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Abstract

each port is evaluated by s-core decomposition of SIN.

invasive species worldwide).

Background: Global maritime trade plays an important role in the modern transportation industry. It brings
significant economic profit along with bioinvasion risk. Species translocate and establish in a non-native area through
ballast water and biofouling. Aiming at aquatic bioinvasion issue, people proposed various suggestions for
bioinvasion management. Nonetheless, these suggestions only focus on the chance of a port been affected but
ignore the port’s ability to further spread the invaded species.

Results: To tackle the issues of the existing work, we propose a biosecurity triggering mechanism, where the
bioinvasion risk of a port is estimated according to both the invaded risk of a port and its power of being a
stepping-stone. To compute the invaded risk, we utilize the automatic identification system data, the ballast water
data and marine environmental data. According to the invaded risk of ports, we construct a species invasion network
(SIN). The incoming bioinvasion risk is derived from invaded risk data while the invasion risk spreading capability of

Conclusions: We illustrate 100 ports in the world that have the highest bioinvasion risk when the invaded risk and
stepping-stone bioinvasion risk are equally treated. There are two bioinvasion risk intensive regions, namely the
Western Europe (including the Western European margin and the Mediterranean) and the Asia-Pacific, which are just
the region with a high growth rate of non-indigenous species and the area that has been identified as a source for
many of non-indigenous species discovered elsewhere (especially the Asian clam, which is assumed to be the most
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Background

Introduction

Global maritime trade plays an essential part in people’s
daily lives because many cargoes such as food, fuel, com-
modities are carried by vessels. According to the statistic
from the United Nations Conference on Trade and Devel-
opment (UNCTAD) [1], shipping contributes about 80%
of global trade by volume and over 70% of global trade by
value. However, the global maritime trade also accounts
for aquatic bioinvasion. In detail, by way of discharging
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ballast water which may contain aquatic species from
other ports passed by ships, the alien invasive species can
be introduced. In addition, the hull fouling containing
microorganisms, plants, algae, or animals is another major
pathway to broadcast exotic aquatic species [2].

Once the marine species and viruses establish in a non-
native region, they would cause massive damage in terms
of lives and economy [3]. For example, in Europe, the eco-
nomic loss of non-native terrestrial and aquatic species
has been assessed to be at least € 12.5 billion per year and
probably amounts to over € 20 billion [4]. At the same
time, the control efforts including removal, prevention
and management of marine invasive species also bring
extra economic cost. Taking a macroalgae species that

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

K BMC

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver

(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2272-5&domain=pdf
mailto: slwang@bnu.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Wang et al. BMIC Bioinformatics 2018, 19(Suppl 9):287

invaded Monterey Harbor as an example [5], the direct
cost to remove this invasive species ran up to $160,300 for
a 10-year period.

To address the issue of aquatic bioinvasion, one main-
stream countermeasure is to propose suggestions for
biomarker identification [6, 7] and bioinvasion man-
agement. However, the existing biosecurity suggestions
[2, 8, 9] only considered the invaded risk of a port
and neglected its role of being a stepping-stone, which
means it can further spread the invaded species. The
stepping-stone invasion should be paid more attention
due to the relatively high proportion [10]. However,
it is challenging to analyze a port’s power of further
spreading the invaded aquatic species because the fluc-
tuation of invaded risk in some ports may lead to
butterfly-effect due to their special locations. Hence,
the effect of stepping-stone should be analyzed from a
global perspective.

