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Abstract

The coronavirus (COVID-19) is a highly infectious disease that emerged in the late Decem-

ber 2019 in Wuhan, China. It caused a worldwide outbreak and a major threat to global

health. It is important to design prediction and control strategies to restrain its exploding. In

this study, a hybrid intelligent model is proposed to simulate the spreading of COVID-19.

First, considering the effect of control measures, such as government investment, media

publicity, medical treatment, and law enforcement in epidemic spreading. Then, the infection

rates are optimized by genetic algorithm (GA) and a modified susceptible-infected-quaran-

tined-recovered (SIQR) epidemic spreading model is proposed. In addition, the long short-

term memory (LSTM) is imbedded into the SIQR model to design the hybrid intelligent

model to further optimize other parameters of the system model, which can obtain the opti-

mal predictive model and control measures. Simulation results show that the proposed

hybrid intelligence algorithm has good predictive ability. This study provide a reliable model

to predict cases of infection and death, and reasonable suggestion to control COVID-19.

Introduction

In the past six months, Chinese people have been on a high level of containment due to the

outbreak of the coronavirus 2019 throughout China [1]. However, due to the convenient of

global transportation, the virus has rapidly spread around the world. Coronavirus was first dis-

covered in Wuhan. At the early stage, people lack of knowledge about the virus and scarcity of

medical resources, people were not aware of the virus and neglected to control the virus in its

early stages, until the official announced that the disease can spread from person to person on

January 20, 2020 [2]. Then, the government took a series of measures to prevent the spread of

disease on January 21, like lockdown in Wuhan. Subsequently, all cities in China lockdown

and cities across countries sealing off. Governments took many measures, such as closing pub-

lic places, broadcasting propaganda, isolating people in their own homes, which lead to

increase the awareness of self-protection for people. After three months of fighting against the

epidemic, it has been successful controlled. However, the situation of the world is not optimis-

tic, over 40 million people diagnosed in worldwide. The total number of deaths is over 1.2 mil-

lion. Countries such as the United States, Brazil, Russia, and India, the pandemic is still quite

severe today [3, 4]. Therefore, each countries and states should adopt prevention and control
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strategies to restrain the epidemic spreading. Currently, it is very important to establish and

analyze disease-spreading model to predict disease development trends in order to prevent

and control the spread of COVID-19.

Due to the outbreak of disease, vaccines and medicine treatments for the disease are still

being researched, non-drug treatment becomes the main strategies to slow down the spread of

the disease. The purpose of most of these prediction and control measures are reducing the

probability of infection spreading during direct or indirect contact [5]. For example, paying

attention to personal hygiene and wearing a mask, keeping social distance, and closing some

public space such as schools and workplaces, in order to decrease the probability of propaga-

tion from person to person. Other measures like cutting off the way of transmission of dis-

eases, such as disinfection in public places, improving the level of sanitation in public places

and so on. All measures can alleviate the propagation of the epidemic [6–9]. How to quantify

the impact of various prevention and control strategies on disease spreading is of great signifi-

cance to guide disease control.

A common method utilizes mathematical modelling to describe the spreading dynamics of

infectious diseases, like Ebola, SARS. It can accurately describe the spread of disease among

individuals in theoretical framework to guide the development of the prevention and control

measures [10–16]. There are many researchers studied epidemic spreading that have proposed

some epidemic model and obtained some meaningful results. Most of researches based on

complex networks, the classical epidemic models like susceptible-infected (SI), susceptible-

infected-recovered (SIR), susceptible-exposed-infected-recovered (SEIR), susceptible-

infected-quarantined-recovered-susceptible (SIQRS) [17–22]. Most of these models are appli-

cable to describe disease spreading with a long incubation period, such as COVID-19. Based

on data-driven, a modified SEIR model was proposed to analyze and predict COVID-19

spread [23]. Considering the effect of quarantine, B. K. Mishra et.al have proposed three quar-

antine models to analyze COVID-19 spreading [24]. Other recent studies, some researchers

have considered the effects of the basic reproductive number, international conveyance, and

some stochastic factors based regression models to predict and control the spreading of

COVID-19 [25, 26]. However, traditional epidemic spreading models consider that all infected

individual have the same infection rate, and the prediction of disease development trend has

certain limitations. Although data-driven disease spreading models can accurately describe

infection rates, the impact of government prevention and control measures on infection rates

has not been quantitatively in detail. These measures, such as the laws, medical supplies, media

coverage and investment, can reduce the spread of the disease. It is necessary to rationally

arrange the optimal prevention and control strategies with limited resources to minimize the

death rate.

