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Abstract: Glioma is the most common malignant brain tumor. Hypoxia is closely related to the
malignancy of gliomas, and positron emission tomography (PET) can noninvasively visualize the
degree and the expansion of hypoxia. Currently, 18F-fluoromisonidazole (FMISO) is the most common
radiotracer for hypoxia imaging. The clinical usefulness of FMISO PET has been established; it can
distinguish glioblastomas from lower-grade gliomas and can predict the microenvironment of a
tumor, including necrosis, vascularization, and permeability. FMISO PET provides prognostic
information, including survival and treatment response information. Because hypoxia decreases a
tumor’s sensitivity to radiation therapy, dose escalation to an FMISO-positive volume is an attractive
strategy. Although this idea is not new, an insufficient amount of evidence has been obtained
regarding this concept. New tracers for hypoxia imaging such as 18F-DiFA are being tested. In the
future, hypoxia imaging will play an important role in glioma management.
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1. Introduction

Several years have passed since we wrote two review articles regarding the role of hypoxia
imaging for brain tumors [1] and head and neck cancers [2]. Herein, we again focus on the usefulness
of hypoxia imaging in the treatment of brain tumors in order to introduce the more recently obtained
findings. We also discuss the potential future uses of hypoxia imaging in cancer therapy.

2. Gliomas

Gliomas account for approx. 30% of all brain tumors and approx. 80% of all malignant brain
tumors [3]. Patients with a glioblastoma, which is the most aggressive astrocytic tumor among the
gliomas, have an especially poor prognosis with a 1-year survival rate of 56% despite the recent
advances in surgery, radiotherapy, and chemotherapy treatments [4]. In glioma management, the precise
diagnosis before the initial surgical resection followed by chemoradiotherapy is of great importance
because the optimal treatment strategies and prognoses differ widely with the histological grade and
expansion of the lesion. As gliomas often present with various grades of malignancy within the tumor,
the detection of the most malignant part as well as the delineation of the entire tumor are essential in
the preoperative evaluation.
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In vivo imaging thus plays an important role in the treatment planning for a glioma.
Genetic information has also become important. Magnetic resonance imaging (MRI) is the de
facto standard modality for the initial evaluation of gliomas. MRI basically provides morphological
or structural information. In contrast, positron emission tomography (PET) provides functional
information by visualizing the metabolism of the cell, using radiotracers such as 18F-fluorodeoxyglucose
(FDG) for glucose metabolism, 18F-fluorothymidine (FLT) for DNA replication, and 11C-methionine
or 18F-fluoroethyltyrosine for amino acid metabolism. The grade of malignancy seems to reflect cell
metabolism, and thus such metabolic imaging is a good choice for the detection of malignant parts of
a lesion. PET can also visualize hypoxia. We next focus on the clinical significance of hypoxia and
hypoxia imaging in glioma management.

3. Why Hypoxia Is Important Clinically

Hypoxia is defined as the insufficient concentration of oxygen. Hypoxia is a common feature of
many different malignant tumors [5]. The microcirculation in tumors is often impaired by structural
and/or functional disturbances of the tumor circulation, and rapid tumor growth may result in an
increase in oxygen consumption, generating hypoxic conditions in which the oxygen supply is smaller
than oxygen demand. Hypoxia is thus a phenomenon that has interested oncologists for many years.

In radiation therapy for cancer, the tumor oxygen concentration is an important factor that greatly
affects the therapeutic effects. In theory, ionizing radiation interacts mainly with water molecules and
less frequently with DNA molecules, which produce free radicals [6,7]. Under mediation by oxygen
molecules, the free radicals fatally damage DNA molecules. The radiation sensitivity of cells is thus
reduced under hypoxic conditions below a certain oxygen-concentration threshold.

One of the key players in hypoxic conditions is hypoxia-inducible factor 1 (HIF-1) [8]. HIF-1 is
a transcription factor that helps cells survive under severely hypoxic conditions. Once hypoxia
activates HIF-1, the molecule up-regulates a variety of genes controlling metabolic pathways,
pH regulation, angiogenesis, metastatic potential, DNA replication, protein synthesis, and treatment
resistance [6,7,9–11].

The expressions of HIF-1 and downstream molecules are negative prognostic factors in various
malignancies [12]. The difference in radiosensitivity between hypoxic and normoxic cells has been called
the oxygen enhancement ratio (OER). When using X-rays for radiotherapy, the OER is usually 2–3,
which means that a two-to three-fold amount of radiation is needed in hypoxic conditions to obtain effects
that are equivalent to those obtained in normoxic conditions. In addition to causing radioresistance,
tumor hypoxia also interferes with the cytotoxic activities of many types of chemotherapy, a phenomenon
known as chemoresistance [13].

