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A B S T R A C T   

Background: Pemetrexed plus platinum doublet chemotherapy regimen remains to be the standard first-line 
treatment for lung adenocarcinoma patients. However, few biomarkers can be used to identify potential bene-
ficiaries with maximal efficacy and minimal toxicity. This study aimed to explore potential biomarker models 
predictive of efficacy and toxicity after pemetrexed plus platinum chemotherapy based on metabolomics 
profiling. 
Methods: A total of 144 patients who received at least two cycles of pemetrexed plus platinum chemotherapy 
were enroled in the study. Serum samples were collected before initial treatment to perform metabolomics 
profiling analysis. Logistic regression analysis was performed to establish prediction models. 
Results: 157 metabolites were found to be differentially expressed between the response group and the nonre-
sponse group. A panel of Phosphatidylserine 20:4/20:1, Sphingomyelin d18:1/18:0, and Phosphatidic Acid 18:1/ 
20:0 could predict pemetrexed and platinum chemotherapy response with an Area Under the Receiver Operating 
Characteristic curve (AUROC) of 0.7968. 76 metabolites were associated with hematological toxicity of peme-
trexed plus platinum chemotherapy. A panel incorporating triglyceride 14:0/22:3/22:5, 3-(3-Hydroxyphenyl) 
Propionate Acid, and Carnitine C18:0 was the best predictive ability of hematological toxicity with an AUROC of 
0.7954. 54 differential expressed metabolites were found to be associated with hepatotoxicity of pemetrexed plus 
platinum chemotherapy. A model incorporating stearidonic acid, Thromboxane B3, L-Homocitrulline, and 
phosphoinositide 20:3/18:0 showed the best predictive ability of hepatotoxicity with an AUROC of 0.8186. 
Conclusions: This study established effective and convenient models that can predict the efficacy and toxicity of 
pemetrexed plus platinum chemotherapy in lung adenocarcinoma patients before treatment delivery.   

Abbreviations: AUROC, Area Under the Receiver Operating Characteristic curve; RECIST, Response Evaluation Criteria In Solid Tumor; NCI-CTC, National Cancer 
Institute Common Toxicity Criteria; UPLC-ESI-MS/MS, ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry; PCA, Principal 
Component Analysis; AIC, Akaike Information Criterion; ROC, Receiver Operating Characteristic curve; KEGG, Kyoto Encyclopedia of Genes and Genomes; PR, 
Partial Response; SD, Stable Disease; PD, Progressive Disease; ADR, Adverse Drug Reaction; QC, Quality Control; TIC, Total Ion Current; PS, Phosphatidylserine; SM, 
Sphingomyelin; PA, Phosphatidic Acid; CI, Confidence Interval; FC, Fold Change; TC, Triglyceride; PI, Phosphoinositide. 
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Introduction 

Lung cancer is one of the most commonly diagnosed and fatal ma-
lignancies, which is a great public health burden worldwide [1]. Lung 
adenocarcinoma is the most common histological type, accounting for 
almost half of primary lung cancer [2]. Although great progress in 
diagnosis has been achieved, many patients are diagnosed at an 
advanced stage (IIIB or IV). Unfortunately, there is no curative treatment 
for those advanced stage patients. Pemetrexed plus platinum doublet 
chemotherapy regimen remains to be the standard first-line treatment 
for those lung adenocarcinoma patients who are not eligible for target 
therapy. However, the response rates of the chemotherapy regimen are 
about 30%− 40%, and many of them suffer unpredictable severe side 
effects [3]. Thus, potential biomarkers predicting the response or side 
effects of patients to pemetrexed plus platinum doublet therapy are 
urgently needed. 

Metabolomics is an-omics technology that allows for a global 
assessment of small-molecule endogenous metabolites in biofluids. 
Metabolites are stable and quantifiable, which have the potential to be 
biomarkers to predict the efficacy and toxicity of chemotherapy. 
Compared to genomics, transcriptomics, and proteomics, metabolomics 
can directly reflect the current status of an organism, which provides a 
strong link between genotype and phenotype [4]. So far, 
metabolomics-based approaches have been a hotspot for the screening 
of biomarkers guiding precision medicine. Wei et al. developed a pre-
diction model by combining nuclear magnetic resonance and mass 
spectrometry-derived metabolites, which could correctly identify 80% 
of breast cancer patients without complete response to neoadjuvant 
chemotherapy [5]. Tian et al. developed a discriminant model based on 
metabolomics profiling that can accurately predict the efficacy and 
survival outcomes of pemetrexed plus platinum doublet chemotherapy 
[6]. Ghini et al. identified the metabolomic fingerprint of serum as a 
predictive “collective” biomarker for immune checkpoint inhibitor 
response with > 80% accuracy [7]. 

