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Abstract
Eosinophilic disorders encompass a large spectrum of heterogeneous diseases sharing the presence of elevated numbers of
eosinophils in blood and/or tissues. Among these disorders, the role of eosinophils can vary widely, ranging from a modest
participation in the disease process to the predominant perpetrator of tissue damage. In many cases, eosinophilic expansion is
polyclonal, driven by enhanced production of interleukin-5, mainly by type 2 helper cells (Th2 cells) with a possible contribution
of type 2 innate lymphoid cells (ILC2s). Among the key steps implicated in the establishment of type 2 immune responses,
leukocyte recruitment toward inflamed tissues is particularly relevant. Herein, the contribution of the chemo-attractant molecule
thymus and activation-regulated chemokine (TARC/CCL17) to type 2 immunity will be reviewed. The clinical relevance of this
chemokine and its target, C-C chemokine receptor 4 (CCR4), will be illustrated in the setting of various eosinophilic disorders.
Special emphasis will be put on the potential diagnostic, prognostic, and therapeutic implications related to activation of the
TARC/CCL17-CCR4 axis.
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Abbreviations
AA Allergic asthma
ABPA Allergic bronchopulmonary aspergillosis
ADCC Antibody-dependent cell cytotoxicity
AEC Absolute eosinophil count
AEP Acute eosinophilic pneumonia
AITL Angioimmunoblastic T cell lymphoma
ALI Acute lung injury
ANCA Anti-neutrophil cytoplasmic antibody
ARDS Acute respiratory distress syndrome
ATLL Adult T cell leukemia/lymphoma
AUC Area under the curve
BALF Bronchoalveolar lavage fluid

BM Bone marrow
BP Bullous pemphigoid
CC CC-chemokine
CCR CC-chemokine receptor
CEP Chronic eosinophilic pneumonia
CF Cystic fibrosis
CLA Cutaneous lymphocyte antigen
CRSwNP Chronic rhinosinusitis with nasal polyps
CRTH2 Chemoattractant receptor-homologous molecule

expressed on Th2 cells
CS Corticosteroid
DC Dendritic cell
DRESS Drug rash with eosinophilia and systemic

symptoms
EGPA Eosinophilic granulomatosis with polyangiitis
FEV1 Forced expired volume in one second
FIP1L1 Fip 1-like 1
GPCR G protein-coupled receptor
HC Healthy control
HDM House dust mite
HE Hypereosinophilia
hEoP Human eosinophil progenitor
HES Hypereosinophilic syndrome
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HHV Human herpes virus
ICOG-Eo International Cooperative Working Group on

Eosinophil Disorders
IFN Interferon
IHC Immunohistochemistry
IL Interleukin
ILC2 Type 2 innate lymphoid cell
LC Langerhans cell
LN Lymph node
MDC Macrophage-derived chemokine
MF Mycosis fungoides
MoAb Monoclonal antibody
NFkB Nuclear factor-kappa B
PBMC Peripheral blood mononuclear cell
PDGFRA Platelet-derived growth factor receptor A
PFS Progression free survival
PGD2 Prostaglandin D2
PTCL Peripheral T cell lymphoma
PI3K Phosphatidylinositol 3-kinase
SCORAD Scoring atopic dermatitis
SJS Stevens-Johnson syndrome
SS Sézary syndrome
STAT Signal transducer and activator of transcription
TARC Thymus and activation-regulated chemokine
TGF Transforming growth factor
TK Tyrosine kinase
TNF Tumor necrosis factor
Treg Regulatory T cell
TSLP Thymic stromal lymphopoietin
VCAM Vascular cell adhesion molecule

Introduction

A multitude of conditions are associated with the increased
presence of eosinophils in blood and/or tissues, ranging from
widespread—and generally benign—disorders such as aller-
gic asthma (AA) or atopic dermatitis (AD) to rare but severe
diseases such as myeloproliferative hypereosinophilic syn-
drome variants (M-HES). The relative contribution of eosin-
ophils to pathogenesis of these disorders is variable,
partnering with other immune cell types in the setting of com-
plex interactions (e.g., bullous pemphigoid) or acting as key
central effector cells contributing to tissue damage like in
PDGFRA/FIP1L1-positive M-HES [1, 2]. Among the factors
playing a role in the emergence of eosinophilia, interleukin
(IL)-5 is a key cytokine with many effects on this cell through-
out its life-span [3]. Sources of IL-5 include type 2 helper T
cells (Th2 cells), type 2 innate lymphoid cells (ILC2s), or
malignantly transformed cells, all of which can potentially
be involved in the pathophysiology of eosinophilic inflamma-
tion and associated diseases [3].