Cancer cells have subpopulations with characteristics that are similar to those of nonmalignant
stem cells. These cells are called ‘cancer stem cells’ [14,15]. HIF up-regulates Oct4 and c-Myc (both are
Yamanaka factors that are important genes for stem cells). Since cancer stem cells are important targets
for therapy, hypoxia imaging may help localize the cancer stem cells [16,17].

4. How the Oxygen Concentration Is Measured

There are a number of approaches to measure the tissue oxygen concentration (pO2) in vivo.
Eppendorf polarographic oxygen microelectrode measurements have long been applied for this
purpose in various cancers [18–21], but this technique is now rarely used in clinical settings because
(1) it is invasive, (2) it is difficult to reach deep tissues with the needle used, (3) it demands a well-trained
operator, and (4) the measurement itself may modify the oxygen concentration [22].

Another technique for measuring the oxygen concentration is immunohistochemical measurement
using the bioreductive hypoxia marker pimonidazole [23]. Of course, this technique does not work
in vivo, and it requires the tissue of interest to be sampled in some way. However, measurement using
pimonidazole has been regarded as a gold standard for assessments of tumor hypoxia ex vivo.
Noninvasive assessments of tumor hypoxia using various imaging methods have also been investigated.
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Blood oxygen level-dependent (BOLD) MR imaging can measure oxygen levels in blood using
deoxyhemoglobin as an endogenous marker [23,24].

Positron emission tomography (PET) images reveal the distribution of positron-emitting tracers
in the body. PET with hypoxia-imaging radiopharmaceuticals can be used clinically. Since PET has
very high sensitivity and specificity compared to MR imaging and other imaging modalities, it enables
the identification of regional hypoxia in vivo with an intravenous administration of a small amount of
a radiopharmaceutical, in preclinical and clinical settings [9]. Although PET has spatial resolution that
is inferior to that of immunohistochemical imaging, it permits the noninvasive delineation of hypoxic
tissue in vivo.

5. What Is FMISO?

As mentioned above, PET is expected to become an ideal noninvasive tool for visualizing
hypoxic conditions in vivo. The development of PET tracers for hypoxia has been conducted for
decades. The first radiotracer was 14C-misonidazole as a beta-emitting tracer in 1981 [25], followed by
18F-fluoromisonidazole (FMISO) as a positron-emitting tracer [26]. To date, FMISO remains the most
widely used radiotracer for imaging hypoxia in patients with brain tumors, although other radiotracers
are being investigated [27].

The use of FMISO for brain tumors has a relatively long history. It was nearly 30 years ago that
Valk et al. reported the first use of FMISO for glioma imaging, in 1992 [28]. However, FMISO was
not used very frequently during the 1990s. After the dramatic increase in the number of PET-CT
scanners in the first decade of the 21st century (due mainly due to the clinical usefulness of FDG),
researchers and clinicians were encouraged to use FMISO to visualize the hypoxic status of gliomas as
well as many other tumors.

Before focusing on the oncology uses of FMISO, we will take a brief look at its non-oncology
uses. FMISO has been applied for ischemic cardiac and brain diseases. Ischemia is closely associated
with hypoxia. As a cardiology application, Martin et al. used an ischemic canine myocardium model
to determine the ability of FMISO to noninvasively visualize hypoxic but viable myocardium [29].
Their findings demonstrated that the myocardium with FMISO uptake had improved contraction
after reperfusion, as expected. Regarding neurology, Read et al. investigated 24 stroke patients by
FMISO PET imaging, and they observed the patients for up to 51 h to evaluate the prognosis [30].
They demonstrated that most of the tissues showing FMISO uptake in an acute phase proceeded to
infarction and that the stroke patients’ neurological severity scores were positively correlated with
hypoxic tissue volumes. These data suggest the usefulness of FMISO for predicting prognoses.

More recently, Alawneh et al. examined three acute stroke patients by multimodal imaging [31].
FMISO trapping was present mainly in the penumbra but also in the ischemic core, raising the
possibility that there may be viable cells even in the ischemic core. In a pilot study by Fryer et al.,
normobaric hyperoxia (NBO) treatment was tested in a rodent ischemic stroke model to determine
whether this treatment reduces FMISO uptake [32]. NBO did not appear to substantially reduce the
size of FMISO uptake volume nor affect the FMISO kinetic rate constants. Although the evidence of
the usefulness of FMISO continues to accumulate, FMISO is used less frequently in ischemic disease
compared to cancer.