In this study, we use a metabolomics approach to predict the 
response and toxicity to pemetrexed plus platinum-based chemotherapy 
in lung adenocarcinoma. 

Materials and methods 

Study participants 

From December 1, 2018 to December 16, 2019, a total of 144 pa-
tients were initially enroled from the cancer center of Wuhan Union 
Hospital (Wuhan, Hubei, China), Shanghai General Hospital (Shanghai, 
China), or The First Affiliated Hospital of Sun Yat-sen University 
(Guangzhou, Guangdong, China). All patients were histologically or 
cytologically diagnosed with primary lung adenocarcinoma and sub-
jected to at least two cycles of pemetrexed plus platin (cisplatin/car-
boplatin/nedaplatin) based chemotherapy as primary treatment. The 
heparin anticoagulated plasma samples were collected before treatment, 
centrifugated at 3500 rpm for 10 min at 4 ◦C, followed by pipetting the 
supernatant plasma and immediately transferred to a − 80 ◦C freezer 
until metabolic analysis. A total of 130 plasma samples were tested in 
the present study, the rest 14 samples were not analyzed due to hemo-
lysis or degradation. The tumor response to chemotherapy after two 
cycles of treatment was evaluated using the Response Evaluation 
Criteria In Solid Tumor (RECIST) guidelines. The severity of toxicity at 
each cycle of chemotherapy was assessed according to the National 
Cancer Institute Common Toxicity Criteria (NCI-CTC) version 3.0. 
Finally, 108 patients with RECIST evaluation results were employed to 
establish a chemotherapy efficacy model while 113 patients with NCI- 
CTC evaluation results were used to establish a hematological toxicity 
model or a hepatotoxicity model. We primarily focused on hematolog-
ical toxicity and hepatotoxicity. This study protocol had been approved 
by the Ethics Committee of the Union Hospital, Tongji Medical College, 

Huazhong University of Science and Technology, and written informed 
consent was obtained from all patients. 

Materials for sample extraction and metabolomic analysis 

HPLC-grade methanol, acetonitrile, ethanol, acetic acid, ammonium 
methyl acetate, chloroform, and methyl tert‑butyl ether (MTBE) were 
purchased from Merck (Germany). Standard chemicals were bought 
from Sigma-Aldrich (America). 

Targeted metabolomic detection 

Methods for the extraction of hydrophilic compounds 
The plasma samples were thawed on ice and mixed with 3 vol of ice- 

cold methanol, the mixture was then whirled for 3 min and centrifuged 
with 12,000 rpm at 4 ◦C for 10 min. Then the supernatant was collected 
and centrifuged at 12,000 rpm at 4 ◦C for 5 min. Finally, the supernatant 
was collected again for subsequent analysis. 

Separation conditions of hydrophilic compounds 
The sample extracts were analyzed using an ultra-performance liquid 

chromatography-electrospray ionization tandem mass spectrometry 
(UPLC-ESI-MS/MS) system (UPLC, Shim-pack UFLC SHIMADZU 
CBM30A system; MS, QTRAP® System). The analytical conditions were 
as follows: UPLC: column, Waters ACQUITY UPLC HSS T3 C18 (1.8 µm, 
2.1 mm*100 mm); column temperature, 40 ◦C; flow rate, 0.4 mL/min; 
injection volume, 5 μL; solvent system, water (0.1% formic acid): 
acetonitrile (0.1% formic acid); gradient program, 95:5 v/v at 0 min, 
10:90 v/v at 11.0 min, 10:90 v/v at 12.0 min, 95:5 v/v at 12.1 min, 95:5 
v/v at 14.0 min. 

