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Abstract
Background: Thyroid hormone (TH) is an important developmental regulator in many tissues,
including the retina. TH is activated locally via deiodinase 2 (Dio2), and it is destroyed by deiodinase
3 (Dio3). The TH receptors, TRa and TRb, mediate TH activity through hormone and DNA
binding, and interactions with transcription regulators.

Results: In the current work, the expression of these TH components was examined in the chick
retina over time. Three waves of expression were characterized and found to be correlated with
critical developmental events. The first wave occurred as progenitor cells began to make
photoreceptors, the second as some cell types adopted a more mature location and differentiation
state, and the third as Müller glia were generated. The cell types expressing the components, as
well as the kinetics of expression within the cell cycle, were defined. TRb expression initiated
during G2 in progenitor cells, concomitant with NeuroD and Otx2, which are expressed in early
photoreceptor cells. TRb was expressed in photoreceptor cells for several days and then was
reduced in expression level, as the expression of Crx, a later photoreceptor gene, became more
evident. Dio3 was expressed throughout the cell cycle in progenitor cells. TRa was in most, if not
all, retinal cells. Dio2 appeared transiently in a ventral (high) to dorsal gradient, likely in a subset of
photoreceptor cells.

Conclusion: Multiple TH components were expressed in dynamic patterns in cycling progenitor
cells and photoreceptors cells across the developing chick retina. These dynamic patterns suggest
that TH is playing several roles in retinal development, both within the cycling progenitor cells and
possibly with respect to the timing of differentiation of photoreceptor cells.

Background
TH controls normal development on a global scale, as evi-
denced by its central role in processes as diverse as
amphibian metamorphosis and human cretinism [1-3].

While these roles have been known for some time, the
mechanism(s) by which the hormone coordinates such
events is still under active investigation. Considerable
attention has focused on the hormone's regulation of the
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TRs, which are members of the thyroid/steroid nuclear
receptor superfamily that bind DNA and activate or
repress transcription [4,5]. TRs recruit activators such as
the SMART complex, or repressors such as the HDACs,
and alter the transcription of a variety of genes [6,7].

Equally important to the TRs are the deiodinases, which
are enzymes that modify the prohormone secreted by the
thyroid gland [8]. Deiodinases are expressed at different
times by different tissues, and are thought to control the
amount of active hormone available locally in a tissue
[9,10]. Some deiodinases, such as Deiodinase 2 (Dio2),
have 5'- outer ring (5'-) catalytic activity, clipping the 5'-
iodine off of the T4 prohormone to create T3. T3 is the
preferred ligand for TRs. Other deiodinases, such as Deio-
dinase 3 (Dio3), have 5- inner ring (5-) catalytic activity,
removing the 5-iodine from either the T4 prohormone or
the T3 active hormone, and thereby inactivating them.
The inactive products do not bind with high affinity to the
hormone binding site of the TRs. Deiodinase 1, a deiodi-
nase not traditionally found in the nervous system, can
have both 5'D and 5D activities.

As a first step in understanding how TH affects tissue
development, the different TRs and deiodinases in a tissue
must be identified. Previous work has shown that TH
components are expressed at critical times during a partic-
ular tissue's development. For example, in the develop-
ment of the murine inner ear, TH activating enzyme is
necessary for proper inner ear development. Its expression
peaks within a 2-day window, after which expression
sharply declines [11]. Similarly, in the rodent heart, TR
controls cardiac gene expression during the critical switch
from embryonic to neonatal life [12].

Another tissue in which TH action has been studied is the
retina. The retina has numerous advantages as a model tis-
sue for developmental studies. It has a well-studied
sequence of neural cell production, during which 7 differ-
ent cell types are produced in an overlapping order
[13,14]. Early reports identified three thyroid receptors,
TRa, TRb0, and TRb2, in the developing chick retina using
ISH [15-17]. TRb2 was found in the photoreceptor layer,
TRa was observed in the progenitor layer, and TRb0
showed weak signal during later stages in the inner
nuclear layer. Subsequent to this study, other investigators
have used a hypothyroid rodent model to show that TH is
important for retinal morphology [18], and in the
amphibian retina, TH promotes proper morphology and
proliferation [19,20]. In salmonid fish, TH appears to reg-
ulate the death and reappearance of UV cones during
smoltification, a process similar to amphibian metamor-
phosis [21-23].

In addition to these studies, TH has been investigated with
respect to its role in rodent photoreceptor development.
Early in vitro studies implicated TH as a modulator of pho-
toreceptor genes [24,25], and characterization of a TRb2
knock-out mouse showed that TRb2 is indeed involved in
proper cone photoreceptor differentiation [26]. Without
TRb2, cone photoreceptors expressed the short wave-
length opsin (S-opsin) gene earlier than normal, and
failed to express medium wavelength opsin (M-opsin). It
is unclear whether this represents a fate change, from one
cone cell type to another, or misregulation of the opsin
genes.

We were intrigued by the number of processes controlled
by TH, and looked to the chick retina for further insight
into the processes regulated by TH. The chick retina is
much larger than the rodent retina, thereby revealing spa-
tiotemporal gradients of development more readily. We
identified the expression patterns of the TRs as well as the
deiodinases that activate and inactivate the hormone
locally. The results show that TH components are
expressed dynamically during development, in three
sequential waves that spread across the retina in a central
to peripheral pattern. The first wave marks the transition
between cells that produce only mitotic daughter cells to
cells that can produce neurons. The second wave marks a
transition for some types of immature postmitotic cells to
their more mature location and differentiation state. The
third wave is correlated with the production of Müller
glial cells. Furthermore, using dissociated cell ISH (DISH),
we identified the cell types that express the TH compo-
nents, and the kinetics of expression relative to the cell
cycle. Together, these data suggest that TH plays multiple
roles in chick retinal development, including a role within
progenitor cells and photoreceptor cells.