6. The Mechanisms of FMISO Uptake

The mechanisms of FMISO accumulation in hypoxic tissues have been described [33].
Once intravenously injected, FMISO is distributed to the cells via the blood flow. In the cells,
the FMISO molecules capture electrons in the mitochondrial electron transfer system. In normoxic cells
(i.e., cells without hypoxia), the FMISO electron is removed by oxygen molecules as a strong oxidant.
FMISO that has lost the electron is excreted from the cells. In hypoxic cells (in which there is a lack of
oxygen molecules) however, FMISO keeps extra electrons and stays in the cells. Therefore, FMISO is
cleared from normoxic cells but accumulated in hypoxic cells.
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Once accumulated, FMISO is irreversibly bound to high-weight molecules. FMISO is excreted
from necrotic cells because there are no functioning mitochondria as an electron source in such cells.
Masaki et al. reported another mechanism of FMISO accumulation [34]; they investigated the chemical
forms of FMISO by using imaging mass spectrometry. A significant amount of the radioactivity in the
examined tumor existed as low-molecular-weight compounds. The rate of clearance for each mode
remains unknown. Masaki et al. also showed that the gluthathione conjugate of amino-FMISO is
involved in FMISO accumulation in hypoxic tumor tissues, in addition to conventional mechanisms
(i.e., binding to high-weight molecules). They also demonstrated that FMISO accumulation is dependent
on glutathione conditions as well as the hypoxic status [35] (Figure 1).
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Figure 1. Proposed mechanisms [34] of the accumulation of 18F-fluoromisonidazole (FMISO). In hypoxic
conditions, FMISO is reduced (i.e., FMISO obtains electrons) and either becomes amino-FMISO,
covalently binds to macromolecules, or is conjugated with glutathione.

The threshold of oxygen partial pressure that determines whether FMISO is accumulated or
excreted is generally believed to be approximately 10 mmHg [36,37]. A 2016 clinical study by Veenith
et al. evaluated 10 patients with traumatic brain injury with the use of 15O-labeled gas and FMISO;
the threshold of FMISO accumulation was estimated as 15 mmHg [38]. It is important to keep in mind
that FMISO accumulates only in such severely hypoxic tissues.

An advantage of FMISO to image brain, FMISO can go through the blood–brain barrier (BBB)
because of its lipophilic nature. FMISO slightly accumulates in the normal brain tissues. In contrast,
hydrophilic compounds, such as 18F-fluoroazomycin arabinoside (FAZA) and 1-(2,2-dihydroxymethyl-
3-[18F]fluoropropyl)-2-nitroimidazole (DiFA) as mentioned later in this article, do not go beyond the
BBB and do not accumulate in the normal brain [39]. Both lipophilic and hydrophilic agents can
accumulate in a tumor where BBB is impaired (i.e., gadolinium-enhancing tumor), whereas only
lipophilic agents can accumulate in a BBB-preserved tumor.

Since it is lipophilic, FMISO is excreted via the hepatobiliary system and thus physiologically
accumulates in the liver and GI tract. Thus, FMISO is not efficient to evaluate hypoxic conditions
of tumors in such organs. In contrast, the lung and the head and neck regions as well as the brain
are the areas which do not show physiological FMISO uptake. Therefore, relatively large numbers of
investigations regarding such tumors have been reported to show the clinical usefulness of FMISO.
Especially for brain tumors, biopsy is so invasive that hypoxia imaging as the non-invasive method of
tumor grading has a great clinical value.

7. The Clinical Usefulness of FMISO

7.1. Differential Diagnosis

Figures 2–4 show some representative cases of low to high grade gliomas. We demonstrated
that FMISO has the potential to distinguish glioblastomas (i.e., grade IV gliomas) from less-malignant
gliomas (i.e., grade III or lower grade gliomas) [40]. As mentioned above, the oxygen concentration
threshold of FMISO uptake is low. Thus, FMISO PET can differentiate tissues with severe hypoxia
from those without. Studies using direct needle electrodes suggested that the hypoxic condition
of a glioma depends on its degree of malignancy [41–43]. We used FMISO PET and FDG PET for
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the preoperative examination of 23 patients with gliomas of different World Health Organization
(WHO) grades [40]. The PET findings were compared with the patients’ post-operative histological
findings by neuropathologists. We observed FMISO uptake in the glioblastomas, but not in the
less-malignant gliomas (Table 1). In the WHO definition, glioblastoma presents with necrosis
in the tumor, whereas lower-grade gliomas do not develop necrosis [44]. It is thus reasonable
that only glioblastomas have severe hypoxia (beyond the FMISO threshold) and therefore take
up FMISO. We concluded that FMISO PET may be able to clearly distinguish glioblastomas from
lower-grade gliomas.

Table 1. Correlation of FMISO uptake and pathological diagnosis.