Targeted lipidomic detection 

Methods for the extraction of hydrophobic compounds 
The plasma samples were melted on ice, vortexed for 10 s, and then 

centrifuged with 3000 rpm at 4 ◦C for 5 min. 50 μL of each sample was 
taken and homogenized with 1 mL mixture (including methanol, methyl 
tert‑butyl ether, and internal standard). The mixture was whirled for 2 
min, followed by the addition of 500 μL water, and whirled again for 1 
min. After centrifugation with 12,000 rpm at 4 ◦C for 10 min, 500 μL 
supernatant of each sample was taken and concentrated. Next, dissolve 
the extract with 100 μL mobile phase B, then stored in − 80 ◦C. Finally, 
take the dissolving solution into the sample bottle for subsequent 
analysis. 

Separation conditions of hydrophobic compounds 
As mentioned above, the sample extracts were analyzed using an LC- 

ESI-MS/MS system. The analytical conditions were as follows, UPLC: 
column, Waters ACQUITY UPLC HSS T3 C18 (1.8 µm, 2.1 mm*100 mm); 
column temperature, 40 ◦C; flow rate, 0.4 mL/min; injection volume, 5 
μL; solvent system, water (0.04% acetic acid): acetonitrile (0.04% acetic 
acid); gradient program, 95:5 v/v at 0 min, 5:95 v/v at 11.0 min, 5:95 v/ 
v at 12.0 min, 95:5 v/v at 12.1 min, 95:5 v/v at 14.0 min. 

Mass spectrometry conditions 

A triple quadrupole-linear ion trap mass spectrometer (QTRAP) LC- 
MS/MS System equipped with an ESI Turbo Ion-Spray interface was 
used to analyze the samples in positive and negative ion mode and 
controled by Analyst 1.6.3 software (Sciex). The ESI source operation 
parameters were as follows: source temperature 500 ◦C; ion spray 
voltage (IS) 5500 V (positive), − 4500 V (negative); ion source gas I 
(GSI), gas II (GSII), and curtain gas (CUR) were set at 55, 60, and 25.0 
psi, respectively; the collision gas (CAD) was high. Instrument tuning 
and mass calibration were performed with 10 and 100 μmol/L poly-
propylene glycol solutions in QQQ and LIT modes, respectively. A 
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specific set of multiple reaction monitoring (MRM) transitions was 
monitored for each period according to the metabolites eluted within 
this period. 

Statistical analysis 

The clinical characteristics of participants were analyzed by two- 
tailed unpaired Student’s t-test or Chi-square test in SPSS 23.0 soft-
ware, and statistical significance was considered at P < 0.05. The data of 
endogenous metabolites in terms of homogeneity and reproducibility 
was visualized by Principal Component Analysis (PCA). The logistic 
regression analysis was performed to evaluate the diagnostic value of 
the combined biomarkers model. To establish a more reliable model, 
candidate metabolites were tested according to the Akaike Information 
Criterion (AIC). A lower AIC value indicates a better model effect. Model 
performance was assessed by the Receiver Operating Characteristic 
curve (ROC) was plotted using R software (Belgium, Version 12.4.2.0). 
The analysis of metabolic pathways was conducted by the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) (https://www.kegg.jp/) [8]. 

Results 

Baseline of the study population 

The clinical characteristics of the participants were displayed ac-
cording to the chemotherapy efficacy model, hematological toxicity 
model, and hepatotoxicity model, respectively. 24 patients were eval-
uated as chemotherapy responders (partial response (PR)) and the other 
84 patients were non-responders (stable disease (SD) or progressive 
disease (PD)). As shown in Table 1, there were no statistical differences 
between these two populations on their age, body mass index (BMI), 
gender, smoking history, and disease stage. Among the 113 patients with 
records of adverse drug reaction (ADR) after chemotherapeutic treat-
ment, 76 of them had blood ADR, but only 23 of the 113 patients had 
liver ADR. There was no significant difference between patients with or 
without ADR on their clinical features. Except that, patients with liver 
ADR were significantly younger than those without liver ADR (p =
0.009). 

Determination of plasma endogenous metabolites using targeted 
metabolomics and lipidomic methods 

This study was conducted based on an integrated platform targeting 
the metabolome and lipidome. The database of this platform contains 

more than 3000 characteristic compounds, of which 1141 compounds 
were detected in the present study (Supplementary File 1). 

