the correlation function〈

τ̂(t)τ̂†(t)
〉
' δ(t− t

′
). ς̂ and ξ̂ represent the Langevin force arising from the interaction

between the Majorana modes and the environment [22,33].
We introduce the perturbation theory: ρ = ρ0 + δρ, then ρ0 (i.e., Sz

0, S0, and f0) means
the steady parts and δρ (i.e., δSz, δS−, and δ f ) indicates the fluctuation ones. Substituting
the perturbation method into Equations (6)–(9), we obtain the steady-state solutions of the
variables as follows:

Γ1(w0 + 1) + 2g(S0 f ∗0 + S∗0 f0) = 2iΩc(S0 − S∗0), (10)

(i∆
′
c + Γ2)S0 = 2(g f0 − iΩc), (11)

(i∆M + κM/2) f0 = gS0, Q0 = −βw0, (12)

which determine the steady-state population inversion (w0 = 2Sz
0) of the exciton as follows:

Γ1(w0 + 1)(Ξ1Ξ2 + β2w2
0Ξ3) + 4w0Γ2Ω2

puΞ1 = 0. (13)

where Ξ1 = ∆2
M + κ2

M/4, Ξ2 = (∆2
c + Γ2

2 + ω2
mg4w2

0 − 2ωm∆cg2w0), Ξ3 = β2 − 2ωm∆Mg2 +

2∆c∆M − Γ2κM, and ∆
′
c = ∆c + ωmβQ0. As all the pump fields are assumed to be suffi-

ciently strong, all the operators can be identified with their expectation values under the
mean-field approximation 〈Qc〉 = 〈Q〉〈c〉 [34], and after being linearized by neglecting
nonlinear terms in the fluctuations, the H-LEs for the expectation values are:〈

δṠz〉 = −Γ1〈δSz〉 − g(S0

〈
δ f †
〉
+ S∗0〈δ f 〉+ f ∗0

〈
δS−

〉
+ f0

〈
δS+

〉
) + iΩp(

〈
δS+

〉
−
〈
δS−

〉
)

+
iµεs

h̄
(S∗0e−iδt − S0eiδt), (14)

〈
δṠ−

〉
= −(i∆′c + Γ2)

〈
δS−

〉
− 2iΩc

〈
δS−

〉
+ 2g( f0

〈
δS−

〉
+ S0〈δ f 〉)− iµεsw0e−iδt

h̄
, (15)〈

δ ḟ
〉
= −(i∆M + κM/2)〈δ f 〉+ g

〈
δS−

〉
, (16)〈

δQ̈
〉
+ γm

〈
δQ̇
〉
+ ω2

m〈δQ〉 = −2ω2
mβ〈δSz〉. (17)

2.3. Coherent Optical Spectrum

In order to solve the equation set of the above H-LEs, we make the ansatz [32]
〈δρ〉 = ρ+e−iδt + ρ−eiδt. Solving the equation set and working to the lowest order in εs, but
to all orders in εp, we obtain the linear optical susceptibility as χ

(1)
e f f (ωs) = µS+(ωs)/εs =

Σ1χ(1)(ωs) with Σ1 = µ2/(h̄Γ2), and then, the dimensionless linear susceptibility χ(1)(ωs)
is given by:

χ(1)(ωpr) =
[(Π∗4 + Λ1Π∗3)Π1Λ3 − iw0Π∗4 ]Γ2

Π2Π∗4 −Λ1Λ2Π1Π∗3
, (18)

where Σ1 = g/(i∆M + κM/2− iδ), Σ2 = g/(−i∆M + κM/2− iδ), η = 2βω2
m/(δ2 + iδγm −

ω2
m), Λ1 = [iΩc − g( f0 + S0Σ∗2)]/(Γ1 − iδ), Λ2 = [−iΩc − g( f ∗0 + S∗0Σ1)]/(Γ1 − iδ), Λ3 =
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iS∗0/(Γ1 − iδ), Π1 = 2(g f0 − iΩc)− iωmβS0η, Π2 = i(∆c − δ + ωmβQ0) + Γ2 − gw0Σ1 −
Λ2Π1, Π3 = 2(g f0 − iΩc)− iωmβS0η∗, Π4 = i(∆c + δ + ωmβQ0) + Γ2 − gw0Σ2 − Λ3Π3.
The imaginary and real parts of χ(1)(ωpr) indicate absorption and dissipation, respectively.