Post-Operative Pathological Diagnosis
(Number of Patients)

Visual assessment Grade II Grade III Grade IV
FMISO uptake (−) 4 5 0
FMISO uptake (+) 0 0 14

p < 0.001 by Fisher’s exact test. The table was reconstructed from article [40].
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Figure 2. A 69-year-old patient had a tumor in the left temporal lobe. Fluid-attenuated inversion
recovery (FLAIR) image showed high intensity, indicating the tumor and the peritumoral edema.
Gadolinium enhancement, 18F-fluorodeoxyglucose (FDG) uptake, and FMISO uptake were observed in
the same area. The pathological diagnosis was glioblastoma (grade IV).
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Figure 4. A 69-year-old patient had a tumor in the left medial temporal lobe. Like the case in Figure 3,
FMISO uptake was not observed in the tumor, whereas FDG uptake was evident. The pathological
diagnosis was anaplastic astrocytoma (grade III).
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There are several reports of the clinical value of FMISO PET in terms of the grading of gliomas.
Cher et al. provided the FMISO PET findings of patients with gliomas of various grades [45], and they
found that although all grade IV tumors showed a high FMISO uptake (which is consistent with our
observation), only one of the three grade III gliomas showed FMISO uptake. Yamamoto et al. also
observed FMISO uptake in some grade III gliomas, and they reported that the uptake in grade IV
gliomas was significantly higher than in grade III or lower gliomas [46]. More recently, Kanoto et al.
used FMISO PET to investigate 41 patients with WHO grade II–IV gliomas [47], and their findings
indicated that a tumor-to-normal tissue ratio of 1.25 as a cut-off distinguished the patients’ grade II
gliomas from the grade III and IV gliomas, with 90% sensitivity and 91% specificity.

Our study [40] and these previous investigations [45–47] are thus basically consistent but slightly
different in that FMISO uptake was observed in grade III gliomas in the latter studies but not in ours.
One of the reasons for this may be due to the uptake time of FMISO. After the intravenous FMISO
injection in the other studies, the images were usually acquired at 2 h, whereas we acquired the PET
images 4 h after injection. Thorwarth et al. discussed a theoretical problem with the 2-h imaging of
FMISO [48]: using a kinetic analysis of a dynamic FMISO PET dataset, they reported that some of
the hot spots on the 2-h FMISO images had disappeared on the 4-h FMISO images. This suggested
that the high uptake on the 2-h images may have reflected a high initial influx of the tracer due to
increased blood flow as well as hypoxia. In other words, the 4-h images can be expected to represent
hypoxia alone, whereas the 2-h images would represent increased blood flow regardless of hypoxia.
Two-hour imaging has advantages: (1) less time is required for the entire examination, reducing the
patients’ burden, and (2) approximately twice the number of photons is theoretically detected by the
PET scanner compared to 4-h imaging, considering that the half-life of 18F is 110 min. To further
optimize the procedure, direct comparisons of these protocols in the same patient groups are needed.
To further optimize the procedure, we directly compared 2-h vs. 4-h imaging in terms of the diagnostic
performance of glioblastoma [49]. In a visual assessment of six glioblastoma lesions of six patients,
four (67%) lesions were detected as positive uptake at 2 h, while six (100%) lesions were detected at 4 h.
In our additional investigation (unpublished data), where we compared 2-h vs. 4-h imaging for five
non-glioblastoma patients, all (5/5) showed slight uptake at 2 h but not at 4 h. However, a larger study
is needed to reach a conclusion.

7.2. FMISO versus Necrosis, Vascularization, and Permeability

Several research groups have compared FMISO uptake with histological findings (such as necrosis
and vascularization) and functional features (such as permeability). Our group investigated 59 patients
with brain tumors including astrocytic tumors and metastatic tumors, and we examined the presence
of microscopic necrosis [50]. In the visual analysis, 26 of the 27 FMISO-positive patients presented
with necrosis, whereas 28 of the 32 FMISO-negative patients showed no necrosis. Using a cut-off of
the tumor-to-normal tissue ratio, the presence of necrosis can be predicted with 96.7% sensitivity and
93.1% specificity. Our findings demonstrated that FMISO uptake is strongly associated with necrosis.
It should be remembered that FMISO accumulates in viable tissues but not in the necrotic core. In case
of tumors with vastly necrotic tissues, FMISO will not accumulate in the necrotic tissue itself, but will
accumulate in the peri-necrotic tissues.

Watabe et al. used FMISO and 15O-labeled gas PET to investigate a rat model implanted with
C6 glioma [51]. They observed correlations between the FMISO uptake and (1) the blood flow,
(2) the metabolic rate of oxygen, and (3) the blood volume. The oxygen extraction fraction showed
a significant increase in the severely hypoxic region compared to non-hypoxic and mildly hypoxic
regions. Those authors concluded that intratumoral hypoxic regions showed decreased blood flow
with increased oxygen extraction.

Ponte et al. studied glioblastoma patients by quantifying and localizing hypoxia with the use of
FMISO PET, vascularization (cerebral blood volume [CBV]) by using MRI, and vascular permeability
(contrast enhancement after gadolinium injection) by MRI [52]. Their analyses revealed that hypoxia
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and hypervascularization were correlated regarding both their maximum values and their volumes.
A large proportion of the high CBVs co-located with hypoxia (>80% of the patients) and with contrast
enhancement (>40% of the patients). Ponte et al. suggested that a strong association may exist between
hypoxia and angiogenesis. There might be insufficient tumor oxygenation in human glioblastomas,
despite increased tumor vascularization.