To tackle the issues of existing work, a biosecurity trig-
gering mechanism is proposed to instruct the biosecurity
management. By our mechanism, some controls should
be carried out when the bioinvasion risk exceeds a given
threshold. We estimate the bioinvasion risk according to
both the invaded risk of a port and its ability of further
spreading invaded species. To compute the invaded risk of
each route, we utilize the automatic identification system
(AIS) data, the ballast water data and marine environmen-
tal data. According to the invaded risk of routes between
any two ports, we construct a species invasion network
(SIN). By manipulating s-core decomposition, we derived
the s-shell value of each port, which is a significant metric
to identify the port’s ability to further spread the bioinva-
sion risk since higher s-shell value indicates larger degree
and more central position in SIN. Finally, we list 100 ports
in the world that have the highest bioinvasion risk when
the invaded risk and stepping-stone bioinvasion risk are
equally treated. There are two bioinvasion risk intensive
regions, namely the Western Europe (including the West-
ern European margin and the Mediterranean) and the
Asia-Pacific, which are just the region with a high growth
rate of non-indigenous species and the area that has been
identified as a source for many of non-indigenous species
discovered elsewhere (especially the Asian clam, which is
assumed perhaps the most invasive species worldwide).

Related work

It is high time that bioinvasion should be addressed due
to its negative impact on the ecosystem, society and econ-
omy. Currently, there exist two categories of mainstream
countermeasures: the first is constructing different inva-
sion threat assessment models [11-14] while the second
is providing the suggestion for bioinvasion management
[2, 8, 9]. Actually, some bioinvasion management sug-
gestions were given according to some invasion threat
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assessment models. That is to say, two categories of coun-
termeasures are not totally independent.

To estimate the invasion risk of alien species, various
invasion threat assessment models [11-14] were built.
To give advices on introducing new species to a native
ecosystem, [11] developed a threat scoring framework
to evaluate the invasion threat of each alien species to
native biodiversity, and assessed the threat level of dif-
ferent invasive pathways. [12] established a risk model
according to the number of ship visits and the environ-
mental factor, so that it can figure out shipping routes
that have a high probability to pour invasive species into
a given port and the possible source regions. The proba-
bility of invasive species establishment in a marine region
was computed in [13]. The aim was to provide a judge-
ment basis for bioinvasion, where a biosecurity strategy
could be triggered once such probability is greater than a
given threshold. [14] developed the corresponding mod-
els to describe the probability of a species to be alien, the
probabilities that a species can be introduced to and estab-
lished in a given marine region. Such models were used to
assess the invasion risk of ports and shipping routes.

Based on the idea of [14], [2] established a species
flow network (SFN), from which the authors discovered
invasion patterns through clustering analysis and then
devised invasive species management strategies. [8] iden-
tified hot spots fragile to alien aquatic invasion accord-
ing to worldwide patterns of ship traffic. The rate of
port-to-port invasion was estimated using gravity mod-
els for spatial interactions, which helped to figure out
bottlenecks to the regional exchange of species using the
Ford-Fulkerson algorithm for network flows. In [9], two
risk models, namely bioregion pathway and species-based
exposure, were examined with the aim to determine an
effective strategy to implement marine biosecurity risk
management in regions/countries where biological data
are limited.

Conclusively, the existing work [2, 8, 9] did not con-
sider the invaded risk of a port and its power of spreading
species at the same time, which is not enough to con-
trol the bioinvasion. We utilize the big data technology
[15, 16] to tackle the current bioinvasion issue, based on
which a species invasion network (SIN) is constructed. By
s-core(s-shell) decomposition, developed from k-core(k-
shell) decomposition, we calculate the level of popularity
of each node in SIN. k-core decomposition is widely
used in network analysis. [17] concentrates on the topol-
ogy of the internet and separate the internet structure
into three part by k-shell (k-core) decomposition method.
[18] targets on large-scale software system and ana-
lyzes the software structure by utilizing k-shell (k-core)
decomposition method. Taking the weight of edges into
consideration, the s-core(s-shell) decomposition can be
derived [19].
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Methods
Framework and data
The framework of our analysis is depicted in Fig. 1.
We aim to evaluate the bioinvasion risk of major ports
throughout the world. Intuitively, the bioinvasion risks of
ports consist of the incoming one and the outgoing one.
A port’s incoming risk is estimated by aggregating inva-
sion risk of all shipping routes passing through it. Con-
clusively, to calculate the invasion risk from one port
to another, we need three kinds of information, that
is, shipping information (including shipping routes pass-
ing through each port in the world, the corresponding
travel time and status), the ballast water information and
the marine environmental information (including water