Results
The expression of TH components in three distinct time 
windows
Using section ISH, three discrete developmental stages
were characterized for the expression of various TH com-
ponents (Figure 1). These timepoints were separated by
approximately 2 days, as developmental events occur first
in the center, and then in the periphery, with the interval
increasing as the retina grows larger [27-29]. The first
timepoint during which the expression of the three com-
ponents was examined was HH Stage 26. During this
stage, TRa was observed throughout the retina, although
at low levels (Figure 1C). TRb was observed in cells that
were located throughout the outer neuroblastic layer
(ONBL) of the retina, with more intense staining observed
on the scleral side, near the RPE, where the photorecep-
tors will eventually reside (Figure 1D). The TRb in situ
probe used in this study encompassed the common 3' end
of both TRb0 and TRb2 and therefore did not distinguish
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Expression of TH components during chick developmentFigure 1
Expression of TH components during chick development. In situ hybridizations were performed on retinal cryosec-
tions cut in the coronal plane at three different stages of chick development (Stage 26 [A-D], Stage 32 [E-H], and Stage 36 [I-
L]). The probes used were Dio2 (A, E, I), Dio3 (B, F, J), TRa (C, G, K), and TRb (D, H, L). A representative scale bar is shown.
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between the two isoforms [16]. However, other experi-
ments with probes made from the small N-terminal
region specific to TRb2 showed similar, albeit lighter,
staining [17]. Neither Dio2, the deiodinase that activates
TH in the chick nervous system nor Dio3, the deiodinase
that inactivates thyroid hormone, was detected in the ret-
ina at HH Stage 26 (Figure 1A, B).

During the second time period, HH Stage 32, the expres-
sion of all four TH components was observed (Figure 1E–
H). TRa was broadly expressed throughout the developing
retina (Figure 1G). Unlike TRa, the expression of TRb was
restricted to the future photoreceptor layer, in a narrow
band of cells abutting the RPE (Figure 1H). At this second
developmental stage, the punctate TRb staining observed
in cells distributed throughout the ONBL at HH Stage 26
had disappeared (compare Figure 1D with 1H). Dio3 was
seen in cells in the center of the ONBL, where retinal pro-
genitor cells reside [27,30] (Figure 1F and data not
shown). Finally, Dio2 expression appeared in the retina,
in a layer of cells one or two cell bodies below the RPE
(Figure 1E). This cell layer is most closely associated with
photoreceptors.

The third timepoint, HH Stage 36, showed lighter expres-
sion of the TH components, relative to the levels during
the second time period (Figure 1I–L). Again, TRa was
detected throughout the retina, in a similar expression
pattern as at earlier time periods (Figure 1K), although at
lower levels. TRb expression was also reduced, but still
seen tightly abutting the RPE in a photoreceptor pattern
(Figure 1L). Dio3 expression was observed in the center of
the ONBL, where the few remaining progenitor cells at
these late stages would be located [27](Figure 1J). Finally,
just as in the first time period, Dio2 was not detectable by
ISH in the retina at this later stage (Figure 1I).

The first time period correlates with early neurogenesis
To better characterize the dynamic expression patterns of
the TH components, the expression patterns were further
examined at several early HH stages. During HH Stages
20–26, TRb expression appeared as an enlarging wave,
starting from the center and expanding to the periphery,
sometimes overlapping the expression domain of Dio3
(Figure 2A–H). At Stage 20, Dio3 expression was observed
centrally, overlapping the domain containing a small
number of TRb-positive cells (Figure 2A–D). At Stage 24,
Dio3 and TRb expression were both more robust, having
now begun to spread more peripherally from the central
portion of the retina (Figure 2E, F). The expression
domain of both genes overlapped, with Dio3 expression
sometimes being observed slightly ahead (i.e. more
peripherally) of the TRb domain (Figure 2C–F). By Stage
26, Dio3 expression had waned significantly, with only
faint expression observed in the periphery (Figure 2G, H).

In contrast, at Stage 26, TRb expression was robust both
centrally and peripherally, and was not yet resolved to the
photoreceptor layer, as was observed at later stages.

Since the center-to-periphery TRb wave resembled that
seen with the neurogenic genes Otx2 [31], NeuroD [32],
and Cath5 [33], serial section ISH was used to see if the
different expression patterns were correlated (Figure 3).
Otx2 and NeuroD were expressed in cells scattered
throughout the ONBL, with a higher concentration of
labeled cells located near the scleral side (Figure 3A–C').
Both genes are thought to mark early photoreceptor cells,
as well as other cell types [31,32,34-36]. Cath5, on the
other hand, was expressed in a bilayered pattern, present
in cells in the ganglion cell layer as well as in cells that
have not been defined, but which overlap the developing
photoreceptor layer (Figure 3D, D') [33]. The expression
pattern of NeuroD and Cath5 appeared to extend slightly
more toward the peripheral retina than TRb and Otx2,
although all 4 genes were similar in the extent of their cen-
tral-peripheral expression (Figure 3A–D). These data sug-
gest that TRb expression is correlated with a more general
wave of neurogenesis spreading across the retina at early
stages.

TRb expression also was compared to the expression of
Brn3b, Crx, and Shh, three genes marking the early differ-
entiation of neurons, which also occurs in a central-to-
peripheral pattern. In mouse, Brn3b marks early ganglion
cells [37-39] and Crx marks early photoreceptor cells [40].
Shh is expressed by ganglion cells in the chick [41], and
possibly in other cell types as well. In zebrafish, ganglion
cells and a subset of amacrine cells express Shh [42], and
in mouse, there is a similar pattern of expression [43], and
there is a history of expression of Shh in a subset of pho-
toreceptors, likely cone photoreceptors [44]. At Stage 26,
the location of cells expressing Brn3b, Crx, and Shh
expression was similar with respect to the central/periph-
eral gradient, within the expression domain located more
centrally then TRb (compare Figure 3A, A' with 3E–G').

The second time period corresponds to a wave of 
maturation of some cell types
In a second time period, HH Stages 29–33, a second wave
of TH components involving Dio2 and Dio3 swept across
the retina (Figure 4). Using flat mount ISH, Dio2 expres-
sion was observed at Stage 29 as heavy ventral staining,
some dorsal staining, and an absence of expression in a
spot and stripe centered on the dorsoventral border (Fig-
ure 4A, arrows). Over the next few stages, Dio2 expression
was confined in narrower stripes toward the periphery
(Figure 4B, C). In a nearly complementary pattern, Dio3
started at Stage 29 as a spot and stripe centered on the dor-
soventral border (Figure 4D, arrows). Over the next few
stages, Dio3 expression expanded dorsally and ventrally
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Expression of TH components during early chick developmentFigure 2
Expression of TH components during early chick development. In situ hybridizations were performed on serial cryo-
sections cut in the coronal plane at three different stages of chick development (Stage 20 [A-D], Stage 24 [E, F] and Stage 26 
[G, H]) for Dio3 (A, C, E, G) and TRb (B, D, F, H).The images in C and D are more centrally derived sections from an inde-
pendent Stage 20 chick.
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Expression of TH components and early neurogenesis markersFigure 3
Expression of TH components and early neurogenesis markers. Section ISH composites of Stage 26 chick retinal cry-
osections cut in the coronal plane using the following probes: TRb (A, A'), Otx2 (B, B'), NeuroD (C, C'), Cath5 (D, D'), Brn3b 
(E, E'), Crx (F, F'), and Shh (G, G'). The arrows at the bottom of the low magnification sections indicate the central and periph-
eral retina. Zoomed-in views (using Adobe Photoshop) from the indicated portions of each section are shown on the right. 
Arrows point toward positive cells for the indicated probes.
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to occupy the entire retina (Figure 4E, F). ISH performed
on serial sections of the peripheral retina at HH Stage 31
showed that the ebbing Dio2 and expanding Dio3 expres-
sion patterns were nearly complementary (Figure 5A, B).