As with other studies, these lines of evidence help us understand the microenvironment of FMISO
uptake in tissues.

7.3. The Prognostic Value of FMISO PET

As noted above, FMISO PET reflects the tumor microenvironment and is useful for the differential
diagnosis of glioma. It is thus reasonable that an evaluation using FMISO could help predict the
prognoses of glioma patients. In fact, several studies have addressed this question. For example,
Lawrence et al. investigated 17 patients with suspected glioma and reported that positive FMISO
uptake was associated with poor survival [45]. Spence et al. analyzed the results of FMISO PET
performed for 22 glioblastoma patients before radiotherapy and compared the findings with the
patients’ time to progression [53]. The results of their analyses demonstrated that greater hypoxia
volume and a greater tumor-to-blood uptake ratio were associated with earlier progression. In a
subsequent paper, Spence et al. also evaluated the predictive performance of several image features
derived from FMISO PET and MR imaging [54]. They found that the most significant predictors of
survival were the hypoxia volume, the hypoxia surface area, and the tumor-to-blood uptake ratio
measured on FMISO PET images.

In a 2016 multicenter clinical trial reported by Gerstner et al., 42 patients with newly diagnosed
glioblastoma were evaluated [55]. Tumor vasculature and hypoxia were visualized using MRI and
FMISO PET, respectively. The survival analysis showed that a greater uptake of FMISO was associated
with shorter overall survival. Other negative prognostic markers were increased tumor perfusion,
vascular volume, and vascular permeability measured with MRI.

More recently, our group also evaluated the clinical value of FMISO PET for predicting the
prognoses of glioma patients; a total of 32 glioblastoma patients underwent both FMISO PET and
FDG PET [56]. Glucose metabolism can be visualized using FDG. In that study, we tested the
hypothesis that the accumulation of both FMISO and FDG may express hypoxia and elevated
glycolysis, i.e., anaerobic glycolysis. We applied a voxel-by-voxel analysis to the glioblastoma patients’
FMISO and FDG PET images. FDG positivity was defined as an FDG tumor-to-normal ratio (TNR)
≥1.0, and FMISO positivity was defined as an FMISO TNR ≥1.3. We introduced a new image-derived
biological feature, the ‘metabolic tumor volume in hypoxia (hMTV)’ as the volume in which both
FMISO and FDG are positive. The results of the survival analysis demonstrated that the hMTV was
a predictive factor for both overall survival (OS) and progression-free survival (PFS), whereas the
hypoxia volume (i.e., the FMISO-positive volume) alone was not a significant factor.

7.4. Treatment Response/Treatment Monitoring

Another role that is expected for FMISO PET is therapy monitoring. Since hypoxia is associated
with tumor aggressiveness and poor prognosis, it is possible that changes in the FMISO uptake between
pre- and post-treatment can be used to monitor a treatment’s effectiveness.

Our investigation of two glioblastoma patients revealed a considerable decrease in FMISO
accumulation in the glioblastomas after chemoradiotherapy [57]. We speculated that reduced FMISO
uptake may have reflected an increased oxygen concentration due to the radiotherapy, the so-called
reoxygenation phenomenon.

Bevacizumab is a recombinant humanized monoclonal antibody that blocks angiogenesis by
inhibiting vascular endothelial growth factor A (VEGF-A) [58]. Although bevacizumab failed to prolong
the overall survival of patients with primary glioblastoma [59,60], it was effective in some populations
of recurrent glioma patients. In our retrospective study, we investigated whether FMISO PET has



J. Clin. Med. 2019, 8, 1088 9 of 17

the potential to distinguish responders to bevacizumab from non-responders [61]. Eighteen patients
with recurrent glioma underwent bevacizumab treatment. We compared the patients’ pre-and
post-MRI and FMISO PET to classify them as (1) MRI-FMISO double responders (n = 9, Figure 5),
(2) MRI-only responders (n = 5, Figure 6), and (3) non-responders (n = 4, Figure 7). There were no
FMISO-only responders. The survival analysis demonstrated that the MRI-FMISO double responders
had significantly longer overall survival than the other patients, whereas no significant difference was
observed between the MRI-only responders and the non-responders. We thus concluded that recurrent
gliomas with decreasing FMISO accumulation after short-term bevacizumab application could derive
a survival benefit from the treatment.

J. Clin. Med. 2019, 8, x FOR PEER REVIEW 9 of 16 

 

FMISO-only responders. The survival analysis demonstrated that the MRI-FMISO double responders 

had significantly longer overall survival than the other patients, whereas no significant difference 

was observed between the MRI-only responders and the non-responders. We thus concluded that 

recurrent gliomas with decreasing FMISO accumulation after short-term bevacizumab application 

could derive a survival benefit from the treatment. 