Thymus and activation-regulated chemokine (TARC), also
named CCL17, is a CC-chemokine commonly associated
with type 2 immune responses [4]. By binding to C-C chemo-
kine receptor type 4 (CCR4), which is, inter alia, expressed by
Th2 cells [5], TARC/CCL17 participates in trafficking of Th2
cells in eosinophil-associated disorders including AA and AD
and presumably of neoplastic cells in certain T cell lympho-
mas (e.g., angioimmunoblastic T cell lymphoma (AITL), my-
cosis fungoides (MF), and Sezary syndrome (SS)) [6]. Thus,
elevated serum and/or tissue levels of TARC/CCL17 and cel-
lular CCR4 expression observed in these disorders may serve
as biomarkers correlating with disease severity (e.g., AD [7])
and/or be targeted for therapeutic purposes [8].

Herein, current knowledge on the sources, properties, and
functions of TARC/CCL17 and its receptor CCR4 will be
reviewed extensively, after a brief overview of type 2 immune
responses, eosinophil biology, and the definition and classifi-
cation of eosinophilic disorders. Their participation in eosin-
ophilic inflammation will be illustrated through preclinical
models and clinical findings. Finally, we will discuss to which
extent the TARC/CCL17-CCR4 axis can serve as a diagnostic
or prognostic marker and/or as a therapeutic target in human
eosinophilic diseases.

General considerations about type 2 immune
responses and eosinophil biology

Type 2 immune cells typically participate in host defense against
helminths and are the hallmark of the so-called allergic reaction
in which genetically predisposed individuals develop immediate
hypersensitivity in response to an antigen, called an allergen,
after repeated exposures [9]. As a consequence of decreased
epithelial barrier integrity, for example following direct trauma,
viral infection, or a genetic defect, the immune system may
encounter environmental allergens (e.g., peptides derived from
pollen or house dust mite (HDM)) [9]. By secreting alarmins,
including IL-25, IL-33, and thymic stromal lymphopoietin
(TSLP), damaged epithelial cells activate ILC2s, the innate
non antigen-receptor-expressing counterpart of Th2 [10].
These cells act as a primary source of type 2 cytokines through
expression of the transcription factor GATA-3 [10], thereby
initiating type 2 responses by recruiting other innate cells (in-
cluding eosinophils) and promoting Th2 differentiation [11].

Activation and differentiation of naïve CD4T cells into IL-4,
IL-5, and IL-13 producing Th2 cells is a key step in the gener-
ation of type 2 immune responses. The underlying mechanisms
are complex, mainly involving IL-4-dependent activation of
signal transducer and activator of transcription(STAT)6 that
leads to the expression of GATA-3 which in turn collaborates
with STAT5 to drive the expression of IL-4 from the shared
IL4-IL13 gene within the T cell itself [12, 13]. Once activated,
Th2 cells migrate to sites of antigen/allergen exposure and
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accomplish their effector functions. This recruitment to in-
flamed tissue involves selective expression of integrins,
selectins, and chemokine receptors depending on their state of
activation and differentiation [4]. For example, circulating
CCR8+ CD4 T cells from healthy humans produce more IL-5
(a characteristic of highly differentiated Th2 cells) than CCR4+

CD4 T cells in which IL-4 is predominant [14]. Other
chemoattractant factors for human andmurine Th2 cells include
IL-33, CCL17, CCL18, CCL20, CCL22, CXCL10, CX3CL1,
leukotriene B4, and prostaglandin D2 (PGD2) [4, 15].

The effector functions of Th2 cells in tissue are largely
mediated by the canonical type 2 cytokines IL-4, IL-5, and
IL-13 which orchestrate the early and late phases of allergic
disease. Interleukin-4 favors isotype class-switching within
allergen-specific B cells, leading to production of IgE-type
immunoglobulins. By binding to the FcεRI expressed on mast
cells and basophils, allergen-specific IgE induces degranula-
tion and release of an array of mediators that account for the
typical manifestations of allergic reactions [9]. Interleukin-13
induces goblet cell hyperplasia, mucus secretion, smoothmus-
cle contraction, and subepithelial fibrosis [16].