A total of 130 plasma samples were tested in the present study. Be-
sides, quality control samples (QC) were prepared by mixing the sample 
extracts. In this study, 18 QC samples were inserted into the queue to 
monitor the repeatability of the analysis method every 100 min, which 
was judged by overlaying the total ion current diagrams (TIC diagrams) 
of different QC samples. The results showed that the curves of the TIC 
diagrams were highly overlapped, and the retention time and peak in-
tensity were consistent, indicating that the signal was stable throughout 
the analysis process (Fig. 1A–D). 

In addition, PCA was used to estimate the overall metabolic differ-
ence and the degree of variability. The results showed that the QC 
samples were not separated from each other, demonstrating the stability 
of the analysis method (Fig. 1E). 

Predictive effect of plasma endogenous metabolites on pemetrexed 
chemotherapy response 

A total of 108 patients with RECIST chemotherapeutic evaluation 
results were analyzed here to find the metabolites with predictive ef-
fects, among which 24 of them were assessed as PR and the remaining 84 
patients were SD or PD. Firstly, 157 kinds of differentially expressed 
metabolites with P value<0.05 were screened out, which could be 
enriched in the pathways of phospholipid biosynthesis, glycerolipid 
metabolism, etc. (Supplementary Fig. 1). 

Secondly, a logistic regression model was established for 15 metab-
olites with the smallest P values, all of which were classified as lipids. 
The predictive effects of them were evaluated by a ROC diagnostic 
analysis (Table 2), the results showed that their Area Under the Receiver 
Operating Characteristic curve (AUROC) was between 0.6918 and 
0.7386. To establish a more reliable model to predict the chemothera-
peutic response, different combinations of these 15 candidate metabo-
lites were tested using logistic regression analysis. Finally, a panel 
including three metabolites was selected due to its lowest AIC value. The 
regression equation for response prediction was as following: Logit (P) 
= 7.086 - 0.000011 * phosphatidylserine (PS) (20:4/20:1) - (9.9014E- 
08) * sphingomyelin (SM) (d18:1/18:0) - 0.000042 * phosphatidic acid 
(PA) (18:1/20:0). The response prediction model showed an AUROC of 
0.7968 (95% confidence interval (CI): 0.6775–0.9161) with an optimal 
cut-off at 1.150 (Table 2, Supplementary Fig. 2). 

Table 1 
The clinical characteristics of the enroled participants in this study.  

Variables Chemotherapy efficacy model Hematological toxicity model Hepatotoxicity model 
Responders Non-responders P value Normal blood Group Blood ADR Group P value Normal Liver Group Liver ADR Group P values 

Number 24 84  37 76  90 23  
Age 54.4 ± 11.2 57.8 ± 10.8 0.176 57.5 ± 8.3 55.6 ± 9.8 0.316 57.3 ± 9.2 51.7 ± 8.3 0.009 
BMI 22.6 ± 3.1 22.6 ± 3.1 0.983 22.9 ± 2.6 22.3 ± 3.4 0.495 22.3 ± 3.1 23.7 ± 3.0 0.207 
Gender   0.205   0.867   0.053 
Male 12 54 23 46 59 10 
Female 12 30 14 30 31 13 
Smoking History  0.376   0.915   0.142 
Smokers 4 21 10 21 27 4 
Non-smokers 18 50 20 43 46 17 
Ex-smokers 2 13 7 12 17 2 
Stage   0.919   1.000   0.798 
I 1 3 2 3 5 0 
II 0 1 0 1 1 0 
III 3 15 7 16 18 5 
IV 20 65 28 56 66 18 

Footnote: P values indicate differences between different groups. The clinical characteristics of participants were analyzed by two-tailed unpaired Student’s t-test or 
Chi-square test in SPSS 23.0 software. P <0.05 was considered statistically significant. 
body weight index (BMI), adverse reactions (ADR). 
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Predictive effect of plasma endogenous metabolites on blood ADR of 
pemetrexed chemotherapy 

Based on the records of the electronic medical record system, 114 of 
the enroled patients were divided into groups with/without liver/blood 
ADR. One sample was separated from the other ones and excluded from 
the following analysis. Therefore, 113 patients were included herein to 
discover differential expressed metabolites with an effective ADR pre-
dictive role. 