temperature and salinity). Hence, we take advantage of
12-month AIS data in 2014 to obtain the shipping infor-
mation. The data includes 234,661,079 records and each
piece of record provides the following information: the
feedback time of GPS, the shipping status (its value ranges
from 0-15. Specifically, 1 = the ship is anchored, 2 = the
ship is not in operation, 7= the ship is doing fishery, and
8 = the ship is sailing), the longitude and the latitude of
the anchorage, and the official number of each ship which
is used to identify one ship uniquely. Besides, we obtain
the ballast water information from National Ballast Infor-
mation Clearinghouse (NBIC), using its ballast discharge
data ranging from 2004-01-01 to 2016-08-25 for our anal-
ysis, which contains 1,080,456 records of all ships visiting
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Fig. 2 The constructed SIN
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the ports of USA. Finally, we employ the marine envi-
ronmental information from the World Ocean Atlas 2013
version 2 [20] to obtain the water temperature and salinity
for any given ports.

To derive the outgoing risk, we set up a species inva-
sion network (SIN), which is constructed by combining
the global maritime trade trajectory and the invasion risks
of routes. By employing the s-core decomposition of SIN,
we can deduce the invasion risk of further spreading capa-
bility of a port, thus estimating the effect of stepping-stone.
Taking both the incoming risk and outgoing risk into
consideration, a biosecurity triggering method based on
s-core rank is derived.

Basis for our analysis

Our main idea is to provide biosecurity suggestion taking
into consideration both the invaded risk of port and its
ability of further spreading invaded species. For any port j,

Table 1 Top 10 edges with the highest weight in SIN

Port of Departure Port of Destination Weights
1 Singapore Dubai 0.013508770
2 Dubai Singapore 0.010278908
3 Seattle Tokyo 0.009086252
4 Tokyo Seattle 0.008123248
5 Klang Dubai 0.006145533
6 Bahrain Klang 0.006009097
7 Le Havre New York and New Jersey 0.004968214
8 Dubai Klang 0.004948834
9 Tokyo Manzanillo 0.004783012
10 Callao Manzanillo 0.004436788

its invaded risk (i.e., Pj(Inv)) is the accumulating invasion
risks over all shipping routes passing through it [14], i.e.,

Pi(Inv) =1 —T1;[ 1 — Py(Inv)] (1)

where P;;(Inv) denotes the invasion risk from port i to ;.

As we described in the introduction, a port’s ability
of spreading invaded species should be analyzed from a
global perspective. To that aim, we introduce a concept of
the species invasion network (SIN). SIN can be depicted
by a directed graph, namely S = (V, E, W), consisting of a
set V of nodes (i.e., ports), a set E of edges (i.e., shipping
routes) and the weight w;; € W (w;; = Pj;j(Inv) of edge
e;j € E) denoting the invasion risk from port i to j.

According to the description above, both the invaded
risk and SIN involve Pj;(Inv) (i,j € V). In this paper,
we use the model proposed in [14] to calculate P;(Inv)
(i,j € V). That is,

Pij(Inv) = 1 — ¢, [1 — Pjj(Alien)Pe(Intro) P;j(Estab))
(2)

In (2), Pjj(Alien) is the probability that a native species
in port i is non-native in port j [21, 22], which is inversely
proportional to the shipping route distance between ports
iand j; P¢(Intro) denotes the survival probability of species
entrained in ballast tanks and it increases with the total
amount of ballast water; P;(Estab) is the chance of species
being able to live in the recipient port, which is affected by
two main environmental factors: temperature and salin-
ity. The detailed calculations of Pjj(Alien), P.(Intro) and
Pjj(Estab) can be found in [14]. We omit them due to the
limited length of paper.