Interleukin-5 is critically involved in the constitution of
eosinophilic inflammation. In healthy humans, eosinophils
account for 3–5% of blood leucocytes and are easily recog-
nizable by their bilobed nucleus and their cytoplasmic eosin-
avid granules. They originate in the bone marrow (BM),
where common myeloid progenitors give rise to eosinophilic
progenitors (hEoP) characterized by surface expression of the
IL-5 receptor alpha chain (IL-5Rα, CD125) that will be pre-
served throughout their life-cycle [17]. Human EoP will be-
come mature eosinophils through mechanisms relying on the
expression of several transcription factors (GATA-1,
C/EBPα, C/EBPε, and PU-1) and growth factors including
IL-5, IL-3, and granulocyte macrophage colony stimulating
factor (GM-CSF) [18, 19].

Eosinophils are the predominant cell type in humans and
mice expressing the IL-5 receptor at high levels, explaining
the high specificity of IL-5 for this cell-type. Interleukin-5
forms homodimers that bind to the IL-5Rα chain which is
coupled with the signal-transducing common beta chain [3].
Effects of IL-5 include eosinophil development through pro-
liferation, differentiation, and maturation of hEoPs; egress of
mature eosinophils from bone marrow; homing and activation
in inflamed tissue; and inhibition of peripheral apoptosis [3].
ILC2s represent an important source of IL-5 in homeostatic
conditions, supporting for example the colonization of the
small intestine and visceral adipose tissue by eosinophils in
mice [20, 21]. In pathological situations however, IL-5 derives
from Th2 cells and mast cells, in addition to ILC2s [3].

Eosinophil trafficking can be independent of IL-5 as dem-
onstrated by the presence of eosinophils in tissues from IL-5-
deficient mice [22]. Several chemokines collectively called
eotaxins (eotaxin-1 (CCL11), eotaxin-2 (CCL24), and

eotaxin-3 (CCL26)) bind to eosinophil-expressed CCR3 and
are key factors in eosinophil chemotaxis, both in homeostatic
(CCL11) [23] and inflammatory (CCL24 and CCL26) condi-
tions [24]. Cellular sources of eotaxins include epithelial cells,
fibroblasts, smooth muscle cells, endothelial cells,
chondrocytes, and macrophages, and their synthesis is depen-
dent on IL-4 and IL-13 [25, 26]. VCAM-1/VLA4 [27],
PGD2/chemoattractant receptor-homologous molecule
expressed on Th2 ce l l s (CRTH2) [28–30] , and
TSLP/TSLPR [31] interactions are also involved in eosinophil
recruitment. The contribution of the TARC/CCL17-CCR4 ax-
is in eosinophil trafficking remains debated, as CCR4 expres-
sion by blood and/or lung/bronchoalveolar lavage fluid
(BALF) eosinophils has been observed in mice and humans
in some [32, 33] but not all studies [34–38].

When engaged in an inflammatory response, eosinophils
display a series of effector functions that are largely mediated
by pre-formed mediators localized in so-called primary and
specific (or crystalloid) granules and in lipid bodies. These
mediators, which have been extensively described elsewhere
[39], together with reactive oxygen species and IgE antibody–
dependent cellular cytotoxicity (ADCC) contribute to host
defense against helminths and ectoparasites, even if in vivo
data are scarce in humans and divergent in mouse [19].
Furthermore, these effector functions account for eosinophil-
mediated cytotoxicity and fibrosis, pro- and anti-inflammatory
effects, and antiviral activity to name a few [40] and may
cause significant damage in surrounding tissue.

Eosinophilic disease

Eosinophilic disorders encompass a wide range of diseases,
from frequent and benign to rare and severe, which are char-
acterized by increased blood and/or tissue eosinophilia asso-
ciated with variable degrees of eosinophil-mediated damage.
Indeed, eosinophil activation and degranulation can result in
major, potentially irreversible or lethal organ dysfunction and
damage. The archetype of eosinophil-induced toxicity is
endomyocardial inflammation favoring formation of mural
thrombi and subendocardial fibrosis that may progress to re-
strictive heart failure. Other deleterious consequences of
sustained eosinophilia can occur in all organs including most
commonly the skin, lungs, central and peripheral nervous sys-
tems, digestive tract, and connective tissue [41].

