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The host immune system has multiple innate immune receptors that can identify,

distinguish and react to viral infections. In innate immune response, the host recognizes

pathogen-associated molecular patterns (PAMP) in nucleic acids or viral proteins through

pathogen recognition receptors (PRRs), especially toll-like receptors (TLRs) and induces

immune cells or infected cells to produce type I Interferons (IFN-I) and pro-inflammatory

cytokines, thus when the virus invades the host, innate immunity is the earliest immune

mechanism. Besides, cytokine-mediated cell communication is necessary for the proper

regulation of immune responses. Therefore, the appropriate activation of innate immunity

is necessary for the normal life activities of cells. The suppressor of the cytokine signaling

proteins (SOCS) family is one of the main regulators of the innate immune response

induced by microbial pathogens. They mainly participate in the negative feedback

regulation of cytokine signal transduction through Janus kinase signal transducer and

transcriptional activator (JAK/STAT) and other signal pathways. Taken together, this

paper reviews the SOCS proteins structures and the function of each domain, as well

as the latest knowledge of the role of SOCS proteins in innate immune caused by

viral infections and the mechanisms by which SOCS proteins assist viruses to escape

host innate immunity. Finally, we discuss potential values of these proteins in future

targeted therapies.

Keywords: suppressor of cytokine signaling proteins, virus, innate immune, cytokine, TLR

INTRODUCTION

Host cells have gradually evolved multiple cellular signaling networks to detect and respond to
viral infections (1). When the host’s PRRs binds to PAMP in viral proteins and nucleic acids, it will
trigger an antiviral response (2, 3) and the intracellular signaling cascades will be initiated, which
results in the activation of transcription factors, including IFN regulatory factors (IRFs) and nuclear
factor-κB (NF-κB) (1). These factors, in turn, will promote and induce gene expression, including
IFNs and IFN stimulating genes (ISGs), as well as proinflammatory cytokines and chemokines
which are involved in the innate regulation and immune responses (4, 5). In the early infection
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of the virus, the host’s innate immunity is the first defense
mechanism initiated by the host. Before the body produces
more specific adaptive immune system protection, innate
immune is a crucial component of preventing virus invasion
and reproduction.

During the viral infection process, cytokines trigger and
deal with inflammation. However, excessive production of
cytokines can cause a cytokine storm and excessive host
innate immune response can also damage the body. All in
all, the negative feedback loop of cells plays a vital role in
maintaining the close relationship between cytokine secretion
and inhibition. Therefore, the SOCS proteins with negative
feedback regulation ability prevents the excessive secretion of
cytokines from harming the host (6). An intracellular protein
family is constituted by SOCS1-7 proteins and cytokine-inducible
SRC homology 2 (SH2) domain-containing proteins (CIS; also
known as CISH), some of which play an essential role in
regulating the response of immune cells to cytokines (7–9). These
proteins regulate signaling pathways at the intracellular level,
effectively and specifically inhibit cytokine and growth factor
signaling (10). Cytokines, including interleukins (ILs), IFNs and
hematopoietic growth factors, play a vital role in innate immune
response, adaptive immunity, inflammatory response and cell
differentiation and proliferation (11). Also, they can activate the
JAK/STAT signaling pathway. SOCS proteins mainly regulate
the signal transduction of cytokines by inhibiting JAK activity
or targeting ubiquitinated signal transduction factors, thereby
avoiding body damage caused by excessive secretion of cytokines
(12, 13). Studies have shown that the expression of SOCS proteins
induced by cytokine stimulation can prevent cytokine signal
transduction by inhibiting the JAK/STAT pathway (14–17). This
review will explore the central role of SOCS proteins in the virus-
induced innate immune response. Emphasis will be placed on the
mechanisms involved in SOCS proteins regulating virus-induced
innate immune responses.

SOCS PROTEINS COMPOSITION AND
FUNCTION OF EACH DOMAIN

SOCS protein was first discovered in the mid-1990’s and was
found to be an inhibitor of cytokine-induced STAT cell signaling
pathway (18–21). Up to now, there are eight members in SOCS
family, namely CIS and SOCS1-SOCS7, each of them contains
a central SH2 domain, a variable-length and divergent amino
(N) terminal domain and a carboxyl (C) terminal 40 amino
acids (aa) module (22). In particular, a sequence rich in proline,
glutamic acid, serine and threonine is called PEST motif. So far,
only SOCS1, 3, 5, 7 and CIS in the SOCS family contain this
sequence (23, 24), but it has not been found in SOCS2, 4 and 6
(25, 26). Among the domains that constitute the SOCS protein,
the C-terminal 40 aa module is called SOCS box. Studies have
shown that it binds to elongin BC in a manner similar to the von
Hippel-Lindau protein BC box and shows extended structural
conservation with the F box of the Skp2 ubiquitin ligase (27).
The SOCS box recruits E2 conjugating enzyme by interacting
with elongin BC, cullin-5 and the RING-box-2 (RBX2), which is