During HH stages 20–26, there was a correlation of
expression of TH components and genes involved in neu-
rogenesis and differentiation (Figure 3). It was of interest
to determine whether the second wave of expression of
TH components also was correlated with other genes. The
first candidate examined was Lim1, which has been
shown to mark horizontal cells as they move from the vit-
real side to their final scleral position during development
[45]. On serial sections, the interface between Dio2 and
Dio3 occurred in the same place as Lim1 cell migration
(Figure 5A–C).

The Dio2/Dio3 wave also paralleled changes the photore-
ceptor marker, Visinin (Figure 5D–F). At the Dio2/Dio3
wavefront/transition, Visinin expression became more
organized, transitioning from a weak diffuse pattern to a
more intense band in the maturing photoreceptor layer
(Figure 5D–F). Hence, the transition in the expression of
Dio2 and Dio3 occurred along with the transition of a
couple of genes to their mature expression patterns.

The third time period corresponds to the disappearance of 
progenitor cells
In a later time period, HH Stages 35–39, a third wave
involving Dio3 swept across the retina (Figure 6). During
this time period, Dio3 expression ceased, first from the
center (Figure 6A) and then in the periphery (Figure 6C).
Similar to the previous 2 waves of expression of TH com-

Expression of TH components during the second waveFigure 4
Expression of TH components during the second wave. In situ hybridizations were performed on flat mounted retinas 
at three different stages of chick development (Stage 29 [A, D], Stage 31 [B, E] and Stage 33 [C, F]. The probes used were Dio2 
(A-C) and Dio3 (D-F). The dorsal side of the retina is at the top of the flatmount and the ventral side at the bottom, while 
anterior (nasal) is toward the left and posterior (temporal) is toward the right. Arrows in (A) indicate the spot that is devoid of 
Dio2 staining. The arrows in (D) identify the stripe pattern of Dio3 expression at Stage 29.
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Expression of TH components and mature neuronal markersFigure 5
Expression of TH components and mature neuronal markers. In situ hybridizations were performed on serial cryo-
sections cut in the coronal plane and collected from near the central retina (level of the optic nerve) at Stage 31. Composites 
of the ISH are shown for Dio2 (A), Dio3 (B) and Lim1 (C). The arrow in C indicates the location of the beginning of Lim1 
migrating cells. Composites of ISH on a second set of serial sections at Stage 31 are shown for Dio2 (D), Dio3 (E) and Visinin 
(F). Arrows under panel C indicate the center and peripheral portions of all of the retinas in the figure. Representative scale 
bars for 100 μm are shown.
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ponents, this period showed a correlation with the expres-
sion of genes involved in retinal development. On serial
sections, Dio3 was expressed throughout the area occu-
pied by progenitor cells as defined by the expression of
Notch (Figure 7A, B). In more central areas, where Dio3
expression was absent, Notch appeared in the layer that
seemed to overlap with the expression of a glucose trans-
porter (Glut1) (compare Figure 7B and 7C), in a pattern
consistent with Müller glia cell expression [46,47]. Birth-
dating studies have shown that Müller glia cells are among
the last born of retinal cell types [14], and thus this tran-
sition appears with the end of proliferation.

TRb is expressed in early photoreceptor cells
Previous data concerning TRb expression in the murine
retina [17,26,48], along with the location of the ISH sig-
nal in the scleral region of the chick retina (Figure 1H, L),
suggested that TRb is expressed by photoreceptor cells.
However, the scleral region of the retina also harbors cells
in M phase, as well as cells that are newly postmitotic, but
not photoreceptor cells. In order to define the cell type(s)
expressing TRb, dissociated cell ISH (DISH) was carried
out. Probes for cell type-specific markers along with
probes for TH components were used. In addition, to
investigate whether TH components were expressed in
mitotic cells, newly postmitotic cells, or postmitotic cells
that had not recently exited, and were thus further along
in their differentiation, embryos were labeled with [3H]-
thymidine in ovo. DISH was used to detect expression of
one or two genes in cells labeled with [3H]-thymidine
(Additional Files 1, 2, 3, 4, Tables 1, 2).

A one hour pulse with [3H]-thymidine, followed by an
immediate harvest, would be expected to label primarily
cells in S phase, along with cells in the early part of G2
[27]. DISH for TRb applied to cells labeled with [3H]-thy-
midine for one hour showed that most of the TRb express-
ing cells were not co-labeled for [3H]-thymidine and thus
were not in S phase at Stages 26, 28, or 32 (Figure 8, Addi-
tional Files 1, 2, Tables 1, 2, Additional File 4E–F). In
addition, the majority of cells in S phase or early G2 at
these stages did not express TRb (Figure 8, Additional Files
1, 2, Table 3, Additional File 4E–F). However, since a
small fraction of cells, 2.8 ± 0.7%, labeled with [3H]-thy-
midine after one hour expressed TRb (Figure 8) it is likely
that TRb turns on in some G2 cells. These data are in keep-
ing with data from the ISH on tissue sections, in which the
majority of TRb+ cells were located in the area of G2 cells
and photoreceptor cells (Figure 1D).