There were 76 patients with blood adverse reactions (Blood ADR 
Group) and 37 patients without blood adverse reactions (Blood Normal 
Group). All 1141 detected endogenous metabolites were compared be-
tween the two groups using the Student’s t-test, and 76 differential 
expressed metabolites were screened out (P < 0.05), which could be 
enriched in pathways of alanine metabolism, glutathione metabolism, 
etc. (Supplementary Fig. 3). 

In addition, 15 metabolites with the smallest P values, most of which 
were classified as lipids with AUROC ranging from 0.6600 to 0.7092, 
were selected for subsequent analysis. A logistic regression model was 
established for different kinds of combinations of these 15 metabolites. 

According to the AIC selection standard, a panel incorporating three 
metabolites was selected. The regression equation for predicting blood 
ADR was as following: Logit (P) = 3.522 - 0.00003 * triglyceride (TG) 
(14:0/22:3/22:5) + 0.000012 * 3-(3-Hydroxyphenyl) Propionate Acid - 
0.000002 * Carnitine C18:0. The blood ADR prediction model showed 
an AUROC of 0.7954 (95% CI: 0.6971–0.8936) with an optimal cut-off 
at 0.7499 (Table 3, Supplementary Fig. 4). 

Predictive effect of plasma endogenous metabolites on hepatotoxicity of 
pemetrexed chemotherapy 

There were 23 patients with hepatotoxicity (Liver ADR Group) and 
90 patients without hepatic adverse reactions (Liver Normal Group). 
Likewise, all 1141 detected endogenous metabolites were compared 
between the two groups using the Student’s t-test, and 54 differential 
expressed metabolites were screened out (P < 0.05), which could be 
enriched in pathways of galactose metabolism, lactose degradation, 
ketone body metabolism, etc. (Supplementary Fig. 5). 

In addition, 15 candidate metabolites were also selected according to 
the P values. As displayed in Table 4, the AUROC of them ranged from 

Fig. 1. The presentative overlapping TIC diagrams of QC samples monitored by (A) targeted metabolomics in positive mode detection; (B) targeted metabolomics in 
negative mode detection; (C) targeted lipidomics in positive mode detection and (D) targeted lipidomics in negative mode detection. (E) 3D PCA score chart of tested 
and mixed samples (X-axis represents the first principal component, Y-axis represents the second principal component). 
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0.6800 to 0.7550. Subsequent logistic regression analysis using different 
combinations of candidate compounds based on AIC screen standard 
found that a model incorporating four metabolites showed the best 
predictive ability. The regression equation for predicting hepatotoxicity 
was as following: Logit (P) = 15.801 - 0.000102 * Stearidonic Acid - 
0.000016 * TxB3 − 0.000051 * L-Homocitrulline + 0.000013 * phos-
phoinositide (PI) (20:3/18:0). The hepatotoxicity prediction model 
showed an AUROC of 0.8186 (95% CI: 0.7294–0.9078) with an optimal 
cut-off at − 6.865 (Table 4, Supplementary Fig. 6). 

Discussion 

Metabolomics provides a strong link between genotype and pheno-
type, and is sensitive to many factors. It reflects alterations of biological 

states. Metabolomics enables identify small-molecule metabolites in 
biofluids that might be feasible and early markers of drug efficacy and 
toxicity [9]. In the study, we developed effective discriminant models 
that could predict the efficacy and blood/liver toxicity of pemetrexed 
plus platinum chemotherapy regimens in lung adenocarcinoma patients 
using metabolomic analysis. These predictive models might be used to 
identify potential pemetrexed plus platinum chemotherapy beneficiaries 
with minimal toxicity. 