necessary to complete the negative regulatory process of cytokine
signaling (28, 29). SOCS1 can inhibit the carcinogenic activity of
TEL-JAK2 and this function requires the participation of SOCS
box and kinase inhibitory region (KIR) (30, 31). In addition,
mice lacking SOCS1 completely exhibit similar inflammatory
diseases as mice with genetically modified the SOCS box of
SOCS1 or mice only lacking the SOCS box of SOCS1 (32).
However, the specific role and function of the SOCS box still
need further exploration. The SH2 domain at the center of the
SOCS proteins determines the target of the SOCS family and
except for single-cell fungi, the SH2 domain in most eukaryotes
is conserved (33, 34). Most importantly, the SH2 domain
interacts with the substrate by recognizing phosphorylated
tyrosine residues and enhances substrate interaction through
the N-terminal extended SH2-subdomain (ESS) (22). The
SH2 domain of various SOCS proteins also perform different
functions. For example, the SH2 domain of SOCS1 directly binds
to the activation loop of JAK, while the SH2 domains of SOCS2,
SOCS3 and CIS can only bind to phosphorylated tyrosine
residues on the receptor (14). Although the SH2 domain of
SOCS3 does not have high affinity for JAK compared to SOCS1,
its KIR structure has a higher affinity for JAK2 than SOCS1 (35).
SOCS1 can directly bind to IFN-I receptors, thereby ensuring
that SOCS1 has a very effective inhibitory effect on IFN signaling
even at low expression levels (36, 37). In addition, recent studies
have shown that although SOCS1 is an effective inhibitor of
the IFN-gamma (IFN-γ) pathway, it cannot directly bind to the
IFN-γ receptor (38). Unlike other cytokines that suppress the
IFN-I response, SOCS1 is related to IFN-I receptors (IFNAR1)
specific signals, but not to IFNAR2 specific signals, thereby
eliminating tyrosine phosphorylation of the transcription
factor STAT1 and reducing antiviral genes duration of
expression (39).

Structurally, we can subdivide the SOCS family according to
aa residues. The longest aa sequence in the N-terminal region
is SOCS4-7 and the shortest is CIS, SOCS1-3 (12, 40, 41).
So far, the most distinctive members of the SOCS family are
CIS, SOCS1-3 (42). CIS and SOCS2 compete with STATs, or
sterically block the binding site of STATs on the receptor, thereby
inhibiting the activation of STATs, such as STAT5 (18, 43).
Analysis of SOCS2 knockout (KO) mice uncover that SOCS2
proved to be a relatively specific negative regulator of GH-
STAT5 (44, 45). SOCS protein not only has the ability to inhibit
signal transduction through ubiquitin-mediated degradation of
signal transduction compounds. Studies have shown that SOCS1
and SOCS3 also directly inhibit JAK activity through their KIR
domains, which are considered to be pseudo-substrate functions
and are essential for inhibiting cytokine signaling (46). The KIR
of SOCS3 can block the association of substrate and JAK2 by
covering the substrate-binding groove of JAK2. Data show that
SOCS1 is an efficient inhibitor of JAK1 and JAK2, TYK2, but
does not work on JAK3 (38). This can be account for the SH2-
KIR domains interacting with the evolutionarily conservative
“GQM” sequence, which is present in JAK1, JAK2 and TYK2
in all vertebrates, but not in JAK3 (47). Besides, a KIR and KIR
mimic peptide called tyrosine kinase inhibitor peptide (TKIP)
can inhibit the phosphorylation of its downstream transcription
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factor STAT1 by inhibiting JAK2 signaling (48, 49). In short,
revealing how the SOCS protein domains combine or interact
with external factors may provide a prerequisite for us to
better understand how the SOCS family participates in immune
regulation and it also provides a much-needed theoretical basis
for biomedical treatment.

SIGNALING PATHWAYS INVOLVED IN
SOCS PROTEINS

SOCS Proteins Regulates JAK/STAT
Signaling Pathway
Once cytokine stimulation occurs, the SOCS proteins will
similarly inhibit signal transduction through the JAK/STAT
pathway and target the degradation of signal transduction
intermediates to prevent further signal transduction in the
classical feedback loop (15, 50, 51) (Figure 1). For example,
SOCS1 can regulate the activation of M1-macrophages by
inhibiting JAK2/STAT1 and TLR/NF-κB signaling pathway
induced by IFN-γ (52, 53) (Figure 1). In addition, SOCS3
inhibits kinase activity by binding to JAK2, thereby negatively
regulating cytokine signaling (54, 55) (Figure 1). The analysis
by different research groups also show that SOCS3 determines
the specificity of IL-6 signaling in macrophages (22, 56, 57).
Experimental macrophages with deletion of SOCS3 gene will
lead to the early induction of STAT1-dependent genes instead of
the early induction of STAT3-dependent genes. Therefore, IL-6,
in this case, induces STAT1 and STAT3 and partially replicates
the activity of IFN-γ. Moreover, SOCS3 ablation leads to the
extension and persistence of STAT3 signals. Gene silencing or
reducing SOCS3 expression may be the reason for such high
STAT3 activity in tumors (58, 59). In addition, CIS can negatively
regulate cytokines that signal through the JAK/STAT5 pathway,
such as erythropoietin, prolactin and IL-3 receptors (60–62)
(Figure 1).

The receptor protein will undergo a conformational change
after receiving an external signal, causing a series of physiological
and biochemical reactions in cell, which are gradually amplified
by the intracellular signal transduction pathway. In mammals,
the JAK/STAT pathway is the main signaling mechanism
of many cytokines (63). The specific process is as follows:
In JAK/STAT signal transduction, JAKs (JAK1, JAK2, JAK3
and TYK2) are activated when various ligands bind to
cell surface receptors and form mutually phosphorylated
dimers. Phosphorylation activated JAK further phosphorylates
cell receptors. Once STAT attaches to the receptors, it is
phosphorylated and dimerized by JAKs and then translocated
into the nucleus to bind to a specific sequence in DNA
(64) (Figure 1). STAT inactivation occurs by dephosphorylating
proteins along signaling pathways. External factors that interfere
with the signal transduction of the JAK/STAT pathway will
affect the body’s normal immunity, inflammation and cell
proliferation, differentiation and apoptosis (63). In addition,
failure to properly activate JAK signaling or mutation signaling-
related molecules may lead to inflammation or immune
diseases (63).