Examination of [3H]-thymidine+ cells at intervals after the
initial addition of the label allows a determination of
whether a gene is expressed in G2, M, or G1/G0, since
injection of [3H]-thymidine in ovo results in continuous
labeling with [3H]-thymidine [49,50]. DISH for TRb was
performed on cells from Stage 26 or 28 embryos 1–10
hours after addition of [3H]-thymidine (Figure 8A, Addi-
tional Files 1, 2, Additional File 4E–H). These data show a
higher percentage of cells that express TRb were labeled
with [3H]-thymidine over time, resulting in 77.4 ± 1.6%
(Additional Files 1, 2) of TRb+ cells also being labeled
with [3H]-thymidine by 8 hours at Stage 26, and 62.2%
(Additional Files 1, 2) at Stage 28 by 10 hours. Since the

Expression of Dio3 during the third waveFigure 6
Expression of Dio3 during the third wave. In situ hybridizations were performed using a Dio3 probe on flat mounted ret-
inas at three different stages of chick development: Stage 35 (A), Stage 37 (B), and Stage 39 (C). The dorsal side of the retina is 
at the top of the flatmount and the ventral side at the bottom, while anterior (nasal) is toward the left and posterior (temporal) 
is toward the right.
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cell cycle length is 10 hours at these stages [27], the major-
ity of TRb+ cells are within one cell cycle length of labeling.
Given the location of TRb cells in the tissue section in the
area of photoreceptor cells, the lack of S phase labeling for
the majority of TRb+ cells, the low numbers of TRb+ cells
in the G2 population (i.e. those labeled with [3H]-thymi-

dine after 1–4 hours), most TRb+ cells are likely newly
postmitotic, and are likely to be photoreceptors. This was
confirmed by double DISH using photoreceptor markers
(Table 3, Additional File 3A–F).

Expression of Dio3, Notch1, and Glut1 during the third waveFigure 7
Expression of Dio3, Notch1, and Glut1 during the third wave. In situ hybridizations were performed on serial cryosec-
tions cut in the coronal plane at Stage 37 for Dio3 (A), Notch (B) and glucose transporter 1 (Glut1) (C). Arrows indicate the 
direction of the center and periphery of the retina.

Table 1: The kinetics of coexpression of TH components and marker genes at Stage 31

gene 1 gene 2 % gene 
1+

% gene 
2+

% gene 
1+/gene 

2+*

% gene 
2+/gene 

1+

% [3H]+ % of gene 
1+ cells 

that are 
[3H]+

% of gene 
2+ cells 

that are 
[3H]+

% of 
[3H]+ 

cells that 
are gene 

1+

% of 
[3H]+ 

cells that 
are gene 

2+

% of [3H]+ 

cells that 
are both 
gene 1+ 

and gene 
2+

otx2 TRb 36.4 15.2 41 97.8 14.9 9.9 2.2 24.2 2.2 2.2
dio2 cath5 1.2 10.2 30 3.4 17.5 0 1.1 0 0.7 0
cath5 neurod 16.5 28.3 28.4 16.5 15 2.5 13 2.7 24.3 2.7

Cells were labeled in ovo with [3H]-thymidine for 1 hour, and tissue was harvested and dissociated at the indicated times. Double DISH for the 
indicated genes and autoradiography for [3H] were carried out on the dissociated cells. Cells were quantified for labeling by a single gene probe, 
both gene probes, and labeling with [3H].
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As mentioned above, NeuroD and Otx2 are transcription
factors that are expressed by newborn photoreceptors
[31,32], and by other retinal cell types as well. The expres-
sion of Otx2 and NeuroD in the cell cycle was examined
as described above, and was compared to the labeling of
TRb (Figure 8, Additional Files 1, 2, 4). Cells that
expressed NeuroD or Otx2 showed kinetics of labeling
with [3H]-thymidine almost identical to the labeling
kinetics of TRb+ cells (Figure 8A). Double DISH at Stage
31 for TRb and NeuroD, or TRb and Otx2, revealed that
89.3% of all TRb+ cells expressed NeuroD (Table 3), and
97.8% expressed Otx2 (Table 1, Additional File 3A–C).
The expression of Otx2 and NeuroD was examined

among the [3H]+ cells labeled in a one hour exposure to
[3H]-thymidine (Figure 8B, C). Of the [3H]+ cells at Stage
31, 24.2% were Otx2+, and 24.3% were NeuroD+, while
only 2.2% were TRb+. Thus, among the [3H]+ cells that
expressed Otx2, or NeuroD, only approximately one out
of 10 also expressed TRb (Tables 1, 2). These data demon-
strate that while the kinetics of onset of expression of
Otx2, NeuroD, and TRb are similar, many more cells, par-
ticularly at the later stages examined, expressed NeuroD
and Otx2 than TRb.

Co-expression of two other markers of photoreceptors,
Visinin and Crx, along with TRb was examined by double

Table 2: The kinetics of coexpression of TH components and marker genes at Stage 32