Although target therapy and immunotherapy have been used for the 
treatment of lung adenocarcinoma, pemetrexed plus platinum chemo-
therapy is still recommended as the first-line treatment. However, the 
response rate is only about 35%. A great number of studies tried to 
identify biomarkers that could be used to predict chemotherapy 
response [10]. But few biomarkers have been verified and used in the 
clinic. Our study found 157 kinds of differentially expressed metabolites 
between the response group (PR) and the non-response group (PD+SD), 
which were mainly enriched in pathways of phospholipid biosynthesis 
and glycerolipid metabolism. 15 lipid metabolites were found to be 
potential predictive biomarkers with their AUROC ranging from 0.6918 
to 0.7386. Multiple logistic regression analysis found an effective model 
based on a panel of PS (20:4/20:1), SM (d18:1/18:0), and PA 
(18:1/20:0) that could predict pemetrexed and platinum chemotherapy 
response with an AUROC of 0.7968. PS, a component of the bilayer cell 
membrane, is normally sequestered to the inner leaflet. PS exposure on 
the external leaflet not only triggers rapid removal by phagocytic 
engulfment in apoptotic cells by also participates in immune regulation 
in nonapoptotic cells. PS is aberrantly increased in the tumor microen-
vironment, which contributes to innate immunosuppressive properties 
and facilitates tumor growth and metastasis that might antagonize the 
efficacy of chemotherapy [11,12]. SM (d18:1/18:0) is a sphingomyelin 
with systematic name N-(octadecanoyl)-sphing-4-enine-1-phosphocho-
line [13]. Ceramide is composed of a sphingosine long-chain base. 
Ceramide which acts as the central hub of sphingolipid metabolism, 
mediates cancer cell death based on the subcellular localization of cer-
amide and the availability of downstream targets of ceramide [14]. 
Ceramide can be generated in response to many stressors, including 
environmental stress, cytokines, and chemotherapy treatment. Many 
studies showed ceramide might be key to overcome resistance to current 
drug therapies [15]. PA is a central metabolite in the synthesis of 

Table 2 
Diagnostic ability of plasma endogenous compounds on chemotherapeutic ef-
ficacy of pemetrexed.  

Compounds Class FC P value AUROC 

PS(20:4/20:0) Lipids 0.7609 0.0005 0.7386 
SM(d18:0/14:0) Lipids 0.7060 0.0002 0.7366 
PE(20:4/22:2) Lipids 0.6622 0.0017 0.7172 
PC(O-18:3/18:2) Lipids 0.8129 0.0027 0.7159 
Cer(d18:1/16:0) Lipids 0.8322 0.0007 0.7146 
SM(d18:1/16:0) Lipids 0.8909 0.0020 0.7126 
PE(P-18:2/20:2) Lipids 0.7193 0.0008 0.7112 
PS(20:4/20:1) Lipids 0.7031 0.0005 0.7019 
SM(d18:1/18:0) Lipids 0.8609 0.0105 0.7019 
LPE(0:0/18:1) Lipids 0.7832 0.0065 0.7012 
PA(18:1/20:0) Lipids 0.6713 0.0002 0.6999 
PC(O-16:0/14:1) Lipids 0.8833 0.0150 0.6992 
PC(O-18:2/18:1) Lipids 0.7403 0.0017 0.6918 
SM(d18:1/16:1) Lipids 0.8683 0.0041 0.6918 
Lysope 18:1 Lipids 0.7920 0.0126 0.6918 
Panel A    0.7968 

Footnote: FC, fold change of group (PD+SD)/group PR, Area Under the Receiver 
Operating Characteristic curve (AUROC), phosphatidylserine (PS), sphingo-
myelin (SM), phosphatidylethanolamine (PE), phosphatidylcholine (PC), cer-
amide (Cer), sphingomyelin (SM), lysophatidylethanolamine (LPE), 
phosphatidic acid (PA). 
Panel A = 7.086–0.000011*a-(9.9014E-08)*b-0.000042*c, a: PS (20:4/20:1), b: 
SM (d18:1/18:0), c: PA (18:1/20:0). 

Table 3 
Diagnostic ability of plasma endogenous compounds on the occurrence of blood 
ADR after pemetrexed treatment.  

Compounds Class FC P- 
value 

AUROC 

TG(14:0/22:3/22:5) Lipids 0.6365 0.0002 0.7092 
TG(14:0/20:4/22:2) Lipids 0.7644 0.0041 0.6925 
TG(14:0/20:4/22:1) Lipids 0.7558 0.0067 0.6837 
TG(14:0/20:4/22:3) Lipids 0.7419 0.0031 0.6815 
3-(3-Hydroxyphenyl) Propionate 