SOCS Proteins Regulate TLR Signaling
Pathway
PRRs, especially TLRs, identify conserved microbial structures
and activate macrophages and dendritic cells (DCs). It has
been proposed that SOCS2 may be one of the feedback
regulation inhibitors of TLR signal activation in DCs (65).
More and more evidence shows that SOCS proteins have
a broader function in the regulation of TLR signaling (66,
67) (Figure 1). Moreover, some studies using genetically
disrupted KO mice unexpectedly found that SOCS proteins
also play an essential role in many immune and pathological
processes (42).

SOCS1 and TLR Signaling
The regulation of TLR signaling is a critical step in the
inflammatory response, identifying pathogens and establishing
active acquired immunity. Host immune cells have evolved
corresponding negative regulatory mechanisms, such as SOCS
proteins, to control the excessive immune response caused
by collective long-term exposure to LPS. In macrophages,
stimulation of CpG-DNA or Lipopolysaccharide (LPS) induces
the production of SOCS1 and SOCS3 (50, 68, 69). SOCS1 protects
the host from the lethal LPS response and this has been verified in
a model of SOCS1-deficient mice (66, 70, 71). Studies have shown
that SOCS-deficient mice are highly sensitive to LPS stimulation
through myeloid differentiation factor 88 (MyD88) -dependent
and independent pathways related to IL-1-receptor-associated
kinase (IRAK1) (17, 72–74). In addition, SOCS proteins also play
a key role in the innate immunity caused by viruses involved
in TLR signals. The viruses escape innate immunity by using
the negative regulation of SOCS proteins on cytokines. On the
one hand, SOCS proteins can regulate TLR-mediated signal
transduction. On the other hand, TLR signaling can, in turn,
regulate SOCS proteins expression in various kinds of cells
(22, 75). For example, in pDC cells, hepatitis B virus (HBV)
can use SOCS1 up-regulation to inhibit TLR9-mediated IFN-α
production, thereby inhibiting intracellular antiviral responses
and promoting virus replication (76). Studies have shown that
the activation of TLR7 in human plasmacytoid DCs can induce
the expression of SOCS1 and SOCS3, while SOCS1 and SOCS3
will strongly inhibit TLR7-mediated IFN-I production (77). In
addition, Yu Peng and his colleagues demonstrated that IRF7
combined with SOCS1 and SOCS3 and the SH2 domains of
SOCS1 and SOCS3 promoted proteasome-mediated degradation
of IRF7 through polyubiquitination related to lysine 48 (77).
Moreover, studies have shown that TLR8 couples with SOCS-1
to control the TLR7-mediated antiviral immunity in the mouse
central nervous system during West Nile virus (WNV) infection
(78). It has also been studied that the binding of hepatitis C
virus (HCV) core protein and complement receptor gC1qR on
monocytes/macrophages (M/MFs) triggers the expression of PD-
1 and SOCS-1, which can provide negative signals to the TLR-
mediated IL-12 expression regulation pathway and IL-12 is a
key cytokine connecting innate and acquired immunity (79).
The study also showed that the SOCS1 transcript of goose
was induced by goIFN and TLR ligands in GEF cells and
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FIGURE 1 | The production and action of SOCS proteins. Various cytokine receptors can induce SOCS proteins expression in a JAK/STAT-dependent manner

(Pictured on the left side). However, SOCS1, SOCS3 and CIS seem to suppress signaling in various ways. SOCS1 directly interacts with JAKs and reduce their

catalytic activities while SOCS3 interacts with the proximal position and CIS blocks up with the binding sites of STATs to receptors. Moreover, it is possible to induce

the production of SOCS proteins independent of JAK/STAT signaling pathways, such as signaling of TLRs, growth factor receptors (GFRs). (a) The SOCS proteins

induced in these ways could inhibit the response of the cell to other cytokines, which is one of the modes of crosstalk inhibition. Finally, the inhibition of SOCS proteins

may not be limited to the classic JAK/STAT signaling pathway (b,c). The figure is referenced from Figure 1 of Suppressors of cytokine signaling and immunity (14). The

red line indicates inhibition; green line indicates promotion; P (in the green circle) indicates phosphorylated.

PBMC, respectively. It is worth noting that a high expression
level of goose SOCS1 (goSOCS1) was detected after infection
with high viral load of Duck Tembusu virus (DTMUV) in
vitro and in vivo, which suggests that goSOCS1 may be
related to innate and adaptive antiviral immunity (80). The
cytokine response is well-regulated by a variety of homeostatic
mechanisms, including microRNAs (miRNAs) that can quickly
target specific genes involved in the control of immune signaling
pathways. Studies have shown that there are several immune-
related miRNAs differentially expressed in monocyte-derived
macrophages (MDM) and vitamin D3-treatedMDM (D3-MDM)
after dengue virus infection. It is worth noting that miR-
155-5p plays a major role in the cytokine response induced
by TLR. The attenuation of miR-155-5p in D3-MDM was
confirmed to be related to the increased expression of its
target gene SOCS-1. In addition, D3-MDM differentiation
induced the down-regulation of surface TLR4, which was
related to the decreased secretion of IL-1β derived from
TLR4/NF-κB (81).