gene 1 gene 2 % gene 1+ % gene 2+ % gene 1+/
gene 2+*

% gene 2+/
gene 1+

% [3H]+ % of gene 
1+ that are 

[3H]+

% of gene 
2+ that are 

[3H]+

% of [3H]+ 

that are 
gene 1+

% of [3H]+ 

that are 
gene 2+

dio2 cath5 2.3 ± 0.5 9.4 ± 0.4 17.4 ± 4.5 4.0 ± 1.0 17.8 ± 0.9 0 2.0 ± 0.5 0 1.0 ± 0.3
dio2 TRb 3.2 ± 0.4 7.4 ± 1.1 14.3 ± 4.5 5.8 ± 1.3 16.4 ± 1.2 0 7.3 ± 0.9 0 3.3 ± 0.6
dio2 otx2 2.9 ± 0.1 30.5 ± 1.4 91.9 ± 4.2 8.7 ± 0.8 17.5 ± 1.0 3.2 ± 3.2 14.8 ± 0.3 0.5 ± 0.5 25.9 ± 1.8
dio2 dio3 2.9 ± 0.4 8.1 ± 0.9 0 0 16.4 ± 0.9 2.4 ± 1.2 42.8 ± 5.5 0.5 ± 0.2 20.8 ± 2.1
dio2 crx 3.3 ± 0.4 13.5 ± 1.0 70.9 ± 11.2 17.4 ± 3.3 17.8 ± 1.7 1.5 ± 1.5 0.6 ± 0.3 0.4 ± 0.4 0.5 ± 0.3
dio2 neurod 2.2 ± 0.2 23.6 ± 2.0 89.3 ± 2.2 8.5 ± 1.3 16.9 ± 1.1 2.1 ± 2.1 11.6 ± 1.1 0.3 ± 0.3 16.1 ± 1.0
TRb neurod 8.7 ± 0.5 26.8 ± 0.6 95.5 ± 1.4 31.1 ± 1.7 17.9 ± 0.4 6.2 ± 1.3 12.1 ± 1.1 3.1 ± 0.9 18.1 ± 1.7
TRb cath5 7.5 ± 0.9 12.5 ± 1.1 10.1 ± 2.6 5.9 ± 1.4 17.5 ± 0.6 10.1 ± 0.7 1.0 ± 0.6 4.2 ± 0.2 1.8 ± 0.6
TRb otx2 7.7 ± 1.2 26.8 ± 0.7 95.7 ± 1.3 27.5 ± 3.9 17.5 ± 0.7 9.0 ± 2.6 14.3 ± 2.1 3.8 ± 0.8 21.6 ± 2.1
TRb crx 6.6 ± 0.2 13.5 ± 0.7 67.5 ± 5.5 33.1 ± 2.9 17.3 ± 0.6 13.8 ± 3.5 1.8 ± 1.0 5.3 ± 1.3 1.4 ± 0.7
dio3 crx 10.7 ± 0.4 12.9 ± 1.6 0 0 18.9 ± 0.8 46.6 ± 1.4 1.0 ± 0.7 26.3 ± 0.6 0.6 ± 0.4
dio3 TRb 9.6 ± 0.9 8.1 ± 0.4 1.1 ± 0.6 1.1 ± 0.6 17.9 ± 1.1 50.9 ± 5.7 9.8 ± 0.9 26.8 ± 1.3 4.5 ± 0.9
dio3 neurod 8.5 ± 0.9 24.8 ± 3.0 24.8 ± 4.6 8.5 ± 1.3 18.1 ± 1.1 45.4 ± 6.0 8.3 ± 0.8 21.1 ± 1.7 11.7 ± 2.6
dio3 otx2 8.5 ± 1.0 25.8 ± 2.1 44.1 ± 13.4 13.4 ± 2.4 17.0 ± 0.9 45.3 ± 2.8 10.5 ± 1.7 22.4 ± 2.0 16.1 ± 3.3

Cells were labeled in ovo with [3H]-thymidine for 1 hour, and tissue was harvested and dissociated at the indicated times. Double DISH for the 
indicated genes and autoradiography for [3H] were carried out on the dissociated cells. Cells were quantified for labeling by a single gene probe, 
both gene probes, and labeling with [3H].
* % of cells that express gene 1 that also express gene 2

Table 3: The coexpression of TH components and known marker genes at Stage 30 and Stage 31

stage gene 1 gene 2 % gene 1+ cells % gene 2+ cells % of gene 1+ cells that are also 
gene 2+

% of gene 2+ cells that are also 
gene 1+

30 crx visinin 20.9 19.2 89.4 97.5
30 visinin crx 17.1 17.3 95.2 93.8
30 dio2 cath5 1.1 16.3 85.7 5.8
30 cath5 dio2 13.5 0.6 4.3 100
30 visinin TRb 16.7 14.6 60.9 69.6
30 TRb visinin 17.6 16.3 70.3 75.9

31 neurod cath5 22.5 9.5 12.4 29.3
31 neurod TRb 20.4 6.9 30.1 89.3
31 otx2 cath5 28.6 10.4 6 16.5
31 TRb cath5 8.7 12.3 10.3 7.2
31 TRb crx 8.5 17.6 87.4 42.1

Cells were labeled in ovo with [3H]-thymidine for 1 hour, and tissue was harvested and dissociated at the indicated times. DISH for the indicated 
genes and autoradiography for [3H] were carried out on the dissociated cells.
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DISH for TH components, early neurogenic markers and mature neuronal markersFigure 8
DISH for TH components, early neurogenic markers and mature neuronal markers. Cells were labeled in ovo 
with [3H]-thymidine, and tissue was harvested and dissociated at the indicated times. DISH for TRb, Otx2, Dio3, Crx, or Neu-
roD and autoradiography for [3H] were carried out on the dissociated cells. (A) The percentage of Otx2+, NeuroD1+, or TRb+ 

cells that are also [3H] + at increasing times after [3H]-thymidine addition at Stage 26. (B) The percentage of [3H]+ cells, after a 
1 hour labeling time, that were also Otx2+, NeuroD1+, TRb+, Dio3+ or Crx+ are shown for Stage 26, Stage 28 and Stage 32. (C) 
The percentage of Otx2+, NeuroD1+, TRb+, Dio3+ or Crx+ cells that were also [3H]+ after a 1 hour labeling time are shown for 
Stage 26, Stage 28 and Stage 32.
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DISH. Visinin is expressed exclusively by photoreceptors
[28,51], and 70.3% of all TRb+ cells expressed Visinin at
Stage 30 (Table 3). The percentage of TRb+ cells that
expressed Crx was 87.4% at Stage 31 (Table 3) and 67.5%
at Stage 32 (Table 2 and Additional File 3D–F). TRb and
Crx co-expression was compared further. Crx can be con-
sidered a later photoreceptor marker compared to Neu-
roD and Otx2, since, at Stage 26, <0.1% of [3H] + cells were
Crx+; at Stage 28, <0.1% of [3H] + cells were Crx+; and, at
Stage 28, 4–8 hours after addition of [3H]-thymidine, only
1.0–2.2% of the [3H]+ cells were Crx+ (Additional Files 1,

2, 4I–L). TRb and Crx expression on section ISH displays
an inverse relationship: before Stage 29. TRb was observed
in a greater number of cells than Crx, whereas after Stage
29, the opposite was observed (compare Figure 9A and 9B
to 9C and 9D). This pattern was confirmed using DISH. At
Stage 28, TRb was expressed in approximately 9% of cells,
and Crx was observed in 7% of all cells, whereas at Stage
32 TRb was mildly reduced to approximately 7%, while
Crx increased to 14% of all cells.

Expression of TRb and Crx during chick developmentFigure 9
Expression of TRb and Crx during chick development. In situ hybridizations were performed on retinal cryosections 
cut in the coronal plane at two different stages of chick development (Stage 28 [A, B] and Stage 32 [C, D]). The probes used 
were TRb (A, C) and Crx (B, D). A representative scale bar is shown.
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The transient nature of the co-expression of TRb and Crx
in differentiating photoreceptors was confirmed by dou-
ble DISH with TRb and Crx. At Stage 29, 26% of TRb+ cells
expressed Crx, and 94% of Crx+ cells expressed TRb (data
not shown). At Stage 31, 87.4% of TRb cells expressed Crx,
whereas 42.1% of Crx cells expressed TRb (Table 3). At
Stage 32, 67.5 ± 5.5% of TRb cells expressed Crx, and 33.1
± 2.9% of Crx cells expressed TRb (Table 2). This pattern
is consistent with an earlier onset of TRb than of Crx in
newly postmitotic photoreceptor cells, followed by a
period of co-expression of TRb and Crx, and then a reduc-
tion in expression of TRb in photoreceptors, which retain
expression of Crx. It also suggests that there is a greater
interval between the onset of TRb and the onset of Crx at
the later stages. The stability of expression of Crx among
photoreceptors is reflected in the high co-expression of
Crx and Visinin (approximately 90%) at Stage 30 (Table
3).