The definition and classification of eosinophilic disorders
were revisited in 2011 by the “International Cooperative
Working Group on Eosinophil Disorders” (ICOG-EO), more
than 35 years after the first formal elaboration of criteria de-
fining the hypereosinophilic syndrome (HES) [42, 43].
Eosinophilia is defined as an absolute blood eosinophil count
(AEC) above 0.5×109/L, while the term hypereosinophilia
(HE) applies when an AEC above 1.5×109/L is observed at
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least twice, with an interval of at least 1 month. In tissue, HE is
present when (1) the percentage of eosinophils in BM exceeds
20% of all nucleated cells and/or (2) a pathologist considers
that tissue infiltration by eosinophils is excessive and/or (3)
marked deposition of eosinophil granule proteins is found.
The term HES is reserved for patients fulfilling the criteria
for blood and/or tissue HE and presenting with organ damage
and/or dysfunction attributable to eosinophils, after exclusion
of other disorders or conditions as potential cause(s) of the
observed organ damage [42].

Hypereosinophilia can be further classified into variants
[42]: proliferation of eosinophils may be clonal and is quali-
fied as neoplastic (HEN), whereas polyclonal expansion of
eosinophils driven by enhanced production of growth factors
(mainly IL-5) is qualified as reactive (HER). When the mech-
anism underlying increased eosinophilopoiesis is unknown
and no organ dysfunction or symptoms are present, the term
HE of undetermined significance (HEUS) applies. Rarely, HE
can be detected in several members of a same family and is
inherited, defining familial HE.

The first step in the diagnostic approach to eosinophilia or
HE is to rule out a reactive/secondary cause [44], such as aller-
gic disease (e.g., severe eosinophilic asthma), parasitosis (e.g.,
helminths, scabies), adverse drug reactions (e.g., anticonvul-
sants), and cancer (e.g., certain adenocarcinomas, Hodgkin’s
or T cell lymphomas). The second step is to assess for potential
eosinophil-induced organ damage. If present, diagnosis of HES
must be considered, and further evaluation for HES disease
variants is warranted. Neoplastic (HESN, or primary, clonal,
myeloproliferative) HES is associated in approximately 80%
of cases with a deletion on chromosome 4q12, creating the Fip
1-like 1 (FIP1L1)/platelet-derived growth factor receptor alpha
(PDGFRA) fusion gene, which encodes a constitutively active
tyrosine kinase (TK) [45]. Reactive (HESR, or secondary) HES
describes situations where reactive HE causes organ damage
and dysfunction. Besides classical causes of secondary HE (see
above), this entity encompasses lymphocytic variant HES (L-
HES) where HE is caused by enhanced IL-5 production by a
clonal T cell subset with an abnormal surface phenotype [46].
Finally, the term idiopathic HES (I-HES) is used when the
diagnostic work-up fails to identify a known etiology for eo-
sinophilic expansion. This last category accounts for more than
half of patients presenting with HES in expert centers [47].

The biology of thymus
and activation-regulated chemokine

TARC/CCL17: early discoveries, cellular expression,
and mechanisms of synthesis

With the discovery of TARC/CCL17 in 1996, Imai et al. were
the first to describe a CC chemokine with selective activity for

lymphocytes [48]. Its name reflects the observed constitutive
expression in the human thymus and its induction in peripheral
bloodmononuclear cells (PBMCs) following activation by phy-
tohemagglutinin [48]. One year later, the same team identified
CCR4 as the main receptor for TARC/CCL17 and showed that
CCR4 mRNA was expressed in CD4+ T cells [49].

Human TARC/CCL17 is an 8-kDa protein composed of 71
amino acids and is encoded on chromosome 16q13 [48, 50].
Murine studies have shown that steady-state TARC/CCL17
synthesis occurs in various tissues including the thymus, lymph
nodes (LNs), gut, and bronchi but not in the spleen. The cellular
sources of this chemokine were mainly Langerhans cells (LCs)
and mature myeloid dendritic cells (DCs) [51]. In humans,
monocyte-derived DCs were shown to synthetize
TARC/CCL17 in response to IL-3 and tumor necrosis factor
alpha (TNF-α) in presence of IL-4 in in vitro cultures [5].
Subsequently, several immune and non-immune cellular
sources of TARC/CCL17were identified, as detailed in Table 1.