Several mechanisms for inhibiting cytokine production
through SOCS1 have been proposed. The first is that SOCS1
directly affects the signal transduction of the TLR/NF-κB
signaling pathway (66, 70). SOCS1 attaches to the p65 subunit of
NF-κB and promotes its degradation mediated by ubiquitination.
SOCS1 also interacts with Bruton tyrosine-kinase (BTK) to bind
to the tyrosine phosphorylated MyD88 adapter-like protein,
also known as TIRAP and induces MAL ubiquitination and
degradation, which ultimately leads to inhibition of MAL
dependence p65 phosphorylation and NF-κB transactivation
(39). SOCS1 not only regulates the NF-κB signaling pathway, but
also regulates the gene expression of MAPK, JUN N-terminal
kinase (JNK) and p38 that are activated by stress by binding to
apoptosis signal-regulated kinase 1 (ASK1) (82). Furthermore,
the critical mechanism by which SOCS1 inhibits activated
macrophages is by inhibiting the secondary activated JAK/STAT
pathway (72, 83). TRIF-IRF3 pathway can quickly induce IFN-β
expression and activate JAK/STAT1 within 1 h after stimulation
and then promote the expression of CD40 and other genes
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FIGURE 2 | Interactive roles of SOCS1 and SOCS3 in TLR signaling. Pathogen exposure stimulates static cells, which activate the TLR signaling pathway (green).

This leads to an initial outbreak of the proinflammatory cytokine, which are then greatly amplified in the feedforward loop through the cytokine receptor signaling

pathway (yellow). Cytokine signaling also induces the up-regulation of TAM receptor expression, thereby driving TAM receptor signaling. Besides, TAM receptor

signaling requires a synergistic interaction between IFNAR and transcription factor STAT1 (blue). The expression of SOCS1 and SOCS3 are induced, which widely

inhibits the cascade of TLR and cytokine receptors, thereby ending the innate immune response (blue). SOCS1 and SOCS3 specific ways to inhibit TLR signaling:

After LPS activates TLR4, signals are transmitted through the adaptor proteins including MyD88, MAL, TRIF and TRAM. Through MyD88 and MAL, NF-κB and

MAPKs are activated by TRAF6 and TAK1, while IRF3 is activated by TRAM and TRIF. The TRIF-IRF3 pathway can rapidly induce the production of cytokine and

activate the JAK/STAT signaling pathway. The JAK2/STAT5 signaling pathway is activated by LPS, which is connected with the IL-6 production. Besides, SOCS1 can

inhibit the signaling of these JAK/STAT pathways. Phosphorylated MAL is connected with SOCS1, resulting in polyubiquitination and degradation of the MAL.

Moreover, interactions between SOCS1 and p65 subunit of NF-κB can induce its degradation process to inhibit signaling. Besides, NF-κB-dependent transcription is

inhibited by SOCS3 by binding inhibition between TRAF6 and TAK1. The figure is referenced from Figure 2 of Immunobiology of the TAM receptors (85). IRAK,

IL-1-receptor-associated kinase; TAK1, transforming growth factor-β activated kinase 1; AP1, activator protein 1; GAS6, growth arrest-specific 6. Red line indicates

inhibition; green line indicates promotion.

with NF-κB. SOCS1 is one of the key inhibitors of this signaling
pathway (84) (Figure 2). In addition, it is reported that LPS/TLR4
can activate the JAK2/STAT5 pathway and that the activation
of this signaling cascade leads to the massive secretion of
pro-inflammatory cytokines TNF-α, IL-6, IFN-β and RANTES,
while SOCS1 can be selectively inhibit the JAK2/STAT5 pathway
to inhibit the secretion of IL-6 (67, 86, 87) (Figure 2). It has been
reported that SOCS1 regulates IFN-β-induced JAK/STAT
pathway by directly inhibiting STAT1 phosphorylation
and indirectly inhibiting TLR4 signaling through
IRF3 (88).

SOCS3 and TLR Signaling
SOCS3 is one of the inducible proteins with abundant expression
in macrophages after LPS stimulation and it has been proved
that it is also a pivotal regulator of the different levels of
activity of IL-6 and IL-10 after TLR stimulation (89, 90). In
addition, LPS-induced STAT1, STAT3 and IL-6 expression
increased in SOCS3-deficient macrophages, but had no effect
on the activation of NF-κB and ERK1/2 (88, 91). It is generally
believed that SOCS3 can indirectly affect the TLR signaling
pathway through STAT3 activation, but SOCS3 itself may
be one of the mediators of the anti-inflammatory response,
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because both IL-10 and prostaglandin E2 (another potent
anti-inflammatory mediator) can induce the up-regulation of
SOCS3 protein levels through the cAMP pathway (92). SOCS3
may have a certain effect on the TLR signaling pathway, but
this statement is still controversial (93). However, recent studies
have shown that SOCS3 can act on the key molecules of TLR
signaling and participate in the regulation of TLR signaling.
First, at the physiological level, ectopic expression of SOCS3 can
inhibit the LPS-mediated expression of TNF and CD40 genes
in macrophages (94, 95). Secondly, studies have shown that
SOCS3 promotes TLR4 response through feedback inhibition of
endogenous transforming growth factor-beta1 (TGF-β1)/Smad3
signaling (96). Moreover, there are also reports that SOCS3 can
inhibit the activation of tumor necrosis factor receptor associated
factor 6 (TRAF6) and TGF-β activated kinase (TAK1), which are
key factors for the induction and signaling of TLR and IL-1 (52)
(Figure 2). Recent studies on acute pancreatitis have also shown
that LPS up-regulates the expression levels of SOCS1 and SOCS3
in acinar cells, while SOCS1 and SOCS3 directly interact with
TRAF6 and degrade TRAF6 protein through polyubiquitination,
thereby counteracting the protective function of TRAF6 in
the inflammatory response (97). Mechanism characterization
indicated that Ezh2 deficiency directly stimulates SOCS3
expression, thus enhancing Lys48-linked ubiquitination and
TRAF6 degradation. As a result, in the absence of Ezh2,
TLR-induced MyD88-dependent activation of NF-κB and the
expression of pro-inflammatory genes in macrophages/microglia
are impaired (98). In addition, studies have shown that
MRL-1pr/lpr mice (a Th1-mediated autoimmune disease
model) after oral administration of HA900 (a high molecular
weight hyaluronic acid) can up-regulate SOCS3 expression in
colorectal epithelial cells through TLR4, thereby regulating
Th1-mediated autoimmune diseases and inflammation (99).
Therefore, SOCS3 may indeed have a regulatory role in TLR
signaling. In recent studies, it has been discovered that the cyclic
GMP-AMP (cGAMP) synthase (cGAS)-IFN gene stimulator
(STING)-mediated cytoplasmic DNA sensing pathway that
exists in parallel with TLR9-mediated DNA recognition can
also induce the production of SOCS1 and SOCS3, thereby
activating the IFN-I inhibitory loop, which indicates that
SOCS3 may participate in innate immunity through other
ways (100).