Dio2 is expressed in a subset of photoreceptor cells
Dio2 expression also was investigated using DISH. Dio2
was not detected at Stage 26, but later was expressed in a
small but increasing percentage of all cells: Stage 30,
approximately 0.6%, Stage 31, approximately 1.2%, and
Stage 32, approximately 3% (Tables 1, 2, 3). Double DISH
showed that at Stage 32, almost all Dio2+ cells expressed
NeuroD (89.3%) and Otx2 (91.9%), while 70.9%
expressed Crx and 14.3% expressed TRb (Table 2, Addi-
tional file 3G–L). At Stage 30, 85–100% of Dio2+ cells
expressed Cath5, but they likely turn it off as only 17%
expressed Cath5 by Stage 32. These data suggest that Dio2
is present in photoreceptor cells, but in a subset that
appears at a later time in development. With respect to its
kinetics in the cell cycle, Dio2 was expressed later than
Cath5, TRb, NeuroD, and Otx2 since Dio2 expression was
almost never observed in S/G2 cells (Tables 1, 2, Figure
8B, C, Additional File 4Q–R). Combined with the section
ISH results, Dio2 appeared in a subset of photoreceptors
as they transitioned from newly postmitotic cells to later
stages of differentiation.

Dio3 is expressed in mitotic cells
Dio3, whose expression appeared to be in progenitor cells
on section ISH, was also studied using DISH and [3H]-thy-
midine incorporation. At Stage 28, 54.2% of Dio3+ cells
were [3H]+ after a one hour pulse (Additional Files 1, 2,
4M–N), and by 8 hours of [3H]-thymidine labeling, all
Dio3+ cells were labeled with [3H] (Additional File 4O–P).
This is in contrast to the plateau of [3H]-thymidine labe-
ling for populations that include postmitotic cells, such as
NeuroD (84% at 8 hours) and TRb (67% at 8 hours).
Dio3 was not present in cells that expressed Crx (0%), or
Dio2 (0%), and only very few cells that expressed Dio3
also expressed TRb (1.1%), at Stage 32. However, many
cells that expressed Dio3 also expressed Otx2 (44.1%)

and NeuroD (24.8%) at Stage 32. Of these Dio3+Otx2+ or
Dio3+NeuroD+ cells, 44.5 ± 4.3% and 57 ± 8.3% respec-
tively of them were also [3H]+ after a 1 hour pulse. These
data indicate that cells that co-express Dio3 and Otx2,
and/or NeuroD, are in S phase and/or early G2.

Discussion
In this report, we show that TH components are expressed
in three sequential waves that spread across the retina, and
that these waves are correlated with expression changes in
a number of developmentally important genes. Further-
more, we identify which cell types express which TH com-
ponents, and determine their expression kinetics with
respect to the cell cycle.

Waves are a common theme in retinal development
In a diverse array of organisms, retinal development
occurs in waves. The best example of this is in Drosophila
melanogaster, in which the eye differentiates in a wave
defined by the morphogenetic furrow [52]. Cells ahead of
the furrow express genes involved in cell division and the
undifferentiated state, whereas cells behind the furrow
express cell differentiation markers as well as genes signal-
ing terminal cell divisions. The phenomenon of genes
expressed in differentiation waves also extends to verte-
brate eye development. In zebrafish and Xenopus, a pro-
gram of cell differentiation spreads across the early retina,
from the center to the periphery, as exemplified by the
expression of Shh [53,54]. Similarly, in the chick retina,
the expression of neurogenesis markers has been observed
to spread in an orderly fashion from the center to the
periphery [29,55]. In Drosophila, there is a relationship
between a nuclear hormone receptor, the ecdysone recep-
tor, and hedgehog [56-58]. It appears that the relief of
repression from ecdysone receptor occurs just anterior to
the morphogenetic furrow, while hedgehog initiates
expression within the MF. As TRs are functionally similar
to the ecdysone receptor [59,60], and TRb expression in
the chick retina is spatially and temporally similar to that
of Shh, there is a possibility that TRb and Shh may be
coordinated in a manner similar to that in the Drosophila
retina. Beyond this potential relationship revealed by the
spatio-temporal gradient of expression, other develop-
mental regulators appear in central-peripheral waves in
the chick retina, including Cath5, Otx2, NeuroD, Dio3,
Dio2, Ngn2 and markers of various differentiated cell
types. The mechanism(s) regulating these patterns is cur-
rently unknown.

Cell Types Expressing TH Components
The expression of TRb with respect to cell cycle kinetics
and markers of photoreceptor cells show that this receptor
is expressed in mitotic cells about to produce a postmi-
totic cell that will become a photoreceptor (Figure 10). It
appears that such progenitor cells express Otx2 and Neu-
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roD at almost exactly the same time as TRb. That the
expression is in a G2 phase progenitor cell is an intriguing
observation in light of retinal lineage data from embry-
onic mouse [61]. Infections of embryonic mice in utero
with retroviral vectors were carried out at equivalent
developmental stages to chick stages 26–32 when cones
and rods are being produced in both species [62-64]. The
majority of embryonic mouse retinal clones of >1 cell
were not 2 cell clones, and this included the majority of
clones that contained rods and cones. This observation
suggests that when a postmitotic cell is made, it is not
from a symmetric division in which both daughter cells
become postmitotic, or many 2 cell clones would have
been observed. If a similar result were to hold for the
chick, the expression of TRb in G2 cells would not be
maintained in both daughters of that division. Presuma-
bly, the postmitotic daughter would retain expression, at
least transiently, as it initiated its differentiation into a
photoreceptor cell. The other daughter would extinguish

the expression of TRb as it re-entered S phase, as very few
S phase cells express TRb. The expression of Otx2 and
NeuroD is also likely maintained in the photoreceptor
cell, as these genes appear to be expressed in the area of
differentiating photoreceptor cells. They may also con-
tinue to be expressed in some of the S phase daughter
cells, as there is higher number of S phase cells that
express Otx2 and NeuroD, particularly at later stages.

