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Abstract: High levels of ostreid herpesvirus 1 (OsHV-1) were detected in hemocytes of OsHV-1
infected mollusks. Mollusk hemocytes are comprised of different cell types with morphological
and functional heterogeneity. Granular cells are considered the main immunocompetent hemocytes.
This study aimed to ascertain if OsHV-1 infects specific types of hemocytes in ark clams. Types of
hemocytes were first characterized through microexamination and flow cytometry. In addition
to a large group of red cells, there were three types of recognizable granular cells in ark clams.
Type II granular cells were mostly found with OsHV-1 infection by transmission electron microscope
(TEM) examination, and represented the hemocyte type that was susceptible to OsHV-1 infection.
The subcellular location of OsHV-1 particles in apoptotic type II granular cells was further analyzed.
Some OsHV-1 particles were free inside the apoptotic cells, which may contribute to OsHV-1
transmission among cells in the host, some particles were also found enclosed inside apoptotic
bodies. Apoptosis is an important part of the host defense system, but might also be hijacked by
OsHV-1 as a strategy to escape host immune attack. Following this investigation, a primary culture of
type II granular cells with OsHV-1 infection would facilitate the research on the interaction between
OsHV-1 and mollusk hosts.
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1. Introduction

Herpes-type viruses were first reported in the diseased oyster Crassostrea virginica in 1972 [1].
After that, summer mass mortalities of molluscs have been detected with the herpesvirus infection.
Nearly total mortality of Crassostrea gigas, Ostrea edulis and Ruditapes philippinarum larvae had been
reported with herpesvirus infection in French hatcheries since the 1990s [2–4]. The herpesvirus was
subsequently isolated from infected C. gigas larvae, then was sequenced and classified as a member of
the herpesviridae under the name ostreid herpesvirus 1 (OsHV-1) [5]. Until recently, OsHV-1 infection
associated mass mortalities of mollusk constantly arose [6–8]. OsHV-1 is considered a major pathogen
of shellfish. The overall structure of OsHV-1 capsid is similar to those of other previously reported
herpesviruses with a highly ordered icosahedral-shape nucleocapsid of about 120 nm in diameter [5].
The nucleocapsid is enclosed within the envelope, a polymorphic lipid bilayer. Typical structural
features of OsHV-1 facilitate effective clinical diagnosis of OsHV-1 infection by transmission electron
microscope (TEM) [9,10].
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Although OsHV-1 infection commonly leads to mass mortalities in mollusks, the innate immune
system of the host does act against the infecting OsHV-1 [11,12], especially cellular immune strategies,
including autophagy and apoptosis. A reduction in OsHV-1 DNA was found when autophagy was
stimulated by the administration of carbamazepine or starvation, suggesting that viral particles might
be cleared when autophagy is induced [13]. It was also revealed that the trigger factors (caspases),
as well as inhibitors of apoptosis proteins (IAPs) in hosts were both up-regulated in response to OsHV-1
infection. Meanwhile, IAP homologs containing the BIR domain could also be coded by OsHV-1 which
might further interfere with the host regulation of apoptosis [14,15]. This would imply that apoptosis
is a key part of antiviral response and under complex or antagonistic control [11]. As the major
executors of cellular immune defense [16,17], hemocytes are attacked by OsHV-1, and an increased
level of OsHV-1 DNA has been detected in mollusk hemocytes post infection [18,19]. Similar to
crustaceans, at least three types of mollusk hemocytes have been isolated according to their size
and granularity, including agranulocytes (hyaline cells), semi-granular and granular cells [20,21].
Among them, semi-granular and granular cells were found as two specific host hemocyte types
targeted by white syndrome spot virus (WSSV) in shrimp [20]. However, whether OsHV-1 also targets
specific types of mollusk hemocytes is unknown.

Besides oyster and scallop, ark clam, Scapharca broughtonii, has emerged as a new host for OsHV-1.
OsHV-1 infection was first detected in diseased ark clams along the coast of Northern China in the early
summer of 2012 [6,22]. Compared with oyster and scallop hemocytes, the composition of hemocyte
types of ark clams seems more complex according to hemocyte morphological features [23], and red
cells exist in ark clams but neither in oysters nor scallops. In this study, whether OsHV-1 targeted
specific types of hemoyctes in ark clams was analyzed. Firstly, the hemocyte types of ark clams
were characterized through morphological observation and flow cytometry. Then hemocyte types
with OsHV-1 infection were further identified by TEM examination. Hemocytes with different stages
of OsHV-1 infection were further scanned, and we assessed the subcellular localization of OsHV-1
particles in apoptotic hemocytes, to facilitate a better understanding of host cellular apoptosis response
to OsHV-1 infection.