2.4. Group Velocity Index

As the light group velocity as [35,36] υg = c/[n + ωs(dn/dωs)] where n ≈ 1+ 2πχ
(1)
e f f ,

then we obtain:

c/υg = 1 + 2πRe[χ(1)
e f f (ωs)]ωs=ωex + 2πωsRe(dχ

(1)
e f f /dωs)ωs=ωex . (19)

Obviously, when Re[χ(1)
e f f (ωs)]ωs=ωex = 0, the dispersion is steeply positive or negative

and the group velocity is significantly reduced or increased. We further define the group
velocity index ng as:

ng =
c

υg
− 1 =

c− υg

υg
=

2πωexρµ2

h̄Γ2
Re(

dχ
(1)
e f f

dωs
)ωs=ωex = Γ2ΣRe(

dχ
(1)
e f f

dωs
)ωs=ωex , (20)

where Σ = 2πωexρµ2/h̄Γ2
2. One can observe the slow light if ng > 0 and the superluminal

light when ng < 0 [37]. For the parameters of the hybrid QD–NR system [28], the exciton
relaxation rate (the exciton dephasing rate Γ2) Γ1 = 0.3 GHz (Γ2 = 0.15 GHz). The
parameters NR are (ωn, M, Q f ) = (1.2 GHz, 5.3 × 10−18 kg, 3 × 104), where ωm, M,
and Q f are the resonator frequency, the effective mass, and the quality factor of the NR,
respectively. The decay rate of the NR is γm = ωm/Q f = 40 kHz, and the coupling
strength is β = 0.06. The parameters of MFs [3–6,24], the QD–MFs coupling strength
g = 0.1 GHz, the decay rate of the MFs κM = 0.1 MHz, Γ1 = 0.3 GHz, Γ2 = 0.15 GHz, and
Ω2

p = 0.1(GHz)2.

3. Numerical Results and Discussion

There are two kinds of coupling in the hybrid system, i.e., the QD–MF coupling and
the QD–NR coupling, as shown in Figure 1, and in the QD–MF coupling regime, ∆M = 0
or ∆M 6= 0, i.e., the uncoupled Majorana edge state or coupled Majorana edge state will
also influence the coherent optical properties, so it is necessary to investigate the coherent
optical spectra under different parameters and coupling regimes. Figure 2 shows the
absorption spectra of the QD as a function of probe–exciton detuning ∆s = ωs −ωex at the
red detuning (∆c = ωm) for different parameters and coupling regimes. In Figure 2(a1,a2),
we give the absorption spectra under ∆M = 0 and ∆M 6= 0, respectively, for the parameters
of g = 0, β = 0, and ∆c = ωm, i.e., there are no QD–MF coupling (g = 0) and QD–NR
coupling (β = 0), and only the QD is driven by a pump laser and a probe laser, then
the absorption spectra show a Lorentz peak. In Figure 2(b1,b2), we consider the QD–MF
coupling (g 6= 0) without considering the QD–NR coupling (β = 0). In the uncoupled
Majorana edge state (∆M = 0), the absorption spectrum not only shows a Lorentz peak
around ∆s = 0, but also presents a sideband peak at ∆s = −ωm (ωm = 1.2 GHz), as shown
in Figure 2(b1). In the coupled Majorana edge state (∆M 6= 0, such as ∆M = −0.2 GHz), the
absorption spectrum also displays a Lorentz peak around ∆s = 0; however, the sideband
peak at ∆s = −ωm in Figure 2(b1) is split into two peaks located at −ωm + ∆M (−1.4 GHz)
and −ωm − ∆M (−1.0 GHz), respectively, as shown in Figure 2(b2). In Figure 2(c1,c2), we
not only consider the QD–MF coupling (g 6= 0), but also consider the QD–NR coupling
(β 6= 0). In the case of ∆M = 0, the absorption spectrum as shown in Figure 2(c1) shows the
same result as shown in Figure 2(b1), i.e., in the uncoupled Majorana edge state (∆M = 0),
the role of the QD–NR coupling (β 6= 0) is feeble and can be neglected. However, in the
coupled Majorana edge state (∆M = −0.2 GHz), if the QD–MF coupling (g 6= 0) and the QD–
NR coupling (β 6= 0) simultaneously exist in the system, as shown in Figure 2(c2), we find
that not only the absorption spectrum at ∆s = 0 displays a Fano resonance (an asymmetric
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splitting), but also the sideband peak at ∆s = −ωm shows a splitting located at −ωm + ∆M
and −ωm − ∆M, respectively. For the Fano resonance around ∆s = 0 in the absorption
spectrum, the physical origin of this result is due to the QD–MF coherent interaction, and a
dressed state theory was introduced to interpret this physical phenomenon [38]. Therefore,
the coupled Majorana edge state (∆M 6= 0) combined with the QD–MF coupling and the
QD–NR coupling will together influence the absorption spectrum, and then, it is necessary
to research the role of the coupled Majorana edge state in the following.
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Figure 2. (a1,a2) The absorption spectra versus the probe–exciton detuning ∆s for the parameters
of g = 0, β = 0, ∆c = ωm under the condition of ∆M = 0 and ∆M 6= 0, respectively. (b1,b2) The
absorption spectra versus ∆s for the parameters of g = 0.1 GHz, β = 0, ∆c = ωm under the condition
of ∆M = 0 and ∆M 6= 0, respectively. (c1,c2) The absorption spectra versus ∆s for the parameters of
g = 0.1 GHz, β = 0.06, ∆c = ωm under the condition of ∆M = 0 and ∆M 6= 0, respectively.