Taking advantage of the above models and the corre-
sponding data, we can compute the invasion risk from
one port to another and therefore obtain SIN. Figure 2
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shows SIN computed according to our data. There are
totally 34651918 weighted edges in the original SIN but
only about 350 weighted edges are randomly selected to
appear in Fig. 2. The distribution of edge weight in SIN
is depicted in Fig. 3. Table 1 further lists the top 10 edges
with the highest weights. As it can be seen in Table 1,
the transportation between Singapore and Dubai, Seattle
and Tokyo can incur more invasive risk. It is a remark-
able fact that the bi-directed edges of Singapore-Dubai,
Seattle-Tokyo and Klang-Dubai are listed in Table 1. The
reasons for the result can be partly concluded as below:
Singapore and Klang work as an important international
maritime transport hub, serving the worldwide busiest
trade routes; Dubai serves as a major transport hub for
passengers and cargoes in the Middle East; the high
weight between Seattle and Tokyo may refer to the strong
economic connection between the United States and
Japan.

S-core decomposition of SIN
The transmission power of a port stands for its poten-
tial to spread invaded species to others. Intuitively, the

transmission power of each node is tightly related to the
port’s topological property. To acquire the ports’ topolog-
ical property, we use s-core decomposition to analyze the
SIN. S-core decomposition, an extension of k-core decom-
position [23], has shown its brilliant features in analyzing
the structure of complex networks [19].

Through k-core decomposition, different subsets can be
obtained, called k-cores. More specifically, let d; be the
out-degree of node i for an unweighted graph. The k-core
of a graph consists of all nodes with degree d; > (k — 1).
Initially, O-core consists of all nodes in the network. To
obtain k-core, all nodes i with out-degree d; < k — 1 are
iteratively removed from (k — 1)-core. Thus, (k+1)-core is
included in k-core. A k-shell is defined as a set of nodes
in k-core that are not the members of (k+1)-core [19]. A
node’s large degree and central position can be deduced
by its large value of index k.

However, k-core decomposition is only suitable for
graphs where the links are of uniform strength. To ana-
lyze SIN with heterogeneous edges, we employ s-core
decomposition [19], which is a method extending k-core
decomposition to weighted graphs. Firstly, we introduce
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sx-core decomposition to make the concept clearer. In s-
core decomposition, the weighted degree d; of a node i is
defined as

4 )
d; =[df‘(z wi)P1#+F (3)
j

where Z}d’ wyj is the sum over all its link weights and in
our case, w; = P;(Inv); a and B are set to 1 according
to [24]. The sk-core of a graph consists of all nodes with
degree d; > si. All sg-cores (k = 0,1,2,...,n) are cal-
culated by an iterative method. Initially, so-core consists
of all nodes in the network (s) = min;d, i € all nodes).
After iteratively remove all nodes i with weighted out-
degree d] < so, s;-core is obtained and then s; = min; d,
i € sj-core. To extract s,-core, all nodes i with weighted
out-degree d; < sy—1 are iteratively removed from s;,_;-
core and all nodes’ weighted degrees are recalculated for
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Fig. 7 Correlation between the rank of s-core and that of the degree

every removal. By this way, s,-core is obtained, where
$; = min; dlf, i € sy-core. We reindex si-core according to
the rank of sz. Hence the decomposition of sg-core with a
new index is just that of s-core. It is notable that the so-
core consists of all nodes and the si;-core is included in
si-core. A set of nodes in si-core that are not the members
of si41-core is called s-shell.

According to the algorithm in [19], we can deduce s-
shell of each node in SIN. Figure 4 indicates the number
of s-cores in SIN with different s. Figures 5 and 6 illus-
trate the average degree of different s-cores and s-shells
in SIN. Both figures show that the larger value of s, the
higher average degree. Figure 7 further shows the correla-
tion between the rank of s-core and that of the degree. The
correlation analysis is executed through the Kendall rank
correlation method [25], a statistic tool for estimating the
similarity level between two ranks. Table 2 lists the top 10
ports ranked by their value of s-shell and Seattle, Tokyo
and Callao are the top 3.

Results and discussion

Based on the bioinvasion risk of each port, biosecurity
control and bioinvasion treatment can be triggered by
our proposed biosecurity triggering method. The bioin-
vasion risk is evaluated by the invaded risk and invasion
risk spreading capability of each port. The former is the
incoming risk while the latter is the outgoing one. There-
fore, we can trigger the corresponding bioinvasion control

Table 2 Top 10 ports ranked by s-shell

Ranking 1 2 3 4 5

Port name  Seattle  Tokyo Callao Manzanillo  Incheon
s-shell 872 871 870 869 868
Ranking 6 7 8 9 10

Port name  Sydney  Kaohsiung  Brisbane  Perth Qingdao

s-shell 867 866 865 864 863
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Fig. 8 Top 100 ports with highest bioinvasion risk
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on a port j based on the following simple criterion:
R() = 6P;Inv) + (1 — 0)3() = T (4)

where R(j) is the bioinvasion risk of port j, and ﬁ,(]nv) and
5(j) are respectively the normalized P;(Inv) (the invaded
risk of port j calculated using (1)) and the normalized
s-shell value of that port; 0 < 6 < 1 is the tradeoff
weight. Smaller 6 means more attention should be paid
on the stepping-stone invasion and otherwise, the invaded
risk should be obtained more concern; T is the given
threshold helping to judge whether a bioinvasion treat-
ment should be triggered. Larger T means the bioinvasion
control starts up more hardly.

Figure 8 shows the 100 ports whose values of QT),' (Inv) +
(1 — 6)3(j) are larger than others, where § = 0.5, mean-
ing the incoming and outgoing risks are equally treated.
From Fig. 8, compared to other regions, there are more
bioinvasion risky ports concentrated in Western Europe
(including the Western European margin and the Mediter-
ranean) and the Asia-Pacific. These two regions are within
the rectangles in Fig. 8. According to the statistical data
[26], the number of recorded non-indigenous species has
grown by 173% and 204% respectively in the Western
European margin and the Mediterranean between 1970

Table 3 Top 10 ports ranked by bioinvasion risk

and 2013. Furthermore, the Asia-Pacific has been iden-
tified as a source for many of non-indigenous species
discovered elsewhere (especially the Asian clam, which
is assumed perhaps the most invasive species world-
wide)[27]. Hence, our analysis basically accords with the
real-world marine bioinvasion status.

Table 3 further lists the top 10 ports ranked by their
bioinvasion risk. The result shows Rotterdam is the most
invasively risky port. Maybe just because of its high bioin-
vasion risk, a Ballast Detention Centre involving a trans-
action of some €100 million, was designed for Rotterdam
harbor, which was the first custodial institution in the
Netherlands to be contracted to a public-private part-
nership in Government spending on aquatic invasive
species [28].

Conclusions

To address the issue of aquatic bioinvasion, we propose a
biosecurity triggering mechanism, where biosecurity con-
trols should be triggered once the bioinvasion risk of a
port is larger than a given threshold. The bioinvasion risk
in our paper is measured according to both the invaded
risk of a port and its ability of further spreading invaded
species, which are calculated based on big data. We list

Ranking 1 2 3 4 5

Port name Rotterdam Tokyo Singapore New York and New Jersey Kaohsiung
Ranking 6 7 8 9 10

Port name Dubai Seattle Manzanillo Incheon Colon
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100 ports in the world that have the highest bioinvasion
risk when the invaded risk and stepping-stone bioinvasion
risk are equally treated. There are two bioinvasion risk
intensive regions, namely the Western Europe (including
the Western European margin and the Mediterranean)
and the Asia-Pacific. According to the real-world data, the
number of recorded non-indigenous species has grown
rapidly in the Western European margin and the Mediter-
ranean. Furthermore, the Asia-Pacific has been identified
as a source for many of non-indigenous species discovered
elsewhere (especially the Asian clam, which is assumed
perhaps the most invasive species worldwide). Hence,
our analysis basically accords with the real-world marine
bioinvasion status. Topological importance (measured in
light of betweenness and closeness) will be considered for
designing a refined biosecurity triggering method in the
future.
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