Molecular mechanisms underlying TARC/CCL17 synthe-
sis and secretion are variable depending on the nature of the
cell and the stimuli. In immune cells, IL-4 stimulates
TARC/CCL17 synthesis, synergizing with other cytokines
depending on the cell type [5, 52–54]. STAT6 activation is a
key step in IL-4-induced TARC/CCL17 synthesis by binding
directly to the CCL17 gene promoter via two binding sites
(Fig. 1) [55]. In keratinocytes and bronchial and alveolar ep-
ithelial cells, TARC/CCL17 synthesis is triggered by TNF-α
and interferon (IFN)-γ that act synergistically in a nuclear
factor-kappa B (NFκB)-dependent manner [56–58], consis-
tent with the presence of a NFκB binding site in the CCL17
promoter [59]. The effect of IL-4 varies, with an inhibitory
effect observed in keratinocytes [56, 60] while a co-
stimulatory effect applies to other cell types (Table 1).

TARC/CCL17 selectively binds to CCR4

CCR4 belongs to the G protein-coupled receptor (GPCR)
family and is thus composed of seven transmembrane do-
mains [61]. In addition to TARC/CCL17, CCR4 binds
macrophage-derived chemokine (MDC/CCL22) which shares
37% homology in its amino acid sequence [6]. MDC/CCL22
is also expressed in the human thymus [62] and produced by
DC, macrophages, and monocytes [63–65]. MDC/CCL22 ex-
hibits 2- to 3-times higher affinity for CCR4 compared with
TARC/CCL17 [62] and is more potent in promoting integrin-
dependent arrest of lymphocytes on VCAM-1 [66] as well as
inducing CCR4 desensitization and internalization [67]. These
differences may be explained by different CCR4 conforma-
tions. In human T cells, the major R1 form binds both
chemokines while the minor R2 forms only bind MDC/
CCL22. When all R1 receptors are occupied, MDC/CCL22
is still able to increase chemotaxis through R2 receptors
whereas an additive effect of TARC/CCL17 is not possible
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[68]. Furthermore, GPCR-induced chemoattraction by MDC/
CCL22 of in vitro differentiated murine Th2 cells was shown
to rely not only on the phosphatidylinositol 3-kinase (PI3K)
signaling pathway (shared with TARC/CCL17) but also on
beta-arrestin-2, enhancing chemotaxis [69]. Whether the acti-
vation of this pathway by MDC/CCL22 is linked to a distinct
CCR4 conformation is not known.

Functional characterization of CCR4-expressing CD4+ T
cells supports their Th2 differentiation as they spontaneously
synthetize IL-4 and IL-5 but no IFN-γ in in vitro cultures [5].
These early discoveries suggested a potential role of
TARC/CCL17 and CCR4-expressing cells in type 2 immune
responses as discussed below. Besides Th2 cells, several other
cell types involved in type 2 immune responses express

Fig. 1 Identified molecular mechanisms underlying TARC/CCL17
synthesis in selected cell types. Mechanisms involved in induction of
TARC/CCL17 synthesis are shown schematically for a human
keratinocyte cell lines (HaCaT) and b human monocytes and murine
bone marrow–derived macrophages. In HaCaT cells, TNF-α and IFN-γ
induce JAK2, p38 MAPK, and Raf-1 activation by phosphorylation after
ligation to their dedicated receptors [168, 170]. Subsequently, activated
p38 MAPK phosphorylates STAT1 and NFκB, inducing their activation
and translocation into the nucleus to trigger TARC/CCL17 synthesis
[169]. b In human monocytes and murine macrophages, IL-4 and IL-
13-induced phosphorylation and homodimerization of STAT6
(following engagement of both types of IL-4 receptors) triggers
TARC/CCL17 expression directly by binding the TARC gene promoter
[53, 206]. In addition, activated STAT6 increases transcription of IRF4
and JMJD3, and the latter induