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The scale-free and small-world network models refl ect the functional units of networks. However, 
when we investigated the network properties of a signaling pathway using these models, no 
signifi cant differences were found between the original undirected graphs and the graphs in 
which inactive proteins were eliminated from the gene expression data. We analyzed signaling 
networks by focusing on those pathways that best refl ected cellular function. Therefore, our 
analysis of pathways started from the ligands and progressed to transcription factors and 
cytoskeletal proteins. We employed the Python module to assess the target network. This 
involved comparing the original and restricted signaling cascades as a directed graph using 
microarray gene expression profi les of late onset Alzheimer’s disease. The most commonly used 
method of shortest-path analysis neglects to consider the infl uences of alternative pathways that 
can affect the activation of transcription factors or cytoskeletal proteins. We therefore introduced 
included k-shortest paths and k-cycles in our network analysis using the Python modules, which 
allowed us to attain a reasonable computational time and identify k-shortest paths. This technique 
refl ected results found in vivo and identifi ed pathways not found when shortest path or degree 
analysis was applied. Our module enabled us to comprehensively analyse the characteristics 
of biomolecular networks and also enabled analysis of the effects of diseases considering the 
feedback loop and feedforward loop control structures as an alternative path.

Keywords: signal transduction, Alzheimer’s disease, network analysis, k-shortest path analysis, python, network 

robustness, graph theory, hippocampal CA1

are known to be regulated by gene expression patterns, as well 
as adapting to the external environment (Luscombe et al., 2004). 
To characterize the dynamic nature of protein networks, investi-
gations into the effects of diseases on gene expression have been 
initiated for Alzheimer disease by means of diffusion kernels and 
microarray data (Ma et al., 2007) and for cancer by means of gene 
expression data and network information (Chuang et al., 2007). 
However, because networks function as multiple-complex regula-
tory structures, it is insuffi cient to study disease dynamics in protein 
networks through analysis of a single factor affecting the network 
or through analysis of structural properties.

In the present study, we investigated the protein networks associ-
ated with Alzheimer’s disease through feature analysis of regulated 
signal molecules, as well as by structural analysis of network com-
ponent. Intraneuronal amyloid β (Aβ) is reported to be a major 
important factor for Alzheimer’s disease. Aβ, which is the product 
of the protein catabolic enzyme, is normally transported out of 
cells (Iwata et al., 2000). In Alzheimer’s disease the aggregation and 
deposition of insoluble Aβ leads to nerve cell damage and is thought 
to be the pathogenic mechanism of Alzheimer’s disease (Hardy and 
Selkoe, 2002). Studies of Aβ and protein catabolic enzymes, like 
β-secretase, have focused on changes in certain proteins. Although 
a few studies have focused on the entire network, the mechanism 

INTRODUCTION
Network analysis has lead to the discovery of new components of 
the metabolic pathways in metabolic pathways and in signal trans-
duction cascades. Examples of network analysis models include 
the small-world network model (Jeong et al., 2000), in which 
the average path length is shortened, and the scale-free network 
model (Wuchty, 2001), which has a degree distribution that fol-
lows a power law. Multilayer structural and motif analyses (Milo 
et al., 2002; Shen-Orr et al., 2002) have shown that metabolic path-
ways and protein interactions have more notable cluster structures 
(Ravasz et al., 2002) than random networks, and that metabolic and 
signaling pathways behave like complex regulatory networks. In 
recent research on diseases, network analyses, like degree analysis 
of cancer-related genes using gene regulatory networks to identify 
the genes (Futreal et al., 2004) and various other analyses of dis-
ease genes, revealed structural effects of disease on biomolecular 
networks (Ideker and Sharan, 2008). Taken together, these fi ndings 
suggest that cellular functions can be modelled as network struc-
tures and that investigation of disease phenomena through network 
analysis has the potential to reveal novel properties and pathways 
in biomolecular pathways associated with disease states?

The studies mentioned above assume that proteins do not 
change in the absence of external stimulation. Proteins in networks 
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underlying the accumulation of Aβ has not been discovered. Thus, 
it is still unclear if the accumulation of Aβ is the direct cause of 
Alzheimer’s disease (Heneka and O’Banion, 2007). Here, we 
aimed to use a network model to discover the characteristics of 
structures that most affect the hippocampal signal transduction 
pathway, and the regulatory mechanisms controlling gene expres-
sion in Alzheimer’s disease. We generated a network model for the 
Alzheimer’s disease patient signal transduction cascade, referred 
to as the Alzheimer’s disease network (“ADN”), from the signal 
transduction pathway in the hippocampal CA1 region (Ma’ayan 
et al., 2005) and from gene expression data derived from patients 
with late onset Alzheimer’s disease (Liang et al., 2007).

In order to understand the network form, we conducted feature 
analysis of signal molecules in the signal transduction cascade by 
measuring k-core, degree, closeness, betweenness, the change in 
the average shortest path length, and the change in the articula-
tion points, following the removal of the Alzheimer’s-related sig-
nal molecules from the network. In our structural analysis of the 
network, we considered the network density, average clustering 
index, and average shortest path length. Regulatory structures, like 
the feedback loop and the feedforward loop, are more frequent in 
hippocampal signaling pathways than in the randomly generated 
networks (Ma’ayan et al., 2005). Therefore, we analysed feedback 
loops and feedforward loops in the model network using the k-
cycle structure (Nochomovitz and Li, 2006). The k-cycle structure 
is defi ned as a network structure in which duplicating nodes are 
removed from the network when one node to the in-neighbours can 
be reached by the k-step. For analysis of pathway characteristics, the 
extracellular ligand was set as the input and cytoskeletal proteins 
and transcription factors were set as the output. Since there are 
many alternative signal transduction pathways (Coulson, 2006), 
we used the k-shortest pathway (Rahman and Schomburg, 2006) 

instead of the shortest path or path length for pathway analysis. 
With our model we were able to reproduce the Alzheimer’s disease 
shift in gene expression in the hippocampal signal transduction 
pathway and the shift in signal transduction in Alzheimer’s disease 
revealed in earlier studies.

MATERIALS AND METHODS
ANALYSIS PACKAGE FOR BIOMOLECULAR NETWORKS
In our study, we developed the network analysis module “Analysis 
Package for Biomolecular Networks (BioNetpy)” using the Python 
software program. Python is suitable as an open resource because 
it excels in readability over other program languages and has supe-
rior system execution by utilizing the just-in-time compiler, psyco1. 
The BioNetpy module was constructed using the Python network 
analysis module NetworkX-0.3.62 and igraph-0.4.53. We also used 
the numerical package Numpy-1.0.4, which is a Python numeri-
cal module4. The BioNetpy module performs the three analysis 
methods outlined in Figure 1.

BioNetpy and Supplementary Material can be downloaded 
from the following website: http://medcd.iab.keio.ac.jp/bionetpy/; 
http://www.frontiersin.org/neuroinformatics/paper/10.3389/ 
neuro.11/013.2009.

ANALYSIS OF GENE EXPRESSION DATA FOR MODEL ASSEMBLY
We used a network expressed by a directed graph of the signal trans-
duction pathway of the hippocampal CA1 region in humans (Ma’ayan 
et al., 2005). This network contains 570 nodes (signal  molecules) 

FIGURE 1 | Analysis methods of the BioNetpy module. We used the BioNetpy module to perform the following three types of analyses: (A) node feature analysis 
(centrality and changes in indicators upon removal of node), (B) structural properties, and (C) characteristics of pathways (analysis of network similarity and 
pathways analysis). BioNetpy and Supplementary Material can be downloaded from http://medcd.iab.keio.ac.jp/bionetpy/.

1http://psyco.sourceforge.net/
2https://networkx.lanl.gov/
3http://igraph.sf.net/
4http://numpy.scipy.org/
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and 1,333 edges (reactions). The edges can be categorized into three 
types of information defi ned as active, inactive, and bidirected (bidi-
rectional activation or inactivation)  information. We extracted gene 
expression data derived from GeneChip (Affymetrix) analysis of 
human hippocampal CA1 region. We applied the Bioconductor 
2.2 program to analyse gene expression data (Reimers and Carey, 
2006). Bioconductor can be applied to the Python module by using 
the Rpy program5. We used the Human Genome U133 Plus 2.0 
Array from the Bioconductor affy package (Gautier et al., 2004). We 
extracted Alzheimer’s disease-related genes by analyzing GSE5281, 
which is a set of gene expression data derived from patients with 
late-onset Alzheimer’s (n = 10) and controls (n = 13) (Liang et al., 
2007) that has been recorded on the GEO database. We normalized 
the data by the distribution-free summarization method, which 
has been tested with the Spike-ins benchmark test on the Human 
Genome U133 Plus 2.0 Array and is known for its high-resolution 
summarization of microarray data (Chen et al., 2007). After data 
normalization, we used the Bioconductor limma package (Smyth, 
2004) to defi ne genes as Alzheimer’s disease-related genes within 
the P < 0.005 threshold by employing the empirical Bayes t-statistic 
test (Jeffery et al., 2006). We matched genes and the corresponding 
signal molecules by correlating information from the NCBI Gene 
ID (Maglott et al., 2007) and Swiss-Prot ID (Bairoch et al., 2004) 
and defi ned signal molecules coded by Alzheimer’s disease-related 
genes as Alzheimer’s disease-related signal molecules. We conducted 
feature analyses by measuring k-core, betweenness centrality, close-
ness centrality, and degree centrality. We also analysed changes in the 
shortest path length, which is an indicator of a small-world network 
(Mason and Verwoerd, 2007), and changes in articulation points, 
which is an indicator of network connectivity, after removing nodes 
from the Alzheimer’s disease-related signal molecule network. The 
k-core of a graph is the maximal subgraph in which each node’s 
degree is at least k. Betweenness centrality measures the importance 
of a node within a network. Nodes that occur on many short paths 
between other nodes have higher betweenness centrality than those 
nodes that do not. Closeness centrality is defi ned as the number of 
nodes minus one divided by the sum of the lengths of all shortest 
path lengths from and to the given node. Degree centrality is the 
number of nodes that a given node is connected to. We were able 
to analyse the characteristics of signal molecules in the network on 
multiple dimensions using these indicators.

STRUCTURAL PROPERTIES OF HIPPOCAMPAL PATHWAYS OF PATIENTS 
WITH ALZHEIMER’S DISEASE
We conducted a structural index analysis by generating an ADN 
after removing Alzheimer’s disease-related signal molecules from 
the control network (“CN”). We used a k-cycle structure for the 
analysis of feedback loop in the networks. The k-cycle structure 
is defi ned as a network structure from which duplicating nodes 
are removed when one node can be reached from the in-neigh-
bors. An earlier study (Ma’ayan et al., 2005) and our pilot study 
shows that 90% of all nodes can be reached within 9 steps for 
input (n = 30). Thus, we defi ned pathways within 9 steps of each 
other to be important for intercellular signal transduction. Because 
network structure depends on the number of nodes, we generated 

a randomly removed network (“RRN”) by removing nodes from 
the CN to equal the number of nodes of the ADN. We then limited 
the network density, average clustering index, and average shortest 
pathway length change of this new CN to 5% and compared the 
results. The k-cycle data can be analysed according to Eq. 1:

C
n

n i

n

k

=
=

∑ cycle Node( )

1

 (1)

where C
k
 represents the number of k-cycle structures in the net-

work. The function cycle
n
 represents the number of cycle structures 

can be reached from the in-neighbors.

CHARACTERISTICS OF HIPPOCAMPAL SIGNAL PATHWAYS IN PATIENTS 
WITH ALZHEIMER’S DISEASE
Cellular processes are controlled by many alternate signal transduc-
tion pathways (Coulson, 2006). For this reason, we analysed the k-
shortest pathway instead of analyzing pathway length or shortest 
pathways. We also generated an RRN and compared the k-cycle of 
the RRN with that of the ADN. Through exploration of the k-shortest 
path length, the number of pathways was carried out by calculating 
the shortest pathway length between nodes and by using Depth-First 
Iterative-Deepening (Korf, 1987). We used the k-shortest pathway 
with extracellular ligands (n = 30) as input and cytoskeletal pro-
teins (n = 24) and transcription factors (n = 35) as output to defi ne 
1,770 pathways for analysis. We defi ned the input and output of 
two important functions of the neural cell, neuronal plasticity and 
neurite outgrowth, to analyse the effects of Alzheimer’s disease on 
neural functions. Neuronal plasticity is controlled by depolariza-
tion of the postsynaptic cell by binding of glutamate to its receptors. 
Consistent with the network analysis described above, activation of 
these receptors activates the cAMP response element-binding protein 
(CREB), thus increasing the level of amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) receptor (Hayashi et al., 2000). For 
these reasons, we set glutamate as the starting point of the pathway 
and CREB as the endpoint for the neuronal plasticity pathway. The 
direction of neurite outgrowth is determined by guidance factors 
(Dickson, 2002). Therefore, we set the guidance factors acetylcho-
line (ACh), insulin-like growth factor I (IGF1), nerve growth factor 
(NGF), and Ephrin at the start of the pathway, and tubulin, a micro-
tubule protein, at the endpoint. An evaluation of robustness, defi ned 
in Eq. 2, was conducted by comparing the robustness values of all 
inputs and outputs of the ADN with that of the CN and RRN.

We also conducted a k-shortest pathway analysis of the path-
ways involved in neural cell death, the pathways that link directly 
to the amyloid β protein precursor (APP), and the pathways that 
link extracellular ligands to transcription factors or cytoskeletal 
proteins. Neuronal cells are known to enter apoptosis readily upon 
receiving signals of extracellular death ligands or DNA damage 
(Jellinger, 2006). We defi ned the starting points of the neural death 
pathway as fas ligand (FasL) and tumor necrosis factor-α (TNFα), 
which induce apoptosis, and the endpoint as the DNA fragmenta-
tion factor (ICAD), an inhibitor of caspase-activated DNase, which 
fragments DNA. In addition, we defi ned the pathways between 
all ligands and included the APP-binding family A member 1 
(MINT-1) (Yoon et al., 2007) and caspase 3 (Su et al., 2002) in 
the APP-related pathway. These pathways are shorter than that of 
neural plasticity and neurite outgrowth and can traverse from the 5http://rpy.sourceforge.net/
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input to the output through a shorter path. Therefore, we compared 
the number of pathways having the same input and output set in 
the total number of pathways and the number of pathways in the 
RRN in total number of pathways. The number of steps, k, used in 
the k-shortest pathway analysis in the k-cycle structure, was defi ned 
as 9 steps, using the following equation:

R
N

ij
ij X

X

=
− mean

SD
 (2)

where R is the robustness value (R-value) of the pathway. In the 
pathways from glutamate to CREB and ACh, NGF, IGF1 and from 
Ephrin to tubulin, R is the difference between the numbers of k-
shortest paths obtained by all inputs to outputs in all k-shortest 
path sets, which is defi ned as X. In the pathways from FasL and 
TNFα to ICAD, including all inputs to MINT-1 and caspase 3, R 
is the difference in the number of k-shortest paths between node i 
and node j obtained in the RRN sets, which is defi ned as X in this 
case. N

ij
 is the k-shortest path number from node i to node j in 

the network of interest. Mean
X
 is the mean of all k-shortest path 

sets or nodes in the RRN sets. SD
X
 is the standard deviation of all 

k-shortest path sets or nodes in the RRN sets.
Equation 3 below shows the interpretation of network similar-

ity using a single value (Barrett et al., 2006) for the vector space 
of inputs and outputs in a network using a matrix expression for 
equal-length shortest path (Borgwardt and Kriegel, 2005), which 
indicates pathways with equal steps. Our study analyzes the change 
in the entire pathway at step e.

S
c o

c o

e e

e e
= ⋅

⋅

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

arc cos  (3)

where S represents network similarity between the fi rst mode of 
singular value c (equal-length shortest-path matrix of CN) and o 
(equal-length shortest-path matrix of ADN or RRN); e represents 
the specifi c step value of the equal-length shortest-path matrix.

RESULTS
FEATURE ANALYSIS OF SIGNAL MOLECULES
Through empirical Bayes t-statistics, we extracted 76 Alzheimer’s 
disease-related genes known to downregulate actin (Harigaya et al., 
1996) and beta-catenin (Li et al., 2007), resulting in a decrease in 
the level of calcium/calmodulin-dependent protein kinase type II 
(CaMKII) (Allison et al., 2000). Please refer to the Supplemental 
Material for a list of genes aforementioned. By observing the 
pathway functions of the signal molecules encoded by these 76 
genes, we found the largest changes in the actual numbers of mol-
ecules with Kinase and Adapter functions, and the largest percent-
age change for nodes in the Receptor and Bcl2Family functional 
groups, which decreased at rates greater than the rate of change 
for the network overall (13%; Table 1). We conducted a feature 
analysis of Alzheimer’s disease-related signal molecules and other 
molecules by measuring k-core, betweenness, closeness, degree, the 
change in average shortest path length, and the change in articula-
tion points. There were no signifi cant differences in these meas-
urements between Alzheimer’s disease-related signal molecules 
and other molecules (P < 0.05, Mann–Whitney U-test; Table 2). 

When we removed these Alzheimer’s disease-related signal mol-
ecules, the ADN contained 494 nodes and 974 edges. In total, 91% 
of the input–output sets were connected in the CN (average path 
length = 5.94), and 50% of those sets were connected in the ADN 
(average path length = 6.68).

k-CYCLE ANALYSIS OF ADN
By comparing the number of k-cycle structures (k = 4, 5, …, 9) of 
RRN, CN, and ADN, we showed that the all-step k value decreased 
(Figure 2). However, the graph shape was similar for each RRN 
and for each cycle structure number corresponding to the steps 
in the random sampling network; the correlation coeffi cient 
between ADN/CN and RRN/CN was 0.99. This fi nding also dem-
onstrates that network size, not external factors, has an effect on 
cycle structure.

k-SHORTEST ANALYSIS OF ADN
The k-shortest pathway analysis (k = 9) of CN, ADN, and RRN 
showed no notable difference in distribution shape between all 
inputs and outputs. There were also no differences in the average 
network pathway between ADN (67 ± 216) and RRN (144 ± 342) 

Table 1 | Number of constituent signal molecules on CN and ADN. 

“Other” denotes small molecules or histones. The actual connection graph 

of the 570 nodes and 1,333 edges of CN and the 494 nodes and 974 edges 

of ADN is shown. We extracted 76 Alzheimer’s disease-related signal 

molecules known to decrease actin, beta-catenin, and CaMKII. This group of 

genes represents 13% of the CN. By observing the pathway functions of 

these 76 Alzheimer’s disease-related signal molecules, we discovered that 

nodes in the Bcl2Family and Receptor groups decreased at a rate greater 

than the network as a whole.

Function Number of signal molecules in networks

 ADN CN CN–ADN (%)

Adapter 89 103 14 (14)

Kinase 71 86 15 (17)

Receptor 39 51 12 (24)

Transcriptional factor 28 35 7 (20)

Ligand 30 30 0 (0)

Cytoskeletal protein 21 24 3 (13)

Vesicle 17 21 4 (19)

Ion channel 17 20 3 (15)

GEF 19 20 1 (5)

Inhibitor 17 18 1 (6)

GAP 13 13 0 (0)

GTPase 11 13 2 (15)

PDE 9 11 2 (18)

G protein 9 10 1 (10)

Ribosome 10 10 0 (0)

Activator 8 8 0 (0)

Bcl2Family 6 8 2 (25)

Protease 8 8 0 (0)

Phosphatase 15 16 1 (6)

Other 57 65 8 (12)

 494 570 76 (13)
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at k = 9. Thus, there was no difference in the effect of Alzheimer’s 
disease-related signal molecules and random signal molecule 
on any of the inputs or outputs. Next, we conducted an analysis 
of change in robustness (k = 4, 5, …, 9) for pathways associated 
with neuronal plasticity and neurite outgrowth, and for pathways 
associated with neuronal death and APP (Figure 3). The change 
in robustness was the greatest for the pathways associated with 
neuronal plasticity (Walsh et al., 2002) for ADN subtracted by CN 
and ADN subtracted by RRN, for each k value. Likewise, for the 
pathways associated with neurite outgrowth, there was a decrease 
in robustness for those involving NGF (Tuszynski et al., 2005), 

which has a maintenance function in nerve cells, and ACh (Hoshi 
et al., 1997), which decreases as Aβ accumulates. For the pathways 
associated with neuronal plasticity, the decrease in robustness for 
NGF and ACh was within the top 10% of all combinations. The 
set that showed the largest change in robustness was the pathway 
between glutamate and actin signal transduction (R-value was 
−14.9, −13.6 and −1.29 for ADN subtracted by CN, ADN sub-
tracted by RRN and RRN subtracted by CN). The same change 
in robustness for the glutamate to actin signal transduction path-
way was observed between ADN and RRN and between ADN 
and CN. This fi nding suggests that these changes in robustness 
do not depend on signal molecule number, network density, the 
average clustering index, or the average shortest path length. In the 
analysis of the pathways associated with neural cell death, there 
were no changes in robustness observed for the FasL to ICAD 
pathway; however, CN and RRN showed increases in each step of 
the TNFα to ICAD and caspase 3 pathways. TNFα and caspase 3 
correlate positively with the accumulation of Aβ (Cacquevel et al., 
2004; McCusker et al., 2001). Furthermore, these results show that 
Alzheimer’s disease-related signal molecules have more selective 
effects on neural plasticity and neurite outgrowth than random 
signal molecules.

Analysis of certain inputs to all outputs showed a large decrease 
in signal molecules associated with neuregulin (NRG), which is a 
substrate of BASE1 (Willem et al., 2006); with NGF, which is the 
drug target in Alzheimer’s disease; with reelin, which is thought to be 
related to Alzheimer’s disease (Botella-Lopez et al., 2006); and with 
dopamine, which is a neurotransmitter (Figure 4). By  comparison, 
epidermal growth factor (EGF) and the neurotrophin family, which 
includes brain-derived neurotrophic factor (BDNF) and neuro-
trophin 4 (NT4), showed an increase in associated signal molecules. 
The level of BDNF is increased in patients with Alzheimer’s disease 
and in the hippocampus of a transgenic mouse model of Alzheimer’s 
disease (Laske et al., 2006; Tang et al., 2000). However, our fi nding 
that the R-value of inputs was between 0.8 and −1.2 suggests that 
the effect of BDNF on robustness in Alzheimer’s disease is small. 
Analysis of all inputs to certain outputs revealed that the largest 

Table 2 | Network feature analysis of signal molecules. Network feature analysis of Alzheimer’s disease-related signal molecules and other signal 

molecules in the network (“Others”) performed by measuring k-core, betweenness, closeness, degree, change in average shortest path length, and change 

in articulation points (mean ± SD). There were no signifi cant differences in these measurements between Alzheimer’s disease-related signal molecules and 

other signal molecules in the network (P < 0.05, Mann–Whitney U-test). This network feature is the same as that of disease-related molecules defi ned in 

earlier studies. IN means the incoming paths OUT means the outgoing paths, and ALL means both incoming and outgoing paths.

 Centrality analysis Node removal analysis

 k-core Betweenness Closeness Degree Average path length Articulation point

AD

ALL 0.61 ± 1.24 0.006 ± 0.013 0.21 ± 0.18 0.012 ± 0.015 5.453 ± 0.024 107.78 ± 0.75

OUT 0.66 ± 1.05 0.006 ± 0.013 0.27 ± 0.30 0.012 ± 0.015  

IN 2.62 ± 1.33 0.007 ± 0.016 0.24 ± 0.04 0.009 ± 0.013  

OTHERS

ALL 0.70 ± 1.10 0.005 ± 0.011 0.21 ± 0.17 0.010 ± 0.011 5.452 ± 0.022 107.83 ± 0.64

OUT 0.76 ± 1.42 0.005 ± 0.011 0.21 ± 0.23 0.010 ± 0.011  

IN 2.59 ± 1.25 0.006 ± 0.013 0.24 ± 0.04 0.008 ± 0.009  

FIGURE 2 | Result of k-cycle structure rate of ADN/CN and RRN/CN. The 
X-axis represents step k and the Y-axis represents the rate of decrease. The 
error bar represents a top value of 95% and a bottom value of 5%. We used 
RRN with a random Alzheimer’s disease-related signal molecule set, in which 
the rate of change in the three indicators (network density, average clustering 
index, and average shortest path length) is within 5%. By comparing the 
number of k-cycle structures (k = 4, 5, …, 9) of RRN, CN, and ADN, we 
showed that the all-step k value decreased. However, the graph shape was 
similar for each cycle structure number corresponding to the steps; the 
correlation coeffi cient between ADN/CN and RRN/CN was 0.99. This fi nding 
also demonstrates that network size, not external factors, has an effect on 
cycle structure.
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decrease in associated signal molecules was for key factors in neural 
activity, including actin and tubulin, which are cytoskeletal proteins 
regulating neural plasticity and neurite outgrowth, and CREB, which 
is a transcription factor (Figure 4). By comparison, transcription 
factors, such as the nuclear factor of activated T cells (NFAT), and 
actin-binding proteins, such as α-actinin and profi lin, showed an 
increase in associated signal molecules. Because the R-value range 
was between 1.2 and −4.3, the result for the comparison of input to 
total output implies that Alzheimer’s disease affects the expression 
of output molecules more than input molecules.

The analysis of the change in similarity between the input and 
output sets of CN, ADN, and RRN, shown as a matrix, indicate that 
ADN is lower than RRN when e = 5 and 9, but higher than RRN 
when e = 6, 7 and 8 (Figure 5).

DISCUSSION
MICROARRAY AND CENTRALITY ANALYSIS OF SIGNAL MOLECULES
In our study, we conducted a feature analysis of Alzheimer’s disease-
related signal molecules in a network. We conducted the analysis on 

genes from a large sample of patients in the early stage of late-onset 
Alzheimer’s disease. It is thought that new information on a disease 
pathogenesis can be gained by observing changes in a signaling 
pathway produced by the changes in the stages of Alzheimer’s dis-
ease. Data similar to that used in the present study, namely the reg-
istered expression data derived from the hippocampal CA1 region 
of Alzheimer’s patients at different stages (Blalock et al., 2004), 
may be used for a similar analysis in the future. The data from the 
 aforementioned study covers the four categories of Alzheimer’s 
disease status termed control, incipient, moderate, and severe. 
Therefore, we believe that we will be able to conduct time-series 
network analyses of these symptoms. The present study focuses only 
on gene expression data, yet Alzheimer’s disease characteristics not 
regulated by gene expression may also be considered by using alter-
native experimental methods, for example, the large-scale databases 
from other in vivo experiments (Bertram et al., 2007) or positron-
emission tomography (PET) studies (Tuszynski et al., 2005).

In the feature analysis, we found no signifi cant difference in 
signal molecules for all indicators. By comparison the average 

FIGURE 3 | Pathway robustness: individual input–output relationships in 

ADN subtracted by CN, ADN subtracted by RRN, and RRN subtracted by 

CN (k = 4, 5, …, 9). (A) Robustness changes in the pathways associated with 
neuronal plasticity: input is glutamate and output is CREB. (B–E) 
Robustness changes in the pathways associated with neurite outgrowth: 
inputs are ACh, Ephrin, IGF1, and NGF, and output is tubulin. The decrease 

in robustness was large for the pathways involved with NGF, which has a 
maintenance function in nerve cells, and ACh, which decreases as Aβ 
accumulates. (F, G) Change in the number of pathways associated with 
neural cell death: inputs are FasL and TNFα, and output is ICAD. (H, I) 
Accumulation of APP: all inputs to MINT-1 as output (H) and to caspase 3 
as output (I).
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of indicators including degree and betweenness increased, for 
Alzheimer’s disease-related signal molecules compared to the 
other signal molecules. This trend is the same as that for charac-
teristic disease-related genes defi ned in earlier studies (Ideker and 
Sharan, 2008). Changing the threshold for defi ning Alzheimer’s 
disease-related genes has an effect on the results of gene expres-
sion data analysis In addition, it is diffi cult to analyze indicators 
like degree and betweenness, due to the method of calculating 
substances at the ends of networks. For this reason, substances 
like ACh and NGF, which are located at the ends of networks 
and are targets of drug development, require a combination of 
signal molecule analysis and pathway analysis that controls the 
input and output data. Therefore, additional fi ndings on the 

pathogenesis of Alzheimer’s disease may be discovered through 
additional feature analysis of networks for data other than gene 
expression.

NETWORK STRUCTURE
In the analysis of k-cycle structure, we discovered that k-cycle 
numbers decreased in all steps in the ADN/CN compared with 
that in RRN/CN and that the rate of decrease increased accord-
ing to the step number. We also discovered that RRN had more 
k-cycle structure than ADN. However, since the decreasing rate 
at each step was the same in ADN and CN, the change in k-cycle 
number in this study has a larger effect on the network scale than 
the Alzheimer’s disease-related signal molecules. Moreover, the 

FIGURE 4 | Robustness of inputs and outputs in ADN subtracted by CN, 

ADN subtracted by RRN, and RRN subtracted by CN (k = 9). (A) Robustness 
analysis of the pathway from certain ligands to all outputs (transcription factors 
and cytoskeletal proteins). The R-value range of inputs was between 0.8 and 
−1.2. Robustness analysis showed a large decrease in signal molecules 
associated with NRG, which a substrate of BASE1. EGF and the neurotrophin 
family, which includes BDNF and NT4, showed an increase in associated 
signal molecules. (B) Robustness analysis of the pathway from all ligands to 
certain transcription factors (R-value range, −2.1 to 1.1). (C) Robustness 

analysis of the pathway from all ligands to certain cytoskeletal proteins 
(R value range, −4.3 to 1.3). Robustness analysis of the key factors in neural 
activity in (B) and (C) revealed that the largest decrease in signal molecules 
was for those associated with actin and tubulin, the cytoskeletal proteins that 
regulate neural plasticity and neurite outgrowth, and for those associated with 
CREB, which is a transcription factor. By comparison, transcription factors, 
including the nuclear factor of activated T cells (NFAT), and actin binding 
proteins, such as α-actinin and profi lin, showed an increase in associated 
signal molecules.
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reason for the greater change in cycle structure by step number is 
believed to result from the effect of an increase in the number of 
nodes, which were randomly moved into the cycle. In future stud-
ies, it may be necessary to normalize changes in the network scale 
to conduct analyses on k-cycle structure. It must be noted that in 
this study, we focused on feedforward and feedback loops in the 
results of loop structure.

PATHWAY CHARACTERISTICS
Our k-shortest pathway analysis of pathway characteristics 
revealed no changes between the R-values of all inputs and out-
puts and the pathway average. This result suggests that the effect 
of Alzheimer’s disease on the hippocampal signal transduction 
pathway does not correspond to the number of pathways or to 
the distribution of k-shortest pathways. We also discovered that 
the ADN-CN and ADN-RRN sets of Alzheimer’s disease-related 
signal molecules affect specifi c pathways more selectively than 
the random sets. In addition, the glutamate-actin pathway plays 
an important role in the formation of mature spines in the rat 
brain (Serge et al., 2003), which showed the most signifi cant 
decrease in R-value, also showed the most signifi cant decrease 
in the RRN-CN pathway.

In the analysis of inputs, the decrease in robustness of NGF 
agreed with the decrease in robustness of Alzheimer’s disease. 
Increase in robustness was seen in both NT4 and BDNF. Earlier 
studies suggested that BDNF tends to increase in early-onset 
Alzheimer’s disease and decrease in late-onset Alzheimer’s disease. 
Also, insulin and IGF1 decreased in our study, but an increase 
in insulin and IGF1 was thought to occur as the result of an 
increase in Aβ in prior studies (Cole and Frautschy, 2007). An 
increase in the level of the EGF receptor and Aβ is reported to 
be correlated (Zhang et al., 2007), yet we found no evidence of 
this relationship in the present study. With respect to output fac-
tors, there were signifi cant decreases of R-value in cytoskeletal 
proteins, like actin and tubulin, or in CREB thus suggesting that 

Alzheimer’s disease  selectively affects the neural plasticity and 
neurite outgrowth. Moreover, increase was seen in actin bind-
ing proteins such as α-actinin and profi lin. The reason for the 
decrease in actin might be explained by the tendency of actin-
binding proteins to bind other proteins, such as cortactin, cofi lin, 
and β-catenin; thus, actin may perform other functions that are 
specifi c to Alzheimer’s disease. There was an increase in NFAT in 
ADN, which is expressed at the same time as BDNF (Groth and 
Mermelstein, 2003), and thus we believed that changes in NFAT 
synchronized with the changes in BDNF. In addition, the angle 
value in CN showed more change by step compared with RRN. 
This is because the effects of Alzheimer’s disease-related signal 
molecules are different at each step, and further interpretation 
of each step in the k-shortest pathway will be required in future 
studies. In our study, we succeeded in indicating changes caused 
by Alzheimer’s disease in signal transduction pathways through 
analysis of the features of signal molecules and of the properties 
of pathways in network structures.

CONCLUSION
We conducted a feature analysis on networks of signal molecules 
regulated by Alzheimer’s disease and analysed the properties of the 
network structure. In our analysis of signal molecules, we found no 
signifi cant difference in all indicators. Network structure analysis 
revealed that Alzheimer’s disease-related signal molecule sets have 
a specifi c effect on the average shortest path length, with effects on 
motif structures, like feedforward and feedback loops, controlling 
the functions of neuronal cells. Also, our analyses of pathway char-
acteristics extracted pathways related to neuronal plasticity, neurite 
outgrowth (including ACh and NGF), and neural death (including 
the TNFα pathway and caspase 3). In addition, similar changes in 
R-value in our study were observed for other Alzheimer’s disease 
signal transduction pathways. Similarity and k-shortest analysis 
of pathways showed that the effect of Alzheimer’s disease-related 
genes on networks depends on steps. This fi nding indicates that 
a k-shortest pathway analysis is more useful than a shortest path-
way analysis. In summary, the Python module use in the present 
study enabled us to comprehensively analyse the characteristics 
of biomolecular networks and to assess the effects of Alzheimer’s 
disease using feedforward and feedback loop control structures as 
alternative paths.
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FIGURE 5 | Network similarity analysis of CN, ADN, and RRN. The X-axis 
represents step e and the Y-axis represents the angle value (S). Error bars 
represent the SD. The results of the network similarity analysis for the input 
and output set are converted into a matrix and indicate that ADN is lower than 
RRN when e = 5 and 9, but is higher than RRN when e = 6, 7 and 8.
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