SOCS Proteins Regulate Other Signaling
Pathways
SOCS protein is not limited to regulating the classic JAK/STAT
signaling pathway, but can also inhibit the signal transduction
of cytokines such as insulin and Toll-like receptors and none
of them activate the JAK/STAT pathway (101). SOCS4 and 5
regulate epidermal growth factor receptor (EGFR) signaling,
of which SOCS5 can regulate viral replication by down-
regulating EGFR signaling (40). The data suggests that SOCS3
may act directly by preventing JAK activation or mediating
ubiquitination of cytokine/growth factor/hormone receptors
and subsequent proteasome degradation. Moreover, SOCS3 has
been shown to bind to indoleamine dioxygenase (IDO) and

mediate the ubiquitination of the complex in DCs. Therefore,
SOCS3 antagonizes the IDO-dependent tolerogenic signal in
DCs at the post-transcriptional level and converts it into
immunogenicity (102, 103). SOCS3 can also bind and degrade
CD33 (a myeloid cell differentiation antigen) or Siglec3, thereby
blocking the proliferation inhibition caused by CD33 (104). In
addition, SOCS3 can regulate the body’s sensitivity to insulin
by binding and targeting proteasome degradation of insulin
receptor (IR) or insulin receptor substrate 1 (IRS-1) (105–
108). It is reported that SOCS3 can also directly interact
with SMAD3, thereby inhibiting the response to transforming
growth factor-β (TGF-β) (96). On the other hand, there are
reports that TGF-β can induce the expression of SOCS3, thereby
promoting the formation of osteoclasts induced by TNF (109).
Unexpectedly, it was also found that phosphorylated SOCS3
binds to IκB (NF-κB inhibitor), hindering its degradation and
thus preventing the activation of NF-κB (110). Studies have also
shown that SOCS3 can block IL-1 induced NF-κB and JNK/p38
signaling pathways by binding and inhibiting the signaling
of upstream molecule TRAF6 (52). Taken together, the SOCS
family are key factors in the feedback regulation of cytokine
signaling pathways. Therefore, they play a vital role in regulating
inflammation, immunity, growth regulation and determining
cell fate.

SOCS PROTEINS REGULATE INNATE
IMMUNITY CAUSED BY VIRUSES

Virus-Induced Innate Immune Process
During innate immunity, PRRs are involved in identifying and
detecting specific viral components and activates corresponding
immune signaling pathways in infected cells and other immune
cells to enhance the secretion of inflammatory cytokines and
IFN-I (111). IFN-α/β is the principle cytokine that limits virus
replication, while other cytokines, including TNF-α, IL-1β and
IL-6, recruiting immune cells to the site of infection and
causing an inflammatory response. Therefore, it is important to
distinguish between self and non-self nucleic acids, especially
during viral infection. Recent advances in innate immunity
research indicate that this distinction is mostly dependent
on PRRs, including the TLR, RIG-I like receptor (RLR)
and nucleosides acid-binding oligomeric domain (NOD) like
receptor (NLR). These innate immune receptors trigger signaling
cascades that are usually integrated with innate responses,
such as NF-κB dependent cytokine responses, IRF dependent
IFN-α/β responses, inflammatory body/caspase-1 dependent IL-
1β responses. NF-κB-dependent and IRF-dependent cytokines
are regulated by transcription, while inflammatory body-
dependent IL-1β secretion is regulated by transcription and post-
transcription (112).

Among various PRRs, TLRs have now been studied in depth.
Today, a complex picture of TLR signaling has emerged (113,
114). The critical fact is that microbial stimulation directly
binds to TLRs, causing their conformations to change. Among
them, heterodimers (TLR1, 2, 6) or homotypes (TLR3, 4, 9)
are activated and related to intracellular adaptor molecules.
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Except for TLR3, the central adaptor of all other TLRs is
MyD88. For TLR2 and 4, the adaptor/MyD88-adapter-like
protein (TIRAP/Mal) containing the TIR domain promotes this
binding. In particular, TLR3 and TLR4 can further bind to the
Toll/IL-1 receptor domain-containing adaptor inducing IFN-β
(TRIF), so they can also use TRIF-related molecules (TRAM) as
adaptors. Finally, MAPK and NF-κB signaling related molecules
are activated through MyD88-dependent signaling (Figure 2).
TRIF mainly activates the transcription of IRF3 gene through
another pathway, thereby inducing IFN-β production and then
sends signals in an autocrine or paracrine manner (115). It has
also been proposed that other signaling modules are involved in
TLR signaling and they are particularly important to activate IRFs
family members with specific cell types and ligands way (116).
However, once these receptors are activated, corresponding
negative feedback regulation will occur to avoid innate immune
overreaction. Under such circumstances, the SOCS proteins will
exert their negative feedback regulation effect.