It is interesting to note that Dio2 is expressed in a subset
of photoreceptor cells. The Dio2 subset can be defined in
three ways. It is highest in the ventral retina, and is miss-
ing in a central spot and horizontal stripe. The only other
similar expression pattern is that of rhodopsin, a gene
marking rod photoreceptors [28], which does not com-
mence until Stage 44, 12 days after the Dio2 expression
wanes. A second way to define the subset of Dio2+ cells is
by the time at which Dio2 appears in development,
appearing later than the expression of Otx2, NeuroD, and

Model of TH signaling in retinal developmentFigure 10
Model of TH signaling in retinal development. In mitotic progenitor cells, Dio3 is expressed throughout the cell cycle at 
various periods of development. In mitotic cells that are about to produce photoreceptor cells, the indicated genes are 
expressed in G2. As the cell divides, it is likely that one daughter of the division becomes a photoreceptor cell, and retains 
expression of TRb for some time, while the other daughter re-enters cell cycle and quickly turns off TRb. In photoreceptor 
cells, as TRb expression decreases, Crx and visinin are expressed, and a small subset of cells, possibly rods, transiently 
expresses Dio2.
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TRb. Rod photoreceptors also appear to be generated later
than cone photoreceptors in most species [14], although
this has not been defined for the chick. Finally, the kinet-
ics of expression of Dio2 in the cell cycle provides a third
way to define it. Dio2 appears after the earlier expression
of Otx2, NeuroD, and TRb cells in the subset of cells that
express it. From all of these observations, it is possible that
Dio2 is in rod photoreceptors. Confirmation of this
hypothesis will await an early marker of rod photorecep-
tors in the chick as Dio2 disappears before expression of
definitive rod-specific markers, such as rhodopsin.

Model of TH Signaling in retinal development
The first wave of expression of TH components is charac-
terized by mitotic cells transitioning from producing only
mitotic daughters to a phase in which they begin to pro-
duce neurons. TRa appears to be the receptor present in all
cells as they make this transition. Dio3 is present in pro-
genitor cells at certain times, whereas TRb is expressed in
some G2 cells and in newly postmitotic cells that begin to
differentiate into photoreceptor cells. Based on these
observations, it is possible that Dio3 keeps TRa cells in the
state where they only generate mitotic daughter cells.
When Dio3 expression ceases, the TRa cells can produce a
postmitotic cell, and some of these daughter cells express
TRb.

Whether Dio3 promotes cell division and blocks differen-
tiation remains an unanswered question. Studies in the
Xenopus retina during metamorphosis seem to challenge
this notion, because in these experiments, Dio3 blocked
cell division and antagonism of Dio3 promoted cell divi-
sion [20]. However, these studies measured BrdU incor-
poration over a span of many days after manipulation of
Dio3. The increased BrdU incorporation seen after antag-
onizing Dio3 could be due to several mechanisms, includ-
ing an increase in cells undergoing their last cell division.
This interpretation would agree with Dio3 promoting the
progenitor cell state and a lack of Dio3 promoting cell
cycle exit.

The second wave of expression of TH components is char-
acterized by the maturation and migration of certain cell
types to their final positions. Before the second wave, TRb
photoreceptors appear to be in an immature photorecep-
tor state. During wave 2, they progress in their differentia-
tion, as shown by expression of Crx. Locally activated TH
might influence TRb cells during this period. The second
wave ends with Dio3 sweeping across the retina, which
might halt TRa cells from producing postmitotic cells
which express TRb, and might instead change the types of
cells produced, or the balance of mitotic and postmitotic
daughters made by TRa progenitor cells.

A model consistent with this expression pattern is that
TRb, in conjunction with TH produced by Dio2, serves to
block photoreceptor differentiation. In this model, TRb
appears in the early photoreceptor just as it is being pro-
duced, significantly before the cell expresses Crx. Eventu-
ally, TRb and/or Dio2 levels are reduced and the cell is
allowed to continue differentiation and express Crx. In the
ventral retina, where retinal Dio2 is present, the delay may
be longer, which might contribute to the development of
rod photoreceptors in this area. This repressive activity of
TRb in the presence of Dio2 might be similar to TRb activ-
ity in other parts of the nervous system, including the
inhibitory activity of TRb in the presence of T3 on tran-
scription of the TSHb gene [65,66].

Previous data from mice support a repression and activa-
tion role of TRb in retinal photoreceptors. Loss of TRb led
to cones that appeared to differentiate early, as seen by
early S-opsin expression. Interestingly, in the same
mutant, M-opsin failed to be expressed. Recently, it was
shown that mutation of TRb2 to an allele that could not
bind TH exhibited both aspects of the phenotype, demon-
strating that both repression of S-opsin and activation of
M-opsin requires TH binding [48,67]. In addition, TH was
found at higher levels in the dorsal than the ventral retina
[67], and Dio2 was found to be expressed at higher levels
in the dorsal than in the ventral retina [68]. Thus, the
coordination of TH levels through Dio2 activity, and the
activity of the TRb2, controls at least one aspect of the dor-
soventral gradient of both S and M-opsins. NeuroD was
also shown to play a role in regulation of S and M-opsins,
at least in part via its regulation of TRb2 [69]. Mice defi-
cient in NeuroD showed the same S and M-opsin pheno-
types as the TRb2 mutant, along with a lack of
maintenance of Trb2 expression. NeuroD was shown to
bind directly to a regulatory element for TRb2 [70], but
was not itself sufficient to activate TRb2, in keeping with
the observation that many more cells express NeuroD
than express TRb2 (Table 1, 2, Figure 8; and [34]). It is
interesting to note that in the chick, NeuroD expression is
concomitant with TRb2 expression in its onset, but at least
in the mouse, the onset of expression of TRb2 occurred in
the NeuroD mutant, but was not maintained.

Finally, the third wave of expression of TH components is
characterized by waning Dio3 expression and the transi-
tion from progenitor cells to Müller glial cells. Similar to
the models described above, Dio3 at this stage may keep
TRa cells in the progenitor state. When Dio3 expression
ends, the TRa cells may be free to exit cell cycle and begin
differentiating. However, at this late stage, cells may no
longer be competent to generate photoreceptors. Instead,
they may exit cell cycle and become Notch+ Müller glia
cells. This latter suggestion follows the observations of TH
signaling in optic nerve cell cultures where TH has been
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demonstrated to promote the differentiation of oli-
godendrocyte cells [71-74]. In this well studied system,
TH can promote the exit of oligodendrocyte precursor
cells from the cell cycle and initiate differentiation. This
action appears to be through TRa [75]. Lack of TH can
block this process, promoting the expression of cell cycle
genes and keeping cells in the proliferative state.

Conclusion
In summary, TH components are expressed in dynamic
waves across the developing chick retina, and involve a
number of cell types including progenitor cells and pho-
toreceptors. Through the expression of deiodinases that
activate and degrade thyroid hormone, in conjunction
with cells expressing TRs, a complex interplay between the
different TH components likely results. An attractive
hypothesis is that the hormone controls the timing of cell
cycle exit for both photoreceptors and Müller glia cells, as
well as the timing of differentiation for photoreceptors.
Future functional studies will shed more light on these
proposed activities.

Methods
Chick Embryos
Fertilized White Leghorn eggs (SPAFAS, Norwich, CT)
were incubated at 38°C. Embryos were staged as in Ham-
burger and Hamilton [76].

In situ hybridizations
Section in situ hybridization on 20 μm retinal cryosections
was performed as previously described [77]. Flat-mount in
situ hybridization was performed as previously described
[28] with some modifications [78]. The chicken in situ
probes used were based in the coding regions, except for
one of the Dio3 probes and the Glut1 probe that were
located at the 3' end. The numbering of the probe
sequences was derived from the full length cDNA clones
in the NCBI database. The exact regions that the probes
spanned were as follows: [Dio2 (bases 596–1491)[79],
TRa (bases 289–1538)[80], TRb (bases 42–1351)[15],
Dio3 (probe #1, bases 872–1025 and probe #2
(chEST268e4), bases 30–792 [81]), Crx (bases 1–1296),
NeuroD (bases 25–1162), Otx2 (bases 698–2001), Shh
(bases 1–1567), Cath5 (bases 1456–1776), Glut1 (bases
2530–3203), Brn3b (bases 53–210)[39], and Visinin
(bases 143–393)].

[3H] thymidine – labeling and dissociated cell in situ 
hybridization
Chick retinas were labeled in ovo by the addition of 100
μCi of [3H]-thymidine and the retinas were dissected at
the indicated timepoints. The labeled retinas were dissoci-
ated and plated on poly-D lysine coated slides (10 μg/ml
in PBS [Sigma]) exactly as described in [77]. Cells were
fixed to the slides with 4% paraformaldehyde (PFA) for 10

min. at room temperature, washed in PBS (pH 7.4) and
dehydrated into 100% methanol. At this point, the slides
were either stored at -20°C or rehydrated stepwise into
PBS (pH 7.4) to continue the ISH. The slides were
acetylated and incubated with single probes or distinct
probe combinations overnight at 65°C. The probed slides
were washed once in 5× SSC and an additional two times
in 0.2× SSC for 30 min. each at 65°C. Slides were blocked
in 0.1 M Tris-HCl, pH 7.5, 0.15 M NaCl and 10% heat
inactivated sheep serum (HISS) for 30 min. at room tem-
perature in a humidified chamber. In the identical cham-
ber, the slides were incubated with the blocking solution
containing anti-digoxigenin-POD (1:1000, Roche) for 1
hr. The slides were washed 3 times in 0.1 M Tris-HCl, pH
7.5, 0.15 M NaCl, 0.05% Tween-20 for 10 min. each. The
first probe, which was labeled with digoxigenin, was proc-
essed with a Cy3 tyramide amplification solution (1:50,
PerkinElmer Life Sciences) for 5 min. After quenching
with hydrogen peroxide for 15 min., the second probe,
which was labeled with fluorescein, was detected as above
using an anti-fluorescein-POD antibody (1:1000, Roche)
in combination with an Alexa 488-tyramide (1:100,
Molecular Probes). The slides were washed in PBS (pH
7.4), stained with DAPI, and then allowed to dry. To visu-
alize the [3H]-thymidine, slides were dipped in an autora-
diography emulsion (NTB2, Kodak) and exposed in the
dark for 2 days. The slides were subsequently immersed in
developer for 2 min. (D19, Kodak), rinsed in dH2O, and
incubated in fixer (Kodak) for 20 min. Finally, the slides
were washed in dH2O for 20 min. and mounted.

For Stage 26 and Stage 32, the results are the average of 3
retinas, except for the 6 hr timepoint at Stage 26, which is
the average of 2 retinas. For the other stages, the data were
generated from a single retina for each time point.
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Additional file 1
The kinetics of expression of TH components and markers at Stage 26. 
Cells were continuously labeled in ovo with [3H]-thymidine, and tissue 
was harvested and dissociated. The total [3H]-thymidine labeling time is 
indicated after the gene name in the table. DISH for the indicated genes 
and autoradiography for [3H] were carried out on the dissociated cells.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
213X-8-101-S1.doc]

Additional file 2
The kinetics of expression of TH components and markers at Stage 28. 
Cells were continuously labeled in ovo with [3H]-thymidine, and tissue 
was harvested and dissociated. The total [3H]-thymidine labeling time is 
indicated after the gene name in the table. DISH for the indicated genes 
and autoradiography for [3H] were carried out on the dissociated cells.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
213X-8-101-S2.doc]

Additional file 3
Coexpression of TH components and known marker genes. Retinas 
were harvested at Stage 32 and dissociated onto glass slides. The slides 
were probed with (A-C) TRb and Otx2, (D-F) TRb and Crx, (G-I), Dio2 
and TRb, (J-L) Dio2 and Crx, and (M-O) Dio2 and Dio3. The scale bar 
indicates 25 μm.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
213X-8-101-S3.tiff]

Additional file 4
Overlap between TH components or known marker genes and [3H]-
thymidine. Cells were labeled in ovo with [3H]-thymidine at Stage 26, 
Stage 28 or Stage 32, and the retinas were harvested and dissociated at 
the indicated times. DISH was carried for the following probes: (A-D) 
Otx2, (E-H) TRb, (I-L) Crx, (M-P) Dio3, and (Q-R) Dio2. Autoradiog-
raphy was performed to visualize the [3H]-thymidine and the overlap with 
the DISH is shown. The scale bar indicates 25 μm.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
213X-8-101-S4.tiff]
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