Wang et al. used C6 glioma model rats to evaluate the radiosensitization effects of oleanolic acid 

with FMISO [62]. They observed slowed tumor growth by the OA treatment combined with 

radiotherapy, as well as a decrease in FMISO uptake, and they suggested that FMISO PET can be of 

value for radiosensitization response evaluations. 

 

Figure 5. A 47-year-old patient with glioblastoma showed a strong uptake of FMISO before the 

bevacizumab treatment (upper row), but the FMISO uptake disappeared after the treatment (lower 

row). This patient was considered a ‘MRI-FMISO double responder’. 

 

Figure 6. A 68-year-old patient with anaplastic astrocytoma showed a strong uptake of FMISO before 

the bevacizumab treatment (upper row). After the treatment, MRI showed shrinkage of the tumor, 

but FMISO uptake was still observed (lower row). The patient was considered a ‘MRI-only 

responder’. 

Figure 5. A 47-year-old patient with glioblastoma showed a strong uptake of FMISO before the
bevacizumab treatment (upper row), but the FMISO uptake disappeared after the treatment (lower
row). This patient was considered a ‘MRI-FMISO double responder’.

J. Clin. Med. 2019, 8, x FOR PEER REVIEW 9 of 16 

 

FMISO-only responders. The survival analysis demonstrated that the MRI-FMISO double responders 

had significantly longer overall survival than the other patients, whereas no significant difference 

was observed between the MRI-only responders and the non-responders. We thus concluded that 

recurrent gliomas with decreasing FMISO accumulation after short-term bevacizumab application 

could derive a survival benefit from the treatment. 

Wang et al. used C6 glioma model rats to evaluate the radiosensitization effects of oleanolic acid 

with FMISO [62]. They observed slowed tumor growth by the OA treatment combined with 

radiotherapy, as well as a decrease in FMISO uptake, and they suggested that FMISO PET can be of 

value for radiosensitization response evaluations. 

 

Figure 5. A 47-year-old patient with glioblastoma showed a strong uptake of FMISO before the 

bevacizumab treatment (upper row), but the FMISO uptake disappeared after the treatment (lower 

row). This patient was considered a ‘MRI-FMISO double responder’. 

 

Figure 6. A 68-year-old patient with anaplastic astrocytoma showed a strong uptake of FMISO before 

the bevacizumab treatment (upper row). After the treatment, MRI showed shrinkage of the tumor, 

but FMISO uptake was still observed (lower row). The patient was considered a ‘MRI-only 

responder’. 

Figure 6. A 68-year-old patient with anaplastic astrocytoma showed a strong uptake of FMISO before
the bevacizumab treatment (upper row). After the treatment, MRI showed shrinkage of the tumor,
but FMISO uptake was still observed (lower row). The patient was considered a ‘MRI-only responder’.



J. Clin. Med. 2019, 8, 1088 10 of 17
J. Clin. Med. 2019, 8, x FOR PEER REVIEW 10 of 16 

 

 

Figure 7. A 36-year-old patient with glioblastoma showed no FMISO uptake before the bevacizumab 

treatment (upper row). After the treatment, the patient presented with the enlarged tumor in the 

bilateral frontal lobe (lower row). The tumor showed high FMISO uptake. This patient was considered 

a ‘non-responder’. 

7.5. Modifying Radiation Therapy Based on FMISO 

Because hypoxia makes tumor cells insensitive to radiation therapy, an attractive strategy for 

hypoxic tumors is dose escalation. However, few studies have explored the clinical value of dose 

escalation in a multicenter prospective design; no such studies of brain tumors have been reported to 

our knowledge. A multicenter, prospective, randomized trial for lung cancer was conducted by Vera 

et al. [63]. In their study of 54 patients, they modified the radiation dose from the standard dose (66 

Gy) used for the FMISO-negative patients to a high dose (up to 86 Gy) for FMISO-positive patients. 

They observed the dose escalation’s failure to improve the prognosis, but they later reported 

additional data in which the radiotherapy boost seemed to improve the FMISO-positive patients’ 

overall survival by 11.2 months [64]. 

Welz et al. reported the interim results of a similar trial for head and neck cancer [65]. The 

radiation dose was modified based on the patients’ FMISO PET findings, from the standard dose (70 

Gy) to an escalated dose (77 Gy) targeting the hypoxic volume. They described the feasibility of dose 

escalation to the hypoxic volume without increasing toxicity. It seems that it will take some time to 

determine the clinical benefits and disadvantages of the application of a dose escalation based on 

hypoxia imaging in further multicenter prospective studies with larger numbers of patients. 

8. The Reproducibility of FMISO PET Findings 

Although FMISO has been used as a tracer for over two decades, the image reproducibility of 

FMISO PET has been demonstrated only recently. Why has the reproducibility been questioned? In 

addition to measurement errors, the degree of hypoxia can theoretically fluctuate. Hypoxia can 

generally be classified by the mechanism: (1) perfusion-related (acute) hypoxia due to insufficient 

blood flow, (2) diffusion-related (chronic) hypoxia caused by an increase in diffusion distances with 

tumor expansion, and (3) anemic hypoxia caused by a decrease in oxygen transport capacity [66]. 

Chronic hypoxia and anemic hypoxia are more stable than acute hypoxia, which can vary within a 

short time. In fact, a study using a model analysis and simulation showed that the use of FMISO PET 

could not distinguish acute hypoxia from chronic hypoxia [67]. Thus, the concern is that if hypoxia 

imaging reflects acute hypoxia rather than chronic hypoxia, the image reproducibility would not be 

guaranteed. 
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treatment (upper row). After the treatment, the patient presented with the enlarged tumor in the
bilateral frontal lobe (lower row). The tumor showed high FMISO uptake. This patient was considered
a ‘non-responder’.

Wang et al. used C6 glioma model rats to evaluate the radiosensitization effects of oleanolic
acid with FMISO [62]. They observed slowed tumor growth by the OA treatment combined with
radiotherapy, as well as a decrease in FMISO uptake, and they suggested that FMISO PET can be of
value for radiosensitization response evaluations.

7.5. Modifying Radiation Therapy Based on FMISO

Because hypoxia makes tumor cells insensitive to radiation therapy, an attractive strategy for
hypoxic tumors is dose escalation. However, few studies have explored the clinical value of dose
escalation in a multicenter prospective design; no such studies of brain tumors have been reported
to our knowledge. A multicenter, prospective, randomized trial for lung cancer was conducted by
Vera et al. [63]. In their study of 54 patients, they modified the radiation dose from the standard dose
(66 Gy) used for the FMISO-negative patients to a high dose (up to 86 Gy) for FMISO-positive patients.
They observed the dose escalation’s failure to improve the prognosis, but they later reported additional
data in which the radiotherapy boost seemed to improve the FMISO-positive patients’ overall survival
by 11.2 months [64].

Welz et al. reported the interim results of a similar trial for head and neck cancer [65]. The radiation
dose was modified based on the patients’ FMISO PET findings, from the standard dose (70 Gy) to an
escalated dose (77 Gy) targeting the hypoxic volume. They described the feasibility of dose escalation
to the hypoxic volume without increasing toxicity. It seems that it will take some time to determine the
clinical benefits and disadvantages of the application of a dose escalation based on hypoxia imaging in
further multicenter prospective studies with larger numbers of patients.

8. The Reproducibility of FMISO PET Findings

Although FMISO has been used as a tracer for over two decades, the image reproducibility of
FMISO PET has been demonstrated only recently. Why has the reproducibility been questioned?
In addition to measurement errors, the degree of hypoxia can theoretically fluctuate. Hypoxia can
generally be classified by the mechanism: (1) perfusion-related (acute) hypoxia due to insufficient
blood flow, (2) diffusion-related (chronic) hypoxia caused by an increase in diffusion distances with
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tumor expansion, and (3) anemic hypoxia caused by a decrease in oxygen transport capacity [66].
Chronic hypoxia and anemic hypoxia are more stable than acute hypoxia, which can vary within a short
time. In fact, a study using a model analysis and simulation showed that the use of FMISO PET could
not distinguish acute hypoxia from chronic hypoxia [67]. Thus, the concern is that if hypoxia imaging
reflects acute hypoxia rather than chronic hypoxia, the image reproducibility would not be guaranteed.

Nehmeh et al. addressed this question and reported a low reproducibility of FMISO uptake,
both spatially and quantitatively [68]. They suggested that FMISO PET should not be used for radiation
planning until further evidence has been gathered. However, one possible criticism of their study
is that they calculated the hypoxic volume based on the tumor-to-blood ratio (TBR), and there has
been no study evaluating the stability of radioactivity in the blood pool. Another problem regarding
the study by Nehmeh et al. is that they acquired FMISO PET images after various lengths of time
(i.e., 117–195 min), and such a variation has the potential to degrade the quantitative accuracy for any
type of tracer.

In this context, we aimed to evaluate the reproducibility of FMISO uptake in head and neck cancers.
We acquired high-contrast FMISO images for 11 patients on two occasions at a 48-h interval [69],
and the results demonstrated that the FMISO uptake intensity (i.e., the TBR, TMR, and maximum
standardized uptake value (SUVmax), the tumor volume, and the hypoxia location were quite
reproducible. This reproducibility of tumor hypoxia is of clinical importance for optimum radiation
planning and other treatment strategies.

Please note that hMTV (mentioned above in ‘The prognostic value of FMISO PET’ subsection),
a volume showing both FDG and FMISO uptake, might reflect glucose metabolism upregulation as
the result of hypoxia. It could be a biological response as an adaption to chronic hypoxia. In contrast,
acute hypoxia might not allow cells to give enough time to increase glucose metabolism. That is our
hypothesis to be demonstrated in future experiments.

9. The Quantification of Hypoxia Using FMISO

Thus far, we have focused on qualitative evaluations (visual assessment) and semi-quantitative
(the SUVmax or tumor-to-normal ratio) evaluations by FMISO PET but as mentioned above, a tracer’s
uptake can reflect both the tracer’s distribution (i.e., via the blood flow) and its specific binding
(i.e., hypoxia). Quantitative approaches may have the potential to distinguish these two origins
of uptake. Grkovski et al. used a rat xenograft model treated with cediranib or vehicle [70] and
conducted a 90-min dynamic PET acquisition of FMISO before and after the treatment. A compartment
model was applied to estimate the kinetic rate constants K1, k2, and k3, the distribution volume,
and hypoxia-mediated entrapment. It was assumed that k3 reflected the irreversible binding of FMISO
and thereby hypoxia. They observed that k3 was increased after the treatment, indicating increased
hypoxia, but the uptake at 2 h was decreased, probably due to decreased blood flow as a treatment
effect. This again indicates that tumors with higher vs. lower blood flow will show a different intensity
of uptake at 2 h. We should pay attention when we interpret the 2-h images of FMISO PET.

These data suggest that a compartmental analysis may extract hypoxia information that enables
an accurate evaluation of the hypoxic conditions despite an altered blood flow. Grkovski et al. applied
the same compartmental analysis to head and neck cancer patients, and they reported that dynamic
scanning using FMISO provided parametric maps of tumor hypoxia, perfusion, and radiotracer
distribution volume, separately [71]. They also showed that the total acquisition times for obtaining
clinically important information can be reduced to 20 min. Chakhoyan et al. later attempted to generate
an absolute map of the tissue partial oxygen pressure in patients with glioblastomas [72]. Although such
applications must be further validated in studies of larger populations, the high quantitative ability of
PET along with biological information from radiotracers clearly has great potential.



J. Clin. Med. 2019, 8, 1088 12 of 17

10. The Current Hypoxia Imaging Challenges

We propose that FMISO has two major drawbacks. First, FMISO is not available in most of the
world; it is commercially available in just a few countries (e.g., France) [63]. Many approaches using
PET with a common tracer or other modalities such as MRI have been reported to predict regional
hypoxia. Considering the wide availability of FDG, we examined the ability of FDG PET to predict
FMISO uptake in head and neck cancer patients [73]. We hypothesized that hypoxia may increase the
metabolic heterogeneity in the tumor and that a texture analysis conducted using FDG PET images
may help extract hypoxia information. Even though we tested a wide variety of texture features,
we unfortunately did not observe a satisfactory performance by the analysis. Valable et al. tested
the performance of tissue oxygen concentration (StO2)-MRI to visualize hypoxia [74]. They used
several tumor model rats and investigated the performance of StO2-MRI in a comparison with FMISO
and pimonidazole staining, and they reported that StO2-MRI was able to distinguish hypoxia from
non-hypoxia with an area under the curve of 0.97.

Another drawback of using FMISO is that the clearance of FMISO from the blood is slow.
This requires a long (~4 h) wait before scanning to acquire adequate hypoxia images. Although this is not
a crucial disadvantage, hypoxia imaging would be more widely used than ever if the uptake time were
shorter. As mentioned above, kinetic approaches would help shorten the protocol. Another approach
is to modify the chemical structure of FMISO to make the clearance faster. Among such tracers,
18F-fluoroazomycin arabinoside (FAZA) seems to be the most extensively investigated, at least for
gliomas [75–77]. The advantage of FAZA is its high hydrophilic nature, leading to its rapid clearance
from the urinary system.

Similarly, we developed a new compound, 1-(2,2-dihydroxymethyl-3-[18F]fluoropropyl)-2-
nitroimidazole (DiFA) that also has high hydrophilicity, and we investigated its uptake mechanisms [78].
We observed that DiFA was accumulated via a glutathione conjugation reaction in a manner that is
similar to that of FMISO. We performed clinical trials using DiFA for the imaging of normal subjects
and head and neck cancer patients [39].

11. Conclusions

We have focused in this review on glioma as the most common malignant brain tumor. Hypoxia is
closely related to the malignancy of a tumor, and PET can noninvasively visualize the degree and the
expansion of hypoxia. FMISO is currently the most commonly used radiotracer for hypoxia imaging.
The clinical usefulness of FMISO PET has been established. FMISO PET can distinguish glioblastomas
from lower-grade gliomas, and it can predict the microenvironment of tumors, including necrosis,
vascularization, and permeability. FMISO PET provides prognostic information including survival
and treatment response data. However, more evidence is needed before modifying radiation therapy
based on FMISO PET. Next-generation tracers for hypoxia imaging, such as 18F-DiFA, are being tested.
Hypoxia imaging may someday become a standard tool in glioma management.
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