Virus Hijacking SOCS Proteins Escapes
Innate Immunity
Cytokines activate the innate immune response and initiate
a specific immune response against viruses, but incorrect
activation of the immune response can lead to dysregulation of
host cytokine signaling during disease infection and ultimately
cause tissue and organ dysfunction. The SOCS family are a
class of negative regulators induced by cytokines, which can
block the signal transduction of cytokines, thereby avoiding the
body’s excessive immune response (117). SOCS1 overexpression
leads to a decrease in the phosphorylation levels of JAK1,
TYK2 and STAT1 and inhibits the antiviral and antiproliferative
responses induced by IFN-I (118, 119). Many innate or adaptive
immune transcription factors can induce the production of SOCS
proteins, but under normal physiological conditions, the most
significant SOCS proteins production is induced by cytokines
such as IFN-I, IFN-II and IL-6 through the JAK/STAT signaling
pathway (21, 120–123). SOCS1 ablated cells and SOCS1−/− mice
are resistant to viral infection (37). It seems that the negative
regulation of other cytokine pathways is the main role of SOCS3,
such as the regulation of IL-6 family cytokine signaling (55), but it
has also been shown that SOCS3 can inhibit the antiviral function
of IFNs.

Due to the immunomodulatory effect of SOCS proteins, it is
normal to think that infectious micro-organisms can manipulate
the host’s SOCS proteins to escape innate immunity. Studies
show that Porcine Reproductive and Respiratory Syndrome virus
(PRRSV) can choose SOCS1 to evade the host’s immune response
and SOCS1 can inhibit the expression levels of ISGs and IFN-β
to promote viral replication (124). Furthermore, when HCV and
herpes simplex virus 1 (HSV-1) infect human hepatoma cells and
amniotic cells, respectively, they can abrogate IFN-α/β signaling
by enhancing SOCS3 protein expression (125, 126). Influenza
virus infection mainly inhibits JAK/STAT pathway signaling by
up-regulating the expression of SOCS1 and SOCS3, thereby
disrupting the host antiviral defense mechanism mediated by
IFN-I and IFN-II (127, 128). Studies have shown that the non-
structural protein 1 (NS1) of respiratory syncytial virus (RSV)

inhibits the antiviral response induced by IFN and the production
of chemokines by inducing the up-regulation of SOCS1 and
SOCS3 (129). The SOCS proteins have been extensively studied
and have been known for many years to induce SOCS proteins
by activating cytokine receptors, primarily through the activation
of IFNAR (42, 130). For example, the production of a large
amount of inflammatory factors during influenza A virus (IAV)
infection leads to the expression of SOCS1 and SOCS3 through
RIG-I/MAVS/IFNAR1-dependent pathways, which ultimately
inhibited the antiviral response (131). Moreover, TLR-mediated
IFNAR-STAT1 signaling leads to the up-regulation of TAM
(Tyro3, Axl and Mer) receptor tyrosine kinases, which in turn
tampers with the IFNAR-STAT1 box and ultimately induces
the expression of SOCS1 and SOCS3 to suppress cytokine and
TLR signals transduction (132). This mechanism also exists
in the innate immunity caused by the virus. During Zika
virus (ZIKV) infection, Axl regulates the expression of SOCS1
in a STAT1/STAT2-dependent manner, thereby antagonizing
IFN-I-mediated antiviral immunity, promoting virus infection
and replication (133). Similarly, enveloped viruses such as WNV
can disrupt the DC’s innate immune response through the
negative regulatory mechanism of IFN-I signaling mediated by
AXL-SOCS1 (134). Thus, viruses can inhibit IFNAR signaling
through the inhibitory protein SOCS1 through AXL and other
TAM receptors, hence evading the innate immune response
pathway activated by the TLR receptor and promoting its
infection (85). The SOCS proteins not only regulate the
production of IFN-I and IFN-II but also IFN-III. Although the
host secretes IFN-I and IFN-λ during viral infection to suppress
viral infection. Nevertheless, the main IFN induced in the nasal
epithelium during respiratory virus infection is IFN-λ instead of
IFN-I and its production can also help prevent respiratory virus
infection (135). Studies have shown that the inhibition of IFN-λ
signal by SOCS-1 induced by influenza virus leads to an increase
in the adaptability of host IFN-λ expression, thereby protecting
cells from virus infection, but it leads to the overproduction
of IFN-λ, which ultimately results in the sabotage of antiviral
response (136). Recent studies have also shown that IL-17A
attenuates IAV-induced IFN-λ expression by enhancing the
expression of SOCS1 and SOCS3 to inhibit the autocrine
signaling circuit in human airway epithelial cells (137). Similar
reports have been reported in flaviviruses, ZIKV infection causes
up-regulated expression of SOCS1 and SOCS3, thereby inhibiting
RLR dependent IFN-I and IFN-III secretion, indicating that in
ZIKV infection, SOCS proteins may regulate viral replication
by modulating the antiviral innate immune response (138). In
fact, immune evasion of various viruses, such as HBV (139),
HCV (79, 125), human immunodeficiency virus (HIV) (140–
143), Semliki forest virus (37), coxsackievirus (144), RSV (145),
Ebola virus (146), IAV (147), HSV-1 (126, 148, 149), Varicella-
zoster virus (VZV) (150), Japanese encephalitis virus (JEV) (151)
and Epstein-Barr virus (EBV) (152) by targeting SOCS1 and/or
SOCS3 has been reviewed elsewhere (153, 154). Studies have
also shown that in HCV infection, HCV protein P7 mediates
the up-regulation of SOCS3 through the JAK/STAT signaling
pathway and MAPK pathway, while up-regulation of SOCS3
suppresses TNF-α-mediated IκB degradation and subsequent
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NF-κB promoter activity, which leads to the inhibition of the
inflammatory response during HCV infection (155, 156). HSV
is the second virus found to induce the production of host
SOCS3 protein (126). Studies have shown that JAK signal will
stimulate the expression of SOCS3 in HSV-infected FL cells and
the overexpression of SOCS3 will down-regulate the antiviral
effect mediated by IFN-α/β signals, thereby promoting virus
replication (148) (Table 1).