In Figure 3, we further present the absorption and dispersion profiles as a function of
the probe detuning ∆s at the parameters of g = 0.1 GHz, β = 0.06, and ∆c = ωm for several
different Majorana–pump detuning ∆M. The left parts show the absorption, and we can find
that the Fano resonance induced by QD–MF coupling at ∆s = 0 appear in the absorption
spectra and the sideband peak induced by QD–NR coupling at ∆s = −ωm is split into
two peaks. With increasing the detuning ∆M from ∆M = −0.2 GHz to ∆M = −1.4 GHz,
in the two split peaks distributing in two sides of ∆s = −ωm, the left peak located at
−ωm + ∆M moves to the left, while the right peak located at −ωm − ∆M moves to the
right. The right parts plot the dispersion, and we show that the evolutionary process of
the dispersion as a function of ∆s with increasing detuning ∆M from ∆M = −0.2 GHz to
∆M = −1.4 GHz, which combines the absorption, will induce the slow light effect because
the dispersion manifests a positive steep slope around ∆s = 0. The details of the absorption
and dispersion around ∆s = 0 are displayed in the following figures.

Then, in Figure 4a, we take ∆M = −0.6 GHz as an example; the red curve shows the
details of the absorption in Figure 3 around ∆s = 0; the absorption spectrum presents Fano
resonance, and the Fano shape is related to the detuning ∆M. The blue curve plots the
details of the dispersion in Figure 3 around ∆s = 0, and the dispersion is deep. However,
no matter how the detuning ∆M changes, there is still an invariant result, i.e., the dispersion
shows a positive steep slope around ∆s = 0. Therefore, we also investigated the Fano
resonance-induced coherent optical propagation properties, as shown in Figure 4b. In
Figure 4b, we plot the group velocity index ng versus the QD–MF coupling g for four
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different Rabi frequencies Ω2
c under the parameters of β = 0.06, ∆M = −0.6 GHz, and

∆c = ωm. We can see that the group velocity index ng behaves as the slow light effect,
and the process of the evolution of the group velocity index ng is related to the QD–MF
coupling g.
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versus ∆s for several different detuning ∆M. The other parameters are g = 0.1 GHz, β = 0.06,
∆c = ωm, and Ω2

c = 0.1 (GHz)2.
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c under
the parameters of β = 0.06, ∆M = −0.6 GHz, and ∆c = ωm.

Subsequently, in Figure 5a, we further investigate the absorption spectra as a func-
tion of ∆s for three different QD–MF coupling g under the parameters of β = 0.06,
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∆M = −0.6 GHz, ∆c = ωm, and Ω2
c = 0.1 (GHz)2, and we found that the splitting width

of the absorption spectra is enhanced with increasing the QD–MF coupling g. Figure 5b
displays the process of the evolution of the dispersion for three QD–MF coupling g, and the
inset is the detail part around ∆s = 0. We can obtain that the dispersion shows a positive
steep slope around ∆s = 0, which results in the slow light effect. Therefore, in Figure 5c,
we plot the group velocity index ng as a function of the Rabi frequency Ω2

c for ∆M = 0 and
∆M 6= 0, respectively, at fixed QD–MF coupling g = 0.05 GHz, and it is obvious that the
group velocity index ng gradually increases and reaches a maximum, then decays to almost
a zero value with increasing Rabi frequency Ω2

c , both at the coupled Majorana edge state
(∆M 6= 0) and uncoupled Majorana edge state (∆M = 0). If we consider a bigger QD–MF
coupling, such as g = 0.15 GHz, as shown in Figure 5d, we can find that the slow light
effect (i.e., the process of the evolution of the group velocity index ng) is more remarkable
in the coupled Majorana edge state (∆M = −0.6 GHz) than in ∆M = 0.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0