To solve this problem, the GA and ANN [27–36] hybrid method is proposed to optimize

epidemic dynamics model and predict the COVID-19 spreading. Genetic algorithm is an

adaptive global optimization search algorithm formed by simulating the genetic and evolution-

ary process of biological species in natural environment [37]. Combining the viewpoint of bio-

genetics and realizing the improvement of individual adaptability through the mechanism of

natural selection, heredity, and variation. Artificial intelligence (AI) is considered one of the

most successful achievements of computer science, simulating the behavior of the human

brain in data analysis. One of the AI branches is the artificial neural network (ANN). The

information spreading process can simulate like communication between brain neurons and

become a tool for analyzing complex and real systems [38]. In recent years, ANN models have

been used to overcome the difficulties presented by health issues.

This contribution of this article is how to quantify the impact of the government’s preven-

tion and control measures on epidemic infection rate, then obtaining the optimal model of
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disease spreading and the effective prevention and control strategy. In this article, based on the

proposed SIQR model, the hybrid artificial neural network (ANN) model embedded genetic

algorithm to predicting the spreading of COVID-19. It introduces an important prediction

and control strategies that can give a guidance to the government. The data consistency is

reduced due to the fluctuation of virus detection capability in a sudden change on February 12

and 13. In this paper, it is assumed that virus transmission in the environment is classified as

human-to-human transmission. As a developing country, Brazil shows the epidemic data with

periodicity and consistency, and then this article takes the Brazil data as analytic target. The

simulation results based on the epidemic data of Brazil show that the proposed hybrid model

could provide a basis for estimating the law of virus spread, and achieve accurate and robust

performance. Moreover, the prediction results of a hybrid ANN-GN model is fit with the

actual trend of epidemic development, which demonstrates that the openness, transparency,

and efficiency of data releasing. Furthermore, this method can be extended to other countries

if the actual data can be obtained.

The remainder of this article is organized as follows. Section “A hybrid model of COVID-

19 spreading dynamics” introduces the framework of the proposed hybrid epidemic spreading

model. Section “Methods” explains the method of GA and ANN to predict epidemic spread-

ing. Section “Simulation results and discussion” provides the simulation results based on the

epidemic data of Brazil and gives some discussion. The conclusions are provided at last.

A hybrid model of COVID-19 spreading dynamics

In this section, we establish a mathematical model on COVID- 19 based on some assumptions.

There are some literatures proposed models mainly based on real clinical data, predict and

control measures. In this paper, we modified the previous model proposed in [18], and then

extend the model structure by designing different infection rate. The model network diagram

and the interaction individual components demonstrated in Fig 1. Every individual in network

can only exist one of four independent states, namely, susceptible, infected, quarantined and

recovered. For simply, it can be denoted by S, I, Q, and R, respectively. Each link represents

the transformation relationship between nodes. Here, infected individuals include symptom-

atic infected individuals and asymptomatic infected individuals. Susceptible individual is

infected with probability m (M1, M2, M3 and M4) if it is connected to an infected individual.

Infective individuals are quarantined with probability α. In the process of quarantine, the

Fig 1. The flow diagram of the SIQR model.

https://doi.org/10.1371/journal.pone.0246360.g001
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asymptomatic infected individuals turn into symptomatic infected individuals with the proba-

bility ω. Quarantined individuals are treated with drugs that move into the recovered individu-

als with probability β. Some recovered individuals will relapse into infection due to their

weakened immunity with probability γ. The probability of death during quarantine is λ. Here,

setting a switch of city lockdown by the death rate, infection probability m is different based

on the city situation (lockdown or not). The lockdown infection probability m is much lower

under the strict government regulation.

According to the epidemic spreading, the dynamic equations can be written as follows:

dSkðtÞ
dt
¼ � mSkðtÞ

dIkðtÞ
dt
¼ mSkðtÞ þ gRkðtÞ � aIkðtÞ

dQkðtÞ
dt

¼ aIkðtÞ � bQkðtÞ � lQkðtÞ

dRkðtÞ
dt
¼ bQkðtÞ � gRkðtÞ

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð1Þ

Using the normalization condition, the probability of death can be obtained:

D ¼
lamg

agðlþmÞ þmgððlþ bÞ þ abm
ð2Þ

In this paper, we consider the death rate as a very important factor to study the epidemic

spreading. It not only depicts the fatality rate of the disease in the process of transmission, but

also reflects the effectiveness of prevention and control measures. For example, money

invested by the government can improve the medical level and effectively cut off the transmis-

sion route of the virus. Increasing publicity and awareness of prevention and control will also

reduce the risk of infection. Law enforcement can also affect the spread of diseases, such as city

lockdown and home quarantined. This paper argues that due to the strict control and quaran-

tined measures taken by the government during the epidemic, the infected cases cannot infect

susceptible people after quarantined. However, asymptomatic infected persons also have some

ability to propagate the disease, and it is difficult to detect. Therefore, there is a certain rela-

tionship between the number of newly infected cases on Day t and the number of infected

cases in the past k days. Moreover, the infection rate of patients is closely related to the time of

infection. Since government measures can inhibit the spread of the disease, the infection rate

of newly infected cases may vary from time to time on t day over the past k days. Further ana-

lyzing this difference and assigning different weights to different measures, we quantified the

contribution of different measures to the infection rate at time t in newly infected cases. Then,

the weighted accumulation was used to estimate the infection rate to establish the relevant epi-

demic prediction and control modeling.

In addition, in order to study the relationship between the prediction and control measures

with infection rate of the SIQR epidemic spreading model, the method of GA and LSTM are

used to optimize the parameters of the spreading model. This paper considers the relationship

between the rate of disease transmission and the measures taken by the government against

the disease. The main factors include government investment, medical level, media publicity

and law enforcement. Firstly, genetic algorithm is used to estimate the infection rate of the

model, taking the acceptable mortality rate as the fitness function, and taking it as a basic basis

for city lockdown parameters. At the same time, GA is further used to obtain the optimal

means of government control by taking the minimum mortality rate as fitness function. The
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mutation law of GA is based on the interaction of four government measures. Furthermore,

the infection rate bias and mortality bias were estimated through the LSTM network, the num-

ber of infected people was estimated by combining with the SIQR model, and the relevant

parameters of the model were modified to obtain the best transmission model and predict the

spread of the disease. By combining these two approaches, the optimal model of disease

spreading and the optimal prevention and control strategies can be obtained. The number of

infected and death cases based on the spreading model and development trend can be pre-

dicted. The framework of GA and ANN is shown in Fig 2.

Methods

Epidemiological investigation and modeling are efficient tools to study the spread of epidemic

diseases and offer the strategies to prevent and control of public health events with global

impact, such as SARS, MERS and H1N1 influenza. Many researchers have achieved some

results in novel coronavirus research using epidemiology and modeling analysis. The study of

J. Chan et al. [39] found the first evidence of human-machine transmission. Then, some

researchers combined with the analysis of some early cases and gave the mean incubation

period and mean infection cycle of novel coronavirus. Traditional epidemic spreading models

shows that the number of new infections cases is related to the number of infected individual

and susceptible individual, but these models lack in-depth analysis of model parameters. In the

process of disease transmission, the implementation of different control measures has a great

impact on the prevention and control. For example, the government’s implement the disease

prevention and control strategies, the formulation of relevant laws and regulations, financial

investment and other measures can affect the spread of disease. The study found significant

differences in the rates of infection among people of different ages. The main purpose of this

paper is to study the impact of government measures on the spread of disease and to minimize

the mortality rate, and to consider the impact of different age groups on the spread of disease,

finally, we can obtain the optimized measures and the best performance model to prediction,

as showing in Fig 2.

Unlike the traditional SIQR epidemic spreading model, which consists of invariable

infected rate to describe the probability of infection. In this paper, a dynamic strategy to repre-

sent the real world and the new COVID-19 disease is proposed. It mainly considers the impact

of various measures taken by the government on the control of disease spreading. This paper

considers the parameters impact of government investment, media publicity, medical treat-

ment, and law enforcement on the rate of disease spreading. The parameters are set as mi,

Fig 2. The hybrid model for COVID-19 prediction.

https://doi.org/10.1371/journal.pone.0246360.g002
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i = 1, 2, 3, 4, respectively. Thus, the rate of disease spreading can be written as:

m ¼
X4

i¼1

kimi ð3Þ

where ki is the weight of each measure.

The GA is mainly used to optimize parameters of the model, it can be divided as two parts.

The first part describes that using the GA to optimize the conditions of city lockdown. First

initialization model, set the initial value, with acceptable mortality as a condition of judgment.

According to data analysis and relevant government regulations, a three-day mortality rate

greater than 0.045 is defined as an unacceptable mortality rate. When the unacceptable mortal-

ity rate is reached, we will update and save the neural network parameters as a basis value for

city lockdown.

unacceptable mortality rate ¼
lamg

agðlþmÞ þmgððlþ bÞ þ abm
� 0:045 ð4Þ

At the same time, further to run the model, with the minimum mortality as fitness function

and update neural network parameters by genetic algorithm.

minimum mortality ¼
lamg

agðlþmÞ þmgððlþ bÞ þ abm
ð5Þ

Using twice genetic algorithm, the optimized neural network parameters is obtained, that

is, the control measures. Further, the LSTM algorithm is used to modify other parameters of

the model, and the historical data is compared with the data calculated by the model, such as

the number of infections and deaths, to determine whether the system has reached the mini-

mum error. The number of infections and deaths are further predicted. The flow chart of

COVID-19 prediction algorithm is shown in Fig 3.

New data on the daily increase in the number of infected cases can be obtained. Using the

same method, it can process the number of new deaths per day.

DIðtÞ ¼ IðtÞ� Iðt� 1Þ

DDðtÞ ¼ DðtÞ� Dðt� 1Þ

(

ð6Þ

Here, I(t) is the cumulative number of infected cases in the previous t-day, I(t-1) is the

cumulative number of infected cases in the previous t-day, and ΔI is the new number of

infected cases in the first t-day. D(t) is the cumulative number of deaths in the first t-day, D(t-

1) is the cumulative number of deaths in the first t-day, and ΔD is the additional number of

deaths on the first t-day.

In order to get an accurate model, the model parameters need to be further processed. The

GA has optimized the weight parameters in the neural network. Other model parameters are

optimized through the optimized neural network model. Here, LSTM neural network is used

to optimize the model parameters. We collected historical data (from February 26 to October

13 in Brazil) from the World Health Organization (WHO) on 15th October 2020. The data

can be found in https://covid19.who.int/region/amro/country/br and contains three informa-

tion types including “Date”, “Daily new confirmed” and “Daily new death”. Then the data was

used to train neural network. Here we discussed the model parameters through two judg-

ments. First, when the mortality rate of the model reaches an unacceptable mortality rate, the

neural network parameters of the closed city are used to process the system model parameters,

and then the mortality rate and infection rate are further compared with the actual data. By
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obtaining the minimum model error, the optimized model parameters are finally obtained.

Here, let the actual infected rate be ΔI and the infected rate under the regression exponential

function be ΔI’, and use the neural network to predict the deviation between the actual

Fig 3. The flow chart of COVID-19 prediction algorithm.

https://doi.org/10.1371/journal.pone.0246360.g003
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mortality and the regressive infection rate. Similarly, the same approach can be applied to mor-

tality and obtained ΔD and ΔD’. Assuming that B = ΔI’+ΔD’ is the deviation characteristic of

the prediction, the LSTM method can be used to predict the model. The flow diagram of the

prediction is shown in Fig 4.

SR1 is the number of vulnerable infected persons on the first day, IR1 is the number of real-

time infected cases on the first day, IP1 is the number of infected cases predicted on the first

day, M1 is the initial model. Where SRX is the number of vulnerable infected persons on day X,

IRX is the number of real-time infected cases on day X, IPX is the predicted number of infected

cases on day X, and MX is the model on Day X.

Simulation results and discussion

Based on GA in Fig 1, we computed the vulnerability coefficient ki of four government mea-

sures. Without city lockdown, the infection probability m of government investment, media

publicity, medical treatment and law enforcement are 0.174, 0.717, 0.021 and 0.853. With city

lockdown, the infection probability m of government investment, media publicity, medical

treatment and law enforcement are 0.085, 0.219, 0.107 and 0.349. There are two significant

government measures media publicity and law enforcement, and the law enforcement is more

important. Make a globally observation, each country invested huge amounts of money for

COVID-19, and most medical workers tried their best to save lives. The difference of epidemic

prevention results comes from the media publicity and law enforcement. Enhancing the influ-

ence of media can build a strong basis of epidemic prevention by offering the meaning of pre-

vention measures. Considering the exception of inconsiderate and non-media audiences, the

risk of disease spreading still exist. The efficiency of law enforcement is the crucial insurance

to save the effort of medical workers.

We simulated the disease development and analyze the output of the model in 231 days

with real epidemic data available from Brazil (February 26 to October 13). Fig 5A represents

the number of predicted and confirmed per days, the model predicts infected per days of the

last 17 days before October 13. Considering the lockdown from March 21 to July 31, the gov-

ernment realized the necessity of quarantine. From the data trend of infection confirmed per

days over this period, the law enforcement shows insufficient efficiency. Supposing the govern-

ment gave the best performance to control the disease, we performed the simulation about the

development of infection and death per days. Fig 5B is the infected prediction with best perfor-

mance of government; the possible infected number would much lower with effective

Fig 4. The LSTM method.

https://doi.org/10.1371/journal.pone.0246360.g004

PLOS ONE Prediction and control of COVID-19 spreading

PLOS ONE | https://doi.org/10.1371/journal.pone.0246360 February 11, 2021 8 / 12

https://doi.org/10.1371/journal.pone.0246360.g004
https://doi.org/10.1371/journal.pone.0246360


government effort. With the comparison between Fig 5A and 5B, it is obvious that there is a

great impact on the prediction in the middle and later period due to the large changes in the

data after government make best moves. Fig 5C is the daily-infected prediction error of model

for last 17 days. Considering the enormousness of infection confirmed number, Fig 5C shows

the accuracy of model prediction without best performance of government.

To better understand the model performance, we simulated the number of deaths in Brazil.

Fig 6A represents the number of new death cases per day, this indicates that at the beginning

of the epidemic, due to limited understanding of disease transmission and limited detection

efforts, there will be omissions in disease statistics, leading to a similar increase trend with the

infected cases. Meanwhile, Fig 6A represents the new predicted death cases per days of the last

17 days before October 13, which shows the difference with daily new death cases. Fig 6B is the

daily death prediction with best performance of government. While the continuous improve-

ment of detection methods and the continuous promotion of detection scope will be carried

out, the government could strengthen the control of the disease, so the daily death cases would

gradually decrease. Fig 6C is the daily death prediction error of model for last 17 days. Com-

bine Fig 6A, we can see that the LSTM method have a good performance to predict COVID-19

disease. The method can predict the trend of the disease over a longer period with the perfor-

mance of government.

Conclusions

Based on the SIQR epidemic spreading model, this paper seeks the best government perfor-

mance from the four aspects by GA; and then proposed a hybrid prediction model with

LSTM. By analyzing the new confirmed cases and death rate of Brazil data from February 26

to October 13, it is found that media publicity and law enforcement have more contribution to

reduce transmission rate. With best government performance, the trend of COVID-19 in Bra-

zil could under control. The prediction results of this model are highly consistent with the

actual epidemic situation, which proves that the hybrid model proposed in this paper can effi-

ciently analyze the transmission law and development trend of the virus. So, modeling the

minimum mortality rate would be of the utmost importance for nations to prevent and control

Fig 5. Brazil infected cases. a) Infection of predicted and confirmed per days, b) Infection prediction with best

government performance, c) Infection prediction error.

https://doi.org/10.1371/journal.pone.0246360.g005

Fig 6. Brazil death cases. a) Death of prediction and confirmed per days, b) Death prediction with best government

performance, c) Death prediction error.

https://doi.org/10.1371/journal.pone.0246360.g006
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COVID-19. For future research, the epidemic spreading on multi-layers networks and hybrid

intelligent algorithm is worthy of considering.
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