Some recent studies have also explored the effects of SOCS2
gene knockout on viral infection during viral infections such
as HSV-1 (157), HSV-2 (158), or bovine herpesvirus type 5
(BHV-5) (159). For example, under the same infection with
HSV-1, SOCS2 gene-deficient mice showed less severe immune
cell infiltration, encephalitis and neuroinflammation than wild-
type C57BL/6 mice (157). Unlike HSV-1 infection, SOCS2 KO
mice have worsened meningoencephalitis compared to wild-type
animals during BHV-5 infection, indicating that SOCS2 protein
has a protective effect on intracranial BHV-5 infection (159).
There are also reports on SOCS5 in the regulation of influenza
virus infection. After experimental infection with IAV, SOCS5
deficient mice showed more severe viral infections than the
control group, such as increased virus titers and weight loss in
mice, further research found that SOCS5 may play a vital role in
restricting IAV infection of airway epithelium by regulating the
EGFR signaling pathway (160). In the future, there may be more
viruses affecting SOCS proteins. In general, due to the negative
regulation of SOCS in the cytokine signaling pathway, the virus
manipulates the expression of various SOCS genes to suppress
antiviral signals and evade innate immune responses.

MicroRNAs Regulate Innate Immunity
Through SOCS Proteins
Recently, miRNAs are increasingly considered as an essential
factor that regulates the interaction between virus and host (161),
many studies have also shown that there is a change in the
miRNAs expression profile of the host or virus in viral infections

TABLE 1 | Virus Hijacking SOCS Proteins Escapes Innate Immunity.

Virus Target SOCS Effect

PRRSV ↑SOCS1 ↓IFN-β, ISGs

↑viral replication

HCV ↑SOCS3 ↓IFN-α/β

↑viral replication

HSV ↑SOCS3 ↓IFN-α/β

↑viral replication

IAV

RSV

WNV

ZIKA

HCV

↑SOCS1, 3

↑SOCS1, 3

↑SOCS1

↑SOCS1, SOCS3

↑SOCS3

↓type I and type II IFN,

↑IFN-λ

↑viral replication

↓IFN signal, chemokines, ISGs

↑viral replication

↓type I I IFN

↑viral replication

↓type I and type III interferon

↑viral replication

↓NF-κB, inflammatory response

↑ increases; ↓ decreases.

and some of these miRNAs can regulate the expression of SOCS
proteins to regulate innate immune pathways. miRNA mainly
regulates the expression of immune-related genes in the body by
targeting the 3’-untranslated region (3’-UTR) of the target gene,
thereby inhibiting or promoting the antiviral response mediated
by downstream cascade signals (162–169). On the one hand, the
virus itself can generate viral miRNAs, or the virus infection
can lead to changes in the expression profile of host miRNAs
(170–174). On the other hand, some viral miRNAs and altered
host miRNAs can directly target the viral genome or indirectly
target host genes to regulate viral replication (175–177). For
example, in infectious bursal disease virus (IBDV) infection,
the host miR-155 can inhibit the expression of SOCS1 and
TANK to promote IFN-I-mediated antiviral response, thereby
inhibiting IBDV replication (169). Besides, the authors found
that miR-130b of the host can also inhibit IBDV replication
by targeting the viral genome and the host’s SOCS5 protein,
similarly, miR-454 can inhibit IBDV replication by targeting
the IBDV genome and SOCS6 (169, 178). In IBDV infection,
gga-miR-27b-3p ectopically expressed in DF-1 cells can directly
inhibit SOCS3 and SOCS6 and promote the expression of
chicken IRF3, NF-κB and IFN-β genes, thereby inhibiting IBDV
replication (179). HCV infected cells cause up-regulation of miR-
221 expression, which inhibit the expression of SOCS1 and
SOCS3, thereby promoting the JAK/STAT signaling pathway
and enhancing the anti-HCV effect of IFN (180). JEV infection
in human brain microglial cells (CHME3) down-regulated the
expression of miR-432, which reduced the phosphorylation
of STAT1 and ISRE activity by negatively regulating the
expression of SOCS5 and ultimately promoted cell inflammation
and virus replication (181). Transmissible gastroenteritis virus
(TGEV) infection can cause ER (endoplasmic reticulum) stress
and increase inositol-requiring enzyme 1α (IRE1α) expression
which downregulates the abundance of host miR-30a-5p that
normally enhances antiviral responses by targeting SOCS1 and
SOCS3 expression, thus facilitating TGEV replication (182).
Moreover, in LTEP-α-2 and SPC-α-1 human lung cancer cell
lines experimentally infected with HSV-2, the virally-encoded

TABLE 2 | MicroRNAs regulate innate immunity through SOCS proteins.

