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We used NOD/SCID mice, also known as NRG, to assess the
ability of lentivirus-mediated intravenous delivery of CRISPR
in editing the HIV-1 genome from the circulating PBMC en-
grafts, some of which homed within several animal solid tis-
sues. Lentivirus-mediated delivery of a multiplex of guide
RNAs accompanied by Cas9 endonuclease led to the excision
of the targeted region of the viral genome positioned within
the HIV-1 LTR from the in-vitro-infected human peripheral
blood mononuclear cells (PBMCs) embedded in the spleens
of NRG mice. Similarly, the treatment of NRG mice harboring
PBMC engrafts derived from HIV-1-positive patients with the
therapeutic lentivirus eliminated the presence of the viral DNA
fragment in the blood, as well as in the spleen, lung, and liver, of
the engrafted animals. Sanger sequence analysis of the viral
DNA after treatment with the lentiviral vectors expressing
Cas9 and gRNAs verified the editing and removal of the pro-
viral DNA fragment from the viral genome at the predicted
sites. This proof-of-concept study, for the first time, demon-
strates successful excision of the HIV-1 proviral DNA from pa-
tient immune cell engrafts in humanized mice upon treatment
with lentivirus-expressing CRISPR and causes a decline in the
level of replication-competent virus.

INTRODUCTION

After more than 3 decades, HIV-type 1 (HIV-1) remains a major
public health concern that affects over 35 million people worldwide,
with new infections continuing at a steady rate of greater than
2 million per year. Antiretroviral therapy (ART) effectively controls
the viral load for most individuals yet fails to eliminate the virus."”
The major obstacle in curing HIV-1 infection relates to the presence
of integrated proviral DNA that persists in a dormant state but can be
reactivated to produce replication-competent virus. Indeed, interrup-
tion of ART often results in rapid viral rebound, requiring most
HIV-1-infected persons to maintain a lifelong treatment with ART,
including those who respond very well to therapy.

During latency, HIV-1-infected cells produce little or no viral protein,
thereby avoiding both viral cytopathicity and host antiviral immune
clearance. This results in the development of a long-lived reservoir

of viral persistence that is believed to be composed, largely, of resting
memory CD4" T cells and tissue macrophages, including microglia in
brain.” > Earlier efforts to eliminate HIV-1 from these reservoirs have
focused on the “shock-and-kill” approach that includes steps for reac-
tivation of latent HIV-1 to purge virus-producing cells by cytolysis or
immune attack.” Considering the multiple limitations of this
approach, this strategy showed insufficient efficacy in a clinical
setting.” Thus, it is evident that a new strategy is required to identify
and eliminate infected cells and/or eradicate the HIV-1 genome from
infected cells without perturbation of host cell homeostasis.

CRISPR and its associated endonuclease (Cas9) provide a powerful
tool for editing eukaryotic genes.*” The method is easy to use, very
efficient, and flexible, so it can be adapted to several targets within
the gene of interest.” Recently, we have modified and used the
CRISPR/Cas9 apparatus with the ability to recognize specific DNA
sequences within the HIV-1 promoter spanning the long terminal
repeat (LTR), as well as several other DNA sequences within viral
DNA coding sequences, and precisely excised segments and/or the
entire proviral DNA from infected cells in vitro and in vivo.'""?

In accord with this observation, several other laboratories have
assessed the efficacy of CRISPR technology in editing the HIV-1
genome in a variety of cell models.">"* An important consideration
that arose from these recent studies was the appearance of mutant
virus that may stem from insertions or deletions (indels) generated
by non-homologous end joining (NHE]) repair mechanisms after
CRISPR editing.l5’”’ This concern, however, can be avoided by
targeting multiple sites within the viral genome to excise large
segments of viral DNA, resulting in a permanent inactivation of viral
replication in the infected cells.'”"®
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While the gene editing strategy has shown an unprecedented ability to
eliminate HIV-1 DNA from PBMCs in laboratory cell models and
suppression of viral infection in primary human blood cell cultures
in vitro, its efficacy in editing HIV-1 DNA in cells and tissues that
support viral reservoirs in vivo requires further investigation. Clearly,
the most convenient path for application of CRISPR/Cas9 is a gene
therapy strategy using a vehicle that can be directly administered to
the subject. In this regard, recent studies have shown that adeno-asso-
ciated virus (AAV)-mediated intravenous delivery of HIV-1-target-
ing CRISPR/Cas9 to transgenic animals harboring partial segments
of HIV-1 genome or humanized mice infected with HIV-1 results
in the editing of integrated copies of the viral genome from a broad
range of tissues.!"'® Here, we used non-obese diabetic/severe com-
bined immunodeficiency (NOD/SCID, or NRG) mice engrafted
with an in-vitro-infected primary culture of PBMCs or PBMCs iso-
lated from a small cohort of (three) HIV-1-positive patients and
demonstrated that intravenous administration of lentiviral vectors
(LVs) for the delivery of CRISPR/Cas9 caused excision of segments
of the HIV-1 genome in circulating human PBMCs, as well as the in-
fected blood cells homing to spleen—one of the major sites serving as
a reservoir for viral latency—and several other organs. Sanger
sequencing was used to confirm the expected cleavage of the viral
genome in these treated humanized mice.

RESULTS AND DISCUSSION

Bioinformatic screening of DNA sequences corresponding to the
U3 region of the HIV-1 LTR identified several specific stretches
of fragments (20 nt in size) with the essential trinucleotide motif
known as the protospacer-adjacent motif (PAM), which can serve
as a template for the development of guide RNAs (gRNAs) and
cleavage by spCas9.'” Additional bioinformatic analyses predicted
relatively no off-target effects on the cellular genes of two motifs
that we have designated “LTR A” and “LTR B” and selected for
the creation of gRNAs.'”'” Here, we utilized a cocktail of LVs,
each containing a DNA fragment corresponding to protospacers
of the gRNA LTR-A, gRNA LTR-B, or spCas9 gene, hereinafter
called LV-CRISPR/Cas9, to assess their combined ability to edit
the HIV-1 genome in a system in vivo. As described previously,'*'?
the use of two gRNA configurations to excise large fragments of
HIV-1 DNA mitigates the emergence of mutant virus with a small
nucleotide indel mutation that becomes immune from CRISPR/
Cas9.'®'® It is also important to note that the use of two or more
gRNAs, in addition to the excision of the intervening DNA
fragments, more frequently introduces an indel mutation at each
of the target sites and leads to the inactivation of the target
gene.'® During the past several years, we have been able to
optimize our editing strategy, and developing pairs of gRNAs
significantly enhanced the frequency of viral DNA excision by a
multiplex of gRNAs.'”'>'**" For our experiments in vivo, we
selected an NRG mouse model, which has multiple immunodefi-
ciencies that are due, largely, to the absence of T, B, and NK cells
and the presence of dysfunctional dendritic cells and macrophages,
as well as minimal complement activity.”’ This model offers an
excellent system in vivo for hosting human immune cells and can
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be used for either long-term studies using CD34" human cells or
short-term using primary PBMCs. In most cases,
graft versus host does not appear in these animals until months
6-9, making them an ideal model for both short- and long-term
studies.

studies

In the initial experiments, PBMCs prepared from buffy coat blood
were cultured in media containing interleukin (IL)-2. After infection
with HIV-1j gy, cells were treated with IL-7 in the media containing
ART to outgrow PBMCs. At 7 days post-infection, cells were treated
with LV-CRISPR/Cas9, and the level of viral DNA corresponding to
LTR was determined by digital droplet PCR (ddPCR) 6 days later.
Our results, which were normalized to human B-actin gene copy
number, showed that viral LTR DNA is significantly decreased in
cells transduced with LVs expressing CRISPR/Cas9 and gRNAs (Fig-
ure 1A). This removes a 190-bp LTR DNA sequence positioned
between gRNAs A and B, resulting in a 167-bp truncated LTR that
can be identified by conventional PCR and gel electrophoresis (Fig-
ure 1B). The position of the breakpoints is also confirmed by direct
sequencing of the amplicon (Figure 1C). Additionally, this strategy
allows cleavage on both 5 and 3’ LTRs, which results in the removal
of the entire HIV genome positioned between the two LTRs. Rejoin-
ing of the residual DNA sequences from both LTRs by NHE], in turn,
creates a single LTR at the integration site, which is defined by the
absence of central DNA sequences corresponding to gag-pol-env.
This allows the use of gPCR and ddPCR to determine the efficiency
of the excision of the viral DNA by CRISPR/Cas9, as shown in
Figure 3.

To explore the efficacy of LV-CRISPR/Cas9 in vivo, approximately
5 x 10° PBMCs infected in vitro were intraperitoneally (i.p.) injected
into each 8-week-old NRG mouse. After 1 week, animals were sub-
jected to intravenous administration of LV-CRISPR/Cas9 and sacri-
ficed for HIV-1 DNA analysis 1 week later. Comparison of the viral
DNA levels, corresponding to the target sequence, by ddPCR in the
three control animals that did not receive lentivirus treatments with
those treated with gRNAs and spCas9 showed a drastic decline in
the viral DNA in the animals that received the cocktail of LVs
(Figure 1D).

Amplification of viral DNA in spleens of the control group by stan-
dard PCR verified the presence of the expected 357-bp amplicon cor-
responding to the full-length LTR DNA segment between the PCR
primers (Figure 1E, lanes 2-4). In contrast, animals that received
LV-CRISPR/Cas9 (n = 3) showed a significant decrease in the inten-
sity of the 357-bp fragment, as well as the presence of a smaller DNA
fragment 167 bp in size (Figure 1E, lanes 5-7), which is not seen in the
non-treated animals. Sequencing of the 167-bp amplicon verified the
removal of a 190-bp DNA fragment positioned between LTR A and
LTR B and identified the site of breakpoint (Figure 1F). LV-
CRISPR/Cas9-treated and non-treated TZM-bl cells, which have
integrated copies of HIV-1 DNA, served as a control for the excision
of the 190-bp DNA from the LTR by CRISPR/Cas9 (Figure 1E, lanes 8
and 9).
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Figure 1. Editing of HIV-1 DNA in In Vitro-Infected PBMCs by LV-CRISPR/Cas9

PBMCs isolated from the blood of healthy donors were infected in vitro with HIV-1g_r. After 1 week, IL-7 and ART were added. Two weeks later, half of the cells were treated
with an LV-CRISPR/Cas9 cocktail in vitro, and the other half were engrafted into NRG mice followed by injection with LV-CRISPR/Cas9. Genomic DNA was extracted from
cells treated in vitro at day 6 after lentiviral transduction and from the spleens of engrafted animals after 1 week from lentiviral injection. (A) HIV-1 DNA levels in cells treated
in vitro were quantified by digital droplet PCR (ddPCR) using TagMan primer/probe sets specific to the U3 region of viral LTRs and normalized to human B-actin gene copy
number. (B) Agarose gel electrophoresis of conventional PCR for the detection of truncated LTR DNA in the cells treated with LV-CRISPR/Cas9. (C) Top: alignment analysis of
sequences obtained from Sanger sequencing of truncated amplicons. HIV-1 HXB2 5'-LTR sequence was used as a reference. Target sites are highlighted in green, PAM
sequences are indicated in red, mismatches are indicated in yellow, and deletions are indicated in gray. Bottom: representative Sanger sequence tracing result. The position
of the CRISPR/Cas9-specific double-cleaved/end-joined site is shown as a breaking point. (D) ddPCR analysis for detecting the HIV-1 sequence in circulating human PBMCs
isolated from the spleens of treated and untreated NRG mice engrafted with the aforementioned PBMCs. (E) Gel analysis of conventional PCR to reveal excision of viral DNA
isolated from the tissues of engrafted NRG mice. (F) Sanger sequencing of the 167-bp amplicon amplified from an LTR sequence showed breakpoint (top) and deletion of the
DNA fragment between the target sites of LTR-A and B (bottom), while some minor nucleotide variations were also detected. The asterisks below the bands indicate the
specificity of the cleavage by CRISPR, as verified by sequencing.
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Figure 2. Ex Vivo Editing of HIV-1 DNA from Patient Blood
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(A) PBMCs from three HIV-1-infected patients treated with ART were acquired through the Clinical Core Repository of the NIMH-funded Comprehensive NeuroAIDS Center.
DM, diabetes mellitus; HTN, hypertension; HAV, hepatitis A virus; HBV, hepatitis B virus; HCV, hepatitis C virus. (B) Schematic of preparation and treatments of PBMCs. On
day 16, a portion of cells was used in an ex vivo experiment, as described here and in (C) and (D), and some were used for engrafting NRG animals, as described in the
Materials and Methods section. (C) ddPCR assessing the level of viral load from patient PBMC cultures after treatment with LV-CRISPR/Cas9 (normalized to human B-actin
sequence). (D) Excision assay by PCR and gel electrophoresis revealed a 167-bp amplicon in all patient samples after treatment with LV-CRISPR/Cas9. (E) Results from
Sanger sequencing showing the removal of the viral DNA sequence spanning between the target sites of LTR-A and LTR B. The position of a 5-nt deletion is seen in one of the
TA clones. Target sites are highlighted in green, PAM sequences are highlighted in red, mismatches are highlighted in yellow, and deletions are highlighted in gray. Below, the
representative Sanger sequence tracing result is shown. The position of CRISPR/Cas9-specific double-cleaved/end-joined site is shown as a breaking point.

We next evaluated the ability of our therapeutic lentivirus in editing
the HIV-1 DNA present in PBMCs prepared from HIV-1-positive
patients, which were provided by the Clinical Core of the
Comprehensive NeuroAIDS Center (CNAC) and the Temple
University Hospital AIDS Clinic. The relevant clinical history of
the patients is shown in Figure 2A. Preparation and processing
of the PBMCs from heparinized whole blood is schematized in
Figure 2B. Although DNA sequence analyses of the viral DNA
from patient samples showed minor variabilities across the LTR

278 Molecular Therapy: Nucleic Acids Vol. 12 September 2018

(Figures S1A-SIC), including the regions corresponding to the
gRNAs A and B (Table S2), a significant decrease in the level of viral
LTR DNA was seen in PBMCs from HIV-positive patients after
transduction with the LV-CRISPR/Cas9 (Figure 2C). Gel electropho-
resis of the conventional PCR reaction of the patient’s PBMCs after
treatment showed detection of a 167-bp amplicon, suggesting editing
of the HIV LTR DNA by gRNAs and spCas9 (Figure 2D). Further,
from the intensity of the 167-bp amplicon, it was evident that the
efficiency of the viral DNA excision in patient #TUR0095 is far less
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Figure 3. Removal of HIV Proviral DNA from Patient PBMCs by LV-CRISPR/Cas9 in NRG Mice

(A) Expression of Cas9 and gRNAs A and B, and the human B-actin gene by RT-PCR in spleen tissue from the engrafted NRG mice. (B) Examination of viral load by gPCR in
spleen (left), as presented by the ratio of gag/LTR DNA copies, and blood (right) of control and untreated animals. (C) ddPCR of genomic DNA isolated from the spleens of
humanized NRG mice shows a decrease in the viral DNA copy numbers in the treated animals. (D) Standard PCR analysis of LTR excision using genomic DNA extracted from
different tissues of patient PBMC-engrafted mice. (E) Real-time PCR showed a drastic decrease in the signal corresponding to the pol RNA sequence in the spleen of mice
engrafted with PBMCs from patient #TUR0094. The values are normalized to the level of detected human B-actin sequence. (F) Representative Sanger sequencing results of
the DNA fragments isolated from the gel electrophoresis shown in (D). (G) Recovery of HIV upon the co-culturing of human T cell-line-, Hut-R5-, or IL-2-activated human
PBMCs with blood samples from the untreated or CRISPR/Cas9-treated NRG mice transplanted with PBMCs from patient #TUR0036 (left and middle panels) or co-culturing
with splenocytes prepared from the same group of animals with the activated human PBMCs.

than that seen in the other samples, suggesting that variability in the
viral DNA sequence at the target sites may contribute to the poor ed-
iting of the viral DNA sequence. Further, it is also likely that, as
described previously,'® simultaneous editing of the viral genome at
the two target sites, for unknown reasons, was not as robust as
in the other two patient samples. Additionally, direct sequencing
of the amplicons showed the sites of the breakpoints and the
cleavage of the patient viral DNAs by Cas9 at target A, ie., 3 nt
from the PAM, and the deletion of a few nucleotides at target B
(Figure 2E).

Once the ability of our gRNAs and spCas9 to edit HIV-1 DNA pre-
sent in the patients’ blood cells was verified ex vivo, NRG mice
were engrafted with PBMCs from the same subjects for in vivo editing
of the viral DNA. A total of 5 x 10° human PBMCs with no detectable
HIV-1 p24, as tested by ELISA, were injected i.p. into 8-week-old
NRG mice (n = 3 for each blood sample obtained from each patient).
At 1 week post-transplantation, animals were injected intravenously
with LV-CRISPR/Cas9-carrying spCas9, LV-LTR-A-expressing
gRNA LTR-A, and LV-LTR-B-expressing gRNA LTR-B. Two weeks
after the injection of LVs, mice were sacrificed for measuring HIV-1
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RNA and DNA by RT-PCR and ddPCR. Expression of Cas9 and
gRNAs were verified by RT-PCR (Figure 3A), as well as the presence
of human cells, using human B-actin as a reference. Excision effi-
ciency was examined by qPCR, by comparing the ratios of gag/LTR
DNA levels between non-treated and LV-CRISPR/Cas9-treated ani-
mals. As shown in the left panel of Figure 3B, a greater-than-90%
decrease in gag/LTR was observed in spleens of treated animals en-
grafted with PBMCs from patient #TUR0036 or patient #TUR0094,
as well as a nearly 29% decrease in the animals engrafted with
PBMCs from patient #TUR0095. Similar results were observed
in blood from the experimental animals (Figure 3B, right). Further
evaluation of HIV-1 DNA by ddPCR confirmed the qPCR
results, which showed an 89% and 96% reduction in gag sequences
in the human cells isolated from spleens of treated mice engrafted
with PBMCs from patient #TUR0036 or patient #TUR0094, respec-
tively. Only a modest decrease (25%) in the viral DNA level was
observed in the animals harboring PBMCs from patient #TUR0095
(Figure 3C).

After viral DNA was amplified by PCR, we used gel electrophoresis to
visualize the cleavage products in several tissues recovered from the
animals humanized with PBMCs from patient #TUR0036. We de-
tected a 167-bp amplicon in spleen, blood, liver and lung, but not
in brain (Figure 3D). Sanger sequencing confirmed excision of the
190-bp DNA fragment between the target sites of gRNAs LTR-A
and LTR-B (Figure 3F). Examination of the excision event in the tis-
sues from the animals engrafted with PBMCs from patient #TUR0094
showed amplification of the 167-bp fragment in blood but not any
other organs, including the spleen. In light of the results from the
qPCR (Figure 3B) and ddPCR (Figure 3C) showing a substantial
decrease in the viral LTR DNA in the spleen of this animal, we posited
that the excision, in this case, may be much broader and include the
entire viral genome spanning the 5’ to 3’ LTR, as reported earlier.' '
In support of this notion, results from qPCR of the viral sequence cor-
responding to the middle of the viral genome revealed a major
decrease in the level of DNA encoding the pol gene in both spleen
and blood samples (Figure 3E). In the animal transplanted with
PBMCs from patient TUR0095, the 167-bp amplicon was detected
in spleen, blood, and liver but not in lung or brain (Figure 3D). The
amplicons were sequenced to validate the specificity of the editing
by CRISPR/Cas9 (Figure 3F). Throughout these studies, diverse levels
of LV-CRISPR-mediated excision of viral DNA were noticed in
different organs of animals separately engrafted with PBMCs from
three patients. We expect that CRISPR-mediated excision efficiency
of viral DNA should inversely correlate with viral burden. For
example, the engraft from patient TUR0094 that exhibits very little
or no apparent excision of the 190-bp DNA fragment (Figure 3D)
within the 5" or 3’ LTR in liver or lung (unlike the engrafts from
the other two patients) shows the highest number of HIV-1 copies
per cell, as measured by qPCR and ddPCR for blood and spleen (Fig-
ures 3B and 3C). Of note, in the humanized animals, human PBMCs
remain predominantly in the circulation of engrafted animals; thus,
blood and spleen are more enriched with human cells and yield
more consistent outcome.
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Finally, to further assess the efficacy of our therapeutic strategy, we
performed viral rescue assays using mononuclear cells recovered
from the blood and spleen of the two NRG mice engrafted with
PBMCs from patient TUR0036 to co-cultivate with the HuT-R5 cell
line or IL2-activated PBMCs from healthy donors. In this system,
significantly reduced viral outgrowth was seen from the peripheral
blood PBMCs of LV-CRISPR/Cas9-treated animals, as compared to
non-treated animals (Figure 3G). Conversely, isolated splenocytes
from an LV-CRISPR/Cas9-treated animal did not reach the same
level of significance observed with the blood PBMCs, although a
significant decline (37%-47%) in virus recovery was achieved
(Figure 3G). These observations demonstrate that, while CRISPR
technology can permanently inactivate the patient’s viral DNA in
humanized animals, under the present experimental conditions,
in vivo editing of the HIV-1 genome by CRISPR/Cas9 may not
completely eliminate replication-competent virus from the solid or-
gan, including spleen. Still, these observations, for the first time, offer
a proof of principle on the ability of using LVs to effectively deliver
CRISPR to various cells and organs and excise viral DNA from the
PBMCs in blood of human patients who have been on ART for
many years, as evidenced by, at least, a 93% decrease in the viral
recovery assay. Thus, we predict that complete elimination of
HIV-1 by CRISPR may require a combination therapy with
additional inhibitors, such as ART, that effectively control virus repli-
cation. In some instances, one may need to personalize CRISPR/Cas9
by creating sets of gRNAs that perfectly match with the viral genome,
should the universal gRNAs show less efficiency. The timing and
duration of ART can play a significant role in the formation of
an HIV reservoir in HIV-infected patients, which will be considered
in our future plans, which will be focused on a larger cohort to
determine when the CRISPR/Cas9 should be administered and
what the dosage should be.

MATERIALS AND METHODS
Please see the Supplemental Information for a detailed explanation of
all experimental procedures and the materials used in this study.

Statistical Analysis

The quantitative data, representing mean + SD, were evaluated by
Student’s t test, with a p value < 0.05 considered as a statistically sig-
nificant difference.

Animal Subject Approval

All experiments were carried out in Biosafety Level 3 (BLS-3) facilities
(George Mason University, Manassas, VA, USA) in accordance with
the Guide for the Care and Use of Laboratory Animals (Committee
on Care and Use of Laboratory Animals of the Institute of Laboratory
Animal Resources, National Research Council, NIH Publication
86-23, revised 1996). NOD.Cg-Rag'™™°™ [I2rgtm'""/Sz] mice
(NRG, NOD Rag gamma) were obtained from the Jackson Laboratory
(#007799, Bar Harbor, ME, USA) and were humanized as described
previously.”>”> These animals can be used either for long-term
studies using CD34" human cells or for short-term studies using
primary PBMCs. In most of the cases, graft versus host (GVH) disease
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does not appear in these animals until months 6-9, making them an
ideal model for both short- and long-term studies.

Human Subject Approval

Isolated PBMCs from 3 HIV-1 infected volunteers were acquired
through the Clinical Core Repository of the Comprehensive Neuro-
AIDS Center (CNAC; Kamel Khalili, principal investigator). Patient
recruitment and blood collections were performed under protocol
#21983, approved by the Temple University Institutional Review
Board. Urine was collected from each subject at the time of phlebot-
omy and screened for amphetamines, barbiturates, benzodiazepine,
cannabinoid, cocaine, methadone, methaqualone, opiate, phencycli-
dine, and alcohol under the same protocol (#21983). Written
informed consent was obtained from all subjects at the time of
enrollment into the Clinical Core Repository of the CNAC. All
HIV-1-infected subjects in our study were on antiretroviral therapy
with low or non-detectable virus and CD4" T cell counts near or
above 500 cells/pL (Figure 2A).
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Supplemental Information includes Supplemental Materials and
Methods, one figure, and two tables and can be found with this article
online at https://doi.org/10.1016/j.omtn.2018.05.021.
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