Acid 
Organic 
acid 

2.2853 0.0385 0.6815 

TG(14:0/20:4/22:0) Lipids 0.7707 0.0131 0.6767 
PE(20:4/22:2) Lipids 0.7165 0.0089 0.6687 
Glycine Amino acid 1.2295 0.0072 0.6682 
PE(20:1/20:4) Lipids 0.7109 0.0061 0.6659 
LysoPC 22:5 (2n isomer3) Lipids 0.8097 0.0279 0.6659 
LysoPC 22:5 (2n isomer2) Lipids 0.8097 0.0279 0.6659 
L-Alanine Amino acid 1.2169 0.0090 0.6648 
β-Alanine Amino acid 1.2169 0.0090 0.6648 
Carnitine C18:0 Lipids 0.8392 0.0124 0.6628 
LysoPC 18:2 (2n isomer1) Lipids 1.0358 0.0042 0.6600 
Panel B    0.7954 

Footnote: FC, fold change of group (Blood ADR)/group (Blood Normal), Area 
Under the Receiver Operating Characteristic curve (AUROC), triglyceride (TG), 
phosphatidylethanolamine (PE), lysophosphatidylcholine (LysoPC). 
Panel B = 3.522–0.00003*d-1170+0.000012*e-0.000002*f, d: TG (14:0/22:3/ 
22:5), e: 3-(3-Hydroxyphenyl) Propionate Acid, f: Carnitine C18:0. 

Table 4 
Diagnostic ability of plasma endogenous compounds on the occurrence of hep-
atotoxicity after pemetrexed treatment.  

Compounds Class FC P- 
value 

AUROC 

Stearidonic Acid Lipids 0.9080 0.0006 0.7550 
Carnitine C13:0 Lipids 0.5085 0.0026 0.7436 
3-Hydroxy-decenoyl- carnitine CAR 0.6737 0.0092 0.7261 
TxB3 Eicosanoid 0.5945 0.0049 0.7136 
L-Homocitrulline Amino acid 0.6945 0.0123 0.7011 
N-Methyl-L-Glutamate Amino acid 0.7475 0.0097 0.6968 
Carnitine C11:0 Lipids 0.6550 0.0114 0.6918 
DG(14:1/16:0/0:0) DG 0.8113 0.0065 0.6900 
N-acetylornithine Organic acid 0.8585 0.0252 0.6900 
3‑hydroxy-cis-5-octenoyl- 

carnitine 
CAR 0.7086 0.0196 0.6832 

PI(20:3/18:0) PI 1.5326 0.0088 0.6829 
D-Glucoronic Acid Carboxylic 

acids 
0.7920 0.0168 0.6825 

D-Malic acid Organic acid 0.7702 0.0217 0.6804 
Carnitine C15:0 Lipids 0.9296 0.0083 0.6800 
N-Acetylthreonine Amino acid 0.8575 0.0312 0.6800 
Panel C    0.8186 

Footnote: FC, fold change of group (Liver ADR)/group (Liver Normal), Area 
Under the Receiver Operating Characteristic curve (AUROC), thromboxane B3 
(TxB3), diglyceride (DG), phosphoinositide (PI). 
Panel C = 15.801–0.000102*g-0.000016*h-0.000051*i + 0.000013*j, g: 
Stearidonic Acid, h: TxB3, i: L-Homocitrulline, j: PI (20:3/18:0). 
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membrane phospholipids and is required for the stability and activity of 
mTOR complexes. PA plays key roles in numerous essential cellular 
functions, such as vesicular trafficking, exocytosis, autophagy, regula-
tion of cellular metabolism, and tumorigenesis [16]. Suppression of the 
de novo synthesis of PA can lead to G1 cell cycle arrest [17]. It was 
reported that PA could increase the apoptotic potential of doxorubicin 
[18]. For those patients with a response prediction model value less than 
1.150, they might have great potential beneficiaries with a great chance 
of efficacy. While those patients with a response prediction model value 
higher than 1.150 might avoid pemetrexed plus platinum chemotherapy 
because of high risk of non-response based on our response prediction 
model. 