Virus miRNA Target SOCS Effect

IBDV ↑ miR-155 ↓ SOCS1 ↑ type I IFN

↓ viral replication

IBDV ↑ miR-130b ↓ SOCS5 ↑ IFN-β

↓ viral replication

IBDV ↑ miR-454 ↓ SOCS6 ↓ viral replication

IBDV

HCV

↑ miR-27b-3p

↑ miR-221

↓ SOCS3, 6

↓ SOCS1, SOCS3

↑ IFN-β, IRF3 and NF-κB

↑ anti-HCV IFN,

↑ JAK/STAT signaling

JEV ↓ miR-432 ↑ SOCS5 ↑ phosphorylation of STAT1,

↑ cellular inflammation,

↑ viral replication

TEGV

HSV-2

↓ miR-30a-5p

↑Hsv2-miR-H9-5p

↑ SOCS1, SOCS3

↓ SOCS2

↓ type I IFN

↑ viral replication

↑ increases; ↓ decreases.
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microRNA Hsv2-miRH9-5p targets and inhibits SOCS2, thereby
driving experimental tumor metastasis in these cell lines (158)
(Table 2). Taken together, miRNA participates in the immune
pathway caused by the virus by regulating the expression of the
SOCS gene during viral infection and this also provides new ideas
for our future treatment plans and clinical applications.

THERAPEUTIC IMPLICATIONS

Since SOCS proteins play a key regulatory role in cytokines
(especially IFNs), increasing studies have shown that viruses
utilize the function of host SOCS proteins to escape the
host’s immune process, so these proteins also have great
therapeutic potential (153). One therapeutic strategy to consider
would be suppression of SOCS proteins levels or function
during viral infection. A small synthetic peptide containing a
phosphorylation activation loop of JAK2 and capable of isolating
SOCS is pJAK2, which is also an antagonist of SOCS1 and
SOCS3 (48). The peptide has been shown to have therapeutic
effects in keratinocytes infected with HSV-1 and can also
prevent mice from lethal doses of vaccinia virus, IAV and
encephalomyocarditis virus infections (149, 183, 184). Moreover,
the use of siRNA to silence SOCS1 in DCs allows these cells to
better elicit anti-HIV-1 antibody and T cell responses in mice
(140). In addition, miRNAs are increasingly considered to be
regulators of SOCS expression (185). For example, studies have
shown that inhibiting the expression of miRNA-122 to enhance
promoter methylation to inhibit the expression of SOCS3 is a
promising option for the treatment of HCV (186–188). Until
recently, IL-7 therapy has also been shown to improve the
immune response to persistent infections caused by HIV, HBV
and HCV by targeting SOCS3 (189). Although these examples
are limited and preliminary, they suggest that manipulation
of the SOCS proteins may provide an effective mechanism to
inhibit viral replication during viral infection. On the other
hand, overexpression of SOCS protein through viral vectors may
be an effective strategy to inhibit inflammation response. In
a study using mice with experimental arthritis, it was found
that compared with the control group, injection of recombinant
adenovirus carrying SOCS3 cDNA in the joint cavity can
significantly reduce the severity of arthritis and joint swelling
(190). In addition, in order to suppress the host’s inflammatory
response, a method of exogenously expressing SOCS1 with
therapeutic viral vectors has been proposed (191, 192). This
strategy may expand the scope and efficacy of viral vectors in
the future.

Since the deletion or inhibition of SOCS1 and SOCS3 in
T cells or myeloid cells enhances anti-tumor immunity, SOCS
inhibitors may be ideal drugs for targeting immune checkpoints
controlled by cytokines (193). One method is to silence the
expression of SOCS proteins in DCs or CTL through specific
siRNA to enhance anti-tumor immunity (194). But under normal
circumstances, silencing the expression of SOCS1 and SOCS3
genes will exacerbate canceration. In addition, SOCS1 gene
silencing may promote JAK/STAT signal transduction, which
leads to an increase in the body’s response to cytokines and

ultimately promotes the survival and expansion of myeloma
bone marrow cells (195). At the same time, the overexpression
of SOCS proteins in tumor cells is another way to inhibit
tumor growth by inhibiting tumor-promoting STATs (196,
197). For example, as a mimetic of SOCS proteins, TKIP can
effectively inhibit JAK2-mediated STAT1 phosphorylation and
proliferation of prostate cancer cells (48, 198). Platelet factor 4
enhances the expression of SOCS3 protein, thereby inhibiting
STAT3 activation and inducing apoptosis in myeloma (199).
TSA increases the expression of SOCS1 and SOCS3 in human
colorectal cancer cells and inhibits the growth of CRC (200).
New preclinical data show the potential of using gene therapy
to induce SOCS3 overexpression in castration-resistant prostate
cancer (CRPC), which may work by attenuating the IL-6-
JAK/STAT signaling pathway (201). Taken together, these studies
encourage the clinical application of new therapies that modulate
SOCS proteins expression or function.

CONCLUDING REMARKS

In the past two decades, with the development of science
and technology, further understandings have been made in
the functional mechanisms and regulatory role in the innate
immunity of SOCS proteins. At the same time, pathogens can
also achieve innate immune escape by manipulating SOCS
proteins and examples of viruses, bacteria and parasites have been
found. Although many studies have been disclosed relationships
between mRNA and protein levels of SOCS family and immune
and inflammatory diseases, the regulatory mechanisms of
expression levels of SOCS family members are still unknown.
Due to the role of SOCS proteins in the immune response
caused by viruses has not been fully elucidated, thus limiting
the scientific and clinical advances made by immunologists
and microbiologists. Therefore, further research on the function
of SOCS proteins may reveal that these proteins have more
unexpected effects in the immune system signaling pathway.
These findings can also bring more scientific theoretical basis for
the treatment of diseases.
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