2. Materials and Methods

2.1. Ark Clams

Healthy ark clams (two years old, average shell length of 55 mm) were collected from a local
shellfish farm in Qingdao, China. These ark clams were firstly acclimated with aerated sea water
at 18.0 ◦C for two weeks in our laboratory, then were randomly selected for the following assays.
Relevant experiments were approved by the local animal care and use committee, and conducted
according to the regulations of local and central government.

2.2. Experimental OsHV-1 Infection and Sample Collection

Experimental OsHV-1 infection was adopted through injection of OsHV-1 inoculum with
modification [24,25]. Briefly, OsHV-1 inoculum was firstly prepared using filtered (0.22 µm) mantle
tissue homogenate (FMH) of OsHV-1 naturally infected in the field ark clams (stored at −80 ◦C).
Then OsHV-1 concentration of the inoculum was quantified through DNA extraction and RT-qPCR as
described below. One hundred ark clams were randomly separated into two groups. One group was
injected with 105 OsHV-1 copies per ark clam in a total volume of 100 µL FMH, while the other group
was injected with the same volume of FMH from healthy ark clams as the control.

For the OsHV-1 quantification assay, each ark clam tissue sample was collected from three ark
clams and mixed together at 72 h post-injection. Each tissue sample was set with triple replicates.
Then collected tissue samples were directly stored at −80 ◦C for the following assay.
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2.3. Quantification of OsHV-1 Load by RT-qPCR

Total DNA of each ark clam tissue sample was extracted using the DNeasy Blood and Tissue
kit (Qiagen, Hilden, Germany) according to the manual. The concentration of extracted DNA was
detected by spectrophotometer NanoDrop2000 (Thermo-Scientific, Waltham, MA, USA).

The quantification of OsHV-1 load was performed by RT-qPCR as previously described, targeting
a DNA polymerase catalytic subunit of OsHV-1 [26]. Briefly, a 25 µL reaction system consisted
of 12.5 µL of 2× FastStart Essential DNA Probes Master (Roche Diagnostics, Risch-Rotkreuz,
Switzerland), 1.0 µL of primer BF (10 µM) (5′-GTCGCATCTTTGGATTTAACAA-3′), 1.0 µL of
primer B4 (10 µM) (5′-ACTGGGATCCGACTGACAAC-3′), 0.5 µL of TaqMan® probes (10 µM)
(5′-FAM-TGCCCCTGTCATCTTGAGGTATAGACAATC-BHQ-3′), 2 µL of template DNA and 8 µL
ddH2O. The reaction was started with 1 cycle of 95 ◦C for 10 min, followed with 40 cycles of 95 ◦C for
10 s, 60 ◦C for 30 s based on Bio-Rad CFX Connect RealTime system (Bio-Rad Laboratories, Hercules,
CA, USA). The OsHV-1 load was finally calculated according to the standard curve, which was
created from a 10-fold dilution series (107–101 copies µL−1) of plasmids containing the target sequence.
Data was expressed in OsHV-1 copy number per ng total tissue DNA for the three replicates.

2.4. Flow Cytometry Analysis

Hemolymph was randomly pooled from five healthy ark clams with anticoagulation (260 U/mL
heparin sodium). Then hemocytes were pre-filtered through a 50 µm mesh gauze and suspended in
filtered (0.22 µm) sea water as one sample. Hemocytes were sorted and counted based on their cellular
size and granularity by a CyFlow Space flow cytometry. Three repeated samples were respectively
detected. Data were expressed from 10,000 counts for each sample.

2.5. Hemocyte Morphologic Observation

Extracted hemolymph from healthy ark clams was left standing for 30 min to stratify at 18.0 ◦C,
before hemocytes in three formed layers were, respectively, transferred to 48-well plates and observed
under light microscopy. Then, hemocytes on plates were fixed with 4% paraformaldehyde for
10 min. DAPI was used to stain nuclei for 5 min followed by PBS washing, and the hemocytes
were characterized by a laser scanning confocal microscopy (LSCM) (Nikon A1, Tokyo, Japan).

2.6. Transmission Electron Microscopy (TEM) Examination

Hemocyte, hepatopancreas and mantle were collected from nine individual ark clams with
OsHV-1 inoculation at 72 h, then were fixed with 2.5% glutaraldehyde (pH 7.2) in 0.2 M sodium
cacodylate for 24 h at 4 ◦C. After further fixation with 1% osmium tetroxide, tissue samples were
dehydrated and embedded in Spurr’s resin. Ultrathin sections were prepared using Ultracut-E
ultramicrotome, then stained with uranyl acetate (pH 6.0), and examined with a JEOL JEM-1200
electron microscope (Jeol Solutions for Innovation, Peabody, MA, USA) at an accelerating voltage of
80–100 kV. Hemocyte, hepatopancreas and mantle from nine healthy individual ark clams were treated
the same as above.

3. Results

3.1. OsHV-1 Load in Different Ark Clam Tissues

The OsHV-1 loads in different ark clam tissues were quantified by RT-qPCR post 72 h of OsHV-1
inoculation. Compared with the control group (injected with FMH of healthy ark clams), significant
increase of OsHV-1 loads could be detected in all tested tissues including hemocytes, mantle, gill,
hepatopancrease, and adductor muscle and foot. OsHV-1 load was up to more than 104 copies per ng
total DNA in each test tissue samples (Figure 1a). The presence of OsHV-1 particles in the hemocytes,
hepatopancrease and mantle of infected ark clams was further examined by TEM. In addition to
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in hemocytes (Figures 4 and 6), the intact OsHV-1 particles could be found inside the cells of the
hepatopancrease (Figure 1b) and mantle (Figure 1c), characterized by a typical nucleocapsid enclosed
inside an envelope with an estimated diameter of 120 nm.Viruses 2018, 10, x FOR PEER REVIEW  4 of 9 
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Figure 1. Ostreid herpesvirus 1 (OsHV-1) load in different tissues of infected ark clams. (a) RT-qPCR 
quantification of OsHV-1 load in ark clam tissues post 72 h of infection. (b) Transmission electron 
microscope (TEM) examination in infected ark clam hepatopancreas, and (c) mantle tissue. (Scale bar 
= 1 μm). 
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on the top, including white cells, clotting cells, thrombus cells and lymphocytes. Three recognizable 
hemocyte groups were shown by the flow cytometric assay (Figure 2b), which was in accordance 
with previous studies [23]. Group R denoted red cells, Group G denoted white cells, Group H 
denoted thrombus and lymph cells. The amount of Group R presented about five-fold that of Group 
G or Group H (Figure 2c). 

 

Figure 2. Isolation of different types of ark clam hemocytes. (a) Ark clam hemocytes were subjected 
to stratification and microscopy examination. (Scale bar = 20 μm). Red cells, R; White cells, W; 
Thrombus cells, T; Clotting cells, C; Lymphocytes, L. (b) Analysis of different hemocyte groups by 
flow cytometry. Group R denotes red cells, Group G denotes white cells, Group H denotes thrombus 
and lymph cells. (c) The histogram shows the relative proportions of different hemocyte groups. 

Figure 1. Ostreid herpesvirus 1 (OsHV-1) load in different tissues of infected ark clams. (a) RT-qPCR
quantification of OsHV-1 load in ark clam tissues post 72 h of infection. (b) Transmission electron microscope
(TEM) examination in infected ark clam hepatopancreas, and (c) mantle tissue. (Scale bar = 1 µm).

3.2. Characterization of Different Types of Ark Clam Hemocytes

Ark clam hemocytes could be roughly separated into three layers after standing for 30 min
(Figure 2a). Red cells were mainly on the bottom, while other types of hemocytes were mainly found
on the top, including white cells, clotting cells, thrombus cells and lymphocytes. Three recognizable
hemocyte groups were shown by the flow cytometric assay (Figure 2b), which was in accordance with
previous studies [23]. Group R denoted red cells, Group G denoted white cells, Group H denoted
thrombus and lymph cells. The amount of Group R presented about five-fold that of Group G or
Group H (Figure 2c).
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Figure 2. Isolation of different types of ark clam hemocytes. (a) Ark clam hemocytes were subjected to
stratification and microscopy examination. (Scale bar = 20 µm). Red cells, R; White cells, W; Thrombus
cells, T; Clotting cells, C; Lymphocytes, L. (b) Analysis of different hemocyte groups by flow cytometry.
Group R denotes red cells, Group G denotes white cells, Group H denotes thrombus and lymph cells.
(c) The histogram shows the relative proportions of different hemocyte groups.
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According to the results of LSCM and TEM, at least three types (I, II and III) of granular cells
could be found (Figure 3). Type I presented a strip cell, corresponding to a thrombus cell; type II was
characterized with a small nucleo-cytoplasmic ratio and malleable shape, corresponding to a white
cell; type III showed a large nucleo-cytoplasmic ratio, corresponding to a lymph cell. All three types of
granular cells could stretch out dendrites. Different to granular cells, red cells presented a round pie
shape. Few organelles, apart from the nuclei, could be found by TEM.
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Figure 3. Examination of different ark clam hemocytes by TEM (Scale bar = 1 µm) and laser scanning
confocal microscopy (LSCM) (Scale bar = 10 µm), nucleus stained with DAPI (blue).

3.3. Identification of OsHV-1 Infected Hemocytes by TEM

According to the TEM assay, no OsHV-1 infected red cells were found in OsHV-1 infected ark
clams. Type II granular cells (white cells) with assembling OsHV-1 capsids in nuclear regions were
found, but neither type I nor type III cells with assembling OsHV-1 capsids were found (Figure 4).
Figure 5 showed the OsHV-1 susceptible type II granular cells with a small nucleo-cytoplasmic ratio
from healthy ark clams; comparatively, there were no OsHV-1 particles.

Type II granular cells (white cells) with assembling OsHV-1 capsids in the nuclear regions
indicated the cells were mid-infection, with nuclear enlargement and disintegration. The cellular
apoptosis is shown in Figure 6, indicating a different stage of OsHV-1 infection. Some OsHV-1 particles
were enclosed inside the apoptosis bodies, and several disintegrated ones could be found, as shown in
the dotted box (Figure 6).
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4. Discussion

Mollusks rely on an innate immune system to protect themselves from invading environmental
microbes. Hemocytes comprise an important aspect of their innate immune system, especially granular
cells [27], which are involved in both cellular and humoral immunity, and serve as an immune
modulator through a neuroendocrine-immune (NEI) regulatory network [16]. However, hemocytes
carry a high level of OsHV-1 load in infected mollusks, which might directly disturb the whole innate
immune system of mollusks and lead to death.

Besides hemocytes, other tissues also presented high levels of OsHV-1 load. Despite no tissue
specificity, OsHV-1 infection showed cellular specificity in hemocytes. Three types of mollusk
hemocytes have been reported according to hemocyte size and granularity [21,27,28], including
agranulocytes, semigranulocytes and granulocytes. Despite the hemocyte types in ark clams seeming
more complex, there were still three groups of hemocytes seen, as in other mollusks. However, the three
groups (Group R denoting red cells, Group G denoting white cells, and Group H denoting thrombus
and lymph cells) in ark clams were not in accordance with the previously reported agranulocytes,
semigranulocytes and granulocytes as seen in other mollusks. Group R was the largest group of
hemocytes in ark clams. In addition to red cells, three types of granular cells were distributed in the
other two groups (Type II (white cells) in Group G, and Types I (thrombus cells) and II (lymph cells)
in Group H). Type II granular cells were mostly found with OsHV-1 infection and represented the
susceptible hemocyte type to OsHV-1 infection. They were previously described as white cells that
showed strong phagocytosis [23]. Meanwhile, phagocytosis was previously considered as a method of
OsHV-1 invading into cells [11], which might greatly contribute as to why type II granular cells are
vulnerable to OsHV-1 infection.

The nucleocapsids of OsHV-1 are assembled in the nuclear regions of type II granular cells in
ark clams. Apoptosis of type II granular cells was triggered post OsHV-1 infection. According to
gene expression level [11], it is hard to identify whether the apoptosis of the host cell is active or
passive. Nevertheless, it was found that some OsHV-1 particles were enclosed into apoptotic bodies
and might be finally destroyed and cleared, while others were free in the apoptotic host cells according
to TEM examination. Apoptosis of type II granular cells could not thoroughly clear OsHV-1 particles,
contrarily, that would contribute to further diffusion of mature OsHV-1 particles (Figures S1 and S2).
With apoptosis of type II granular cells, host immune defense systems should be weakened and
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disturbed. Thus apoptosis is proposed to be a major immune escape mechanism of OsHV-1, which is
similar to that of human immunodeficiency virus (HIV), promoting apoptosis of host immune-related
cells, then leading to the destruction of immune effectors to evade the host immune system attack [29].

5. Conclusions

In conclusion, our studies suggest that the hemocytes, especially type II granular cells (white cells),
are susceptible to OsHV-1 infection. Apoptosis of type II granular cells could not effectively eliminate
OsHV-1 particles, which is proposed as a mechanism to facilitate OsHV-1 particle transmission among
cells in the host. Meanwhile the host immune defense system would be disturbed from the apoptosis
of the immune modulator cells. Apoptosis is considered as an OsHV-1 strategy to escape host
immune attack.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/10/10/529/
s1, Figure S1: The apoptosis of OsHV-1 infected ark clam hemocytes, Figure S2: The apoptotic bodies of OsHV-1
infected ark clam hemocytes.
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