300

600

900

1200

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0

300

600

900

1200

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8

-0.4

-0.2

0.0

0.2

0.4

-0.006 0.000 0.006

-0.4

-0.2

0.0

0.2

0.4

(c)

g=0.05 GHzG
ro

up
 v

el
oc

ity
 in

de
x 

n
g

2
c (GHz)

 =0
 =-0.6 GHz

(d)

g=0.15 GHzG
ro

up
 v

el
oc

ity
 in

de
x 

n
g

2
c (GHz)

 =0

 =-0.6 GHz

(a)

A
bs

or
pt

io
n 

(a
rb

. u
ni

ts)

s (GHz)

 g=0.1 GHz
 g=0.2 GHz
 g=0.4 GHz

(b)

 g=0.1 GHz
 g=0.2 GHz
 g=0.4 GHz

D
isp

er
sio

n 
(a

rb
. u

ni
ts)

s (GHz)

s (GHz)

Figure 5. (a,b) The absorption and dispersion as a function of ∆s for three different QD–MF coupling g
under the parameters of β = 0.06, ∆M = −0.6 GHz, ∆c = ωm, and Ω2

c = 0.1 (GHz)2. (c,d) The group
velocity index ng versus Ω2

c for QD–MF coupling g = 0.05 GHz and g = 0.15 GHz, respectively.

Except the QD–MF coupling g, the pump–exciton detuning ∆c and the QD–NR cou-
pling β can also affect the slow light effect. In Figure 6a, we give the absorption spectra
as a function of ∆s for three different pump–exciton detuning ∆c under the parameters
of β = 0.06, g = 0.1 GHz, ∆M = −0.6 GHz, and Ω2

c = 0.1 (GHz)2, and it is clear that the
absorption spectra show the mode-splitting behavior around ∆s = 0 and that a transparent
window (i.e., the zero absorption depth, as shown in the inset in Figure 6a) also appears
in the absorption spectra. Figure 6b displays the dispersion for three different ∆c, and the
dispersion has a positive steep slope around ∆s = 0, as shown in the inset in Figure 6b.
Thus, in Figure 6c, we plot the group velocity index ng as a function of Ω2

c for three ∆c at
∆M = −0.6 GHz, and we can see that the slow light effect is more obvious in ∆c = ωm than
in ∆c 6= ωm. We also investigated the role of the NR in the hybrid system that influences
the slow light. The previous work demonstrated that the NR will behave as a phonon
cavity, enhancing the coherent optical spectrum. Then, in Figure 6d, we compare the case
of β = 0 (no QD–NR coupling) and β 6= 0 (the QD–NR coupling strength β = 0.06). If there
is no QD–NR coupling, the slow light effect induced by MFs is demonstrated in a hybrid
semiconductor/superconductor ring device [24], and it is similar to the result of the green



Micromachines 2021, 12, 1435 9 of 11

curve in Figure 6d. However, if the QD–NR coupling is taken into consideration, such as
the purple curve in Figure 6d, we can find that the group velocity index ng manifesting the
slow light is enhanced significantly compared with the condition of no QD–NR coupling.
Finally, by controlling the detuning regimes and the coupling regimes, the slow light can
be reached in the hybrid system.
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Figure 6. (a,b) The absorption and dispersion versus ∆s for three ∆c under the parameters of β = 0.06,
g = 0.1 GHz, ∆M = −0.6 GHz, and Ω2

c = 0.1 (GHz)2; the insets are their details. (c) ng as a function
of Ω2

c for three ∆c at ∆M = −0.6 GHz. (d) ng versus Ω2
c in the condition of β = 0 and β 6= 0,

respectively.

4. Conclusions

In conclusion, we demonstrated the coherent optical propagation properties in a
hybrid device, which includes a QD driven by a pump field and a probe field implanted
into an NR coupled to nearby MFs in superconducting iron (Fe) chains, and we investigated
the absorption spectra of the probe field under different detuning regimes (such as pump–
exciton detuning ∆c and Majorana–pump detuning ∆M) and different coupling regimes
(such as QD–MF coupling g and QD–NR coupling β). When the QD couples to nearby
MFs, a Fano resonance can be obtained in the absorption spectra, which accompany the
rapid phase dispersion inducing the slow light effect. The results showed that the group
velocity index can be controlled by the QD–MF coupling, which can reach the slow light
effect. Moreover, the NR was considered, which behaved as a phononic cavity, leading to
an enhanced slow light effect.
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