Unpredictable severe side effects greatly impeded the use of 
platinum-based chemotherapy. What’s more, the incidence and severity 
of toxicities differ greatly between individuals. Biomarkers predicting 
the toxicities of platinum-based chemotherapy are urgently needed. In 
the study, we found 76 differential expressed metabolites to be associ-
ated with hematological toxicity of pemetrexed plus platinum chemo-
therapy. Those metabolites were mainly enriched in pathways of alanine 
metabolism and glutathione metabolism. A panel incorporating TG 
(14:0/22:3/22:5), 3-(3-Hydroxyphenyl) Propionate Acid, and Carnitine 
C18:0 were found to be the best predictive ability with an AUROC of 
0.7954. Numbers of studies found serum triglyceride was involved in the 
pathogenesis of lung, rectal, thyroid, prostate, and gynecological can-
cers [19]. Serum triglyceride concentration was inversely related to the 
hemoglobin concentration in chronic myeloid leukemia patients with 
chemotherapy treatment [20]. 3-(3-Hydroxyphenyl) Propionate Acid 
was reported to be capable of altering the mesenchymal stem cell dif-
ferentiation program and bone cell senescence [21]. 3-(3-Hydrox-
yphenyl) Propionate Acid had a strong protective ability against 
Cadmium-induced erythrocyte cytotoxicity [22]. L-carnitine can be 
effective in protecting against platinum-induced myelosuppression in 
bone marrow cells and reduce hematological toxicity in gastrointestinal 
cancer patients who received LFP chemotherapy [23,24]. For those 
patients with a blood ADR prediction model value less than 0.7499, they 
might have great potential beneficiaries with a low risk of hematological 
toxicity. Those patients with a blood ADR prediction model value higher 
than 0.7499 should be cautious or change the treatment regimen. 

Hepatotoxicity such as aspartate aminotransferase elevation is a 
common adverse side effect of pemetrexed plus platinum chemotherapy. 
It is reported that hepatotoxicity is a major dosing-limiting factor when 
high dose platinum chemotherapy has been continued [25]. In the 
study, 54 differential expressed metabolites were found to be associated 
with hepatotoxicity of pemetrexed plus platinum chemotherapy. Those 
metabolites were mainly enriched in pathways of galactose metabolism, 
lactose degradation, and ketone body metabolism. A model incorpo-
rating stearidonic acid, TxB3, L-Homocitrulline, and PI (20:3/18:0) 
showed the best predictive ability with an AUROC of 0.8186. Stear-
idonic acid could enhance the cytotoxic effects of chemotherapy agents 
such as docetaxel in human prostate cancer cells and canine lymphoid 
tumor cells [26,27]. Thromboxane B3 is the stable hydrolysis product of 
Thromboxane A3 synthesized from eicosapentaenoic acid by COX and 
thromboxane synthase. L-Homocitrulline is metabolized to homo-
arginine through homoargininosuccinate via the urea cycle pathway and 
its metabolic abnormality could lead to Lysinuric Protein Intolerance. 
Phosphatidylinositols are glycerophospholipids that contain a glycerol 
backbone, two non-polar fatty acid tails, and a polar inositol head group. 
They represent approximately 10% of total cellular phospholipids. 
Phosphatidylinositols can be phosphorylated on their inositol rings to 
produce phosphoinositides, which have been implicated in calcium 
regulation, vesicle trafficking, mitogenesis, cell survival, and rear-
rangement of actin. For those patients with a hepatotoxicity prediction 
model value less than − 6.865, they might have great potential benefi-
ciaries with a low risk of hepatotoxicity. Those patients with a hepato-
toxicity prediction model value less than − 6.865 should take 
precautions or change the treatment regimen. 

It must be admitted that the present study had some limitations. 
First, because of the relatively small population, the prediction models 
need to be further verified in different races and large samples. Second, 
owing to the complexity of the mechanism of pemetrexed plus platinum, 
multi-omics studies such as genomic, proteomic, and metabolomics are 
needed. Third, those metabolic markers were selected based on the 
qualitative comparison. The quantitative analysis lacks. Fourth, this 
study lacked a group of healthy human plasma samples for comparisons 
with lung adenocarcinoma patients. Last but not least, the precise 
mechanisms of selected biomarkers are still unknown. 

Conclusion 

We established predicted models of drug response and toxicity in 
lung adenocarcinoma patients with pemetrexed plus platinum chemo-
therapy. Those models with high accuracy might be a feasible approach 
to identify potential beneficiaries with maximal efficacy and minimal 
toxicity. For those patients with a response prediction model value less 
than 1.150, a blood ADR prediction model value less than 0.7499, and a 
hepatotoxicity prediction model value less than − 6.865, they might 
have a great chance of efficacy and low risk of toxicity. However, the 
prediction models still need to be further verified in different races and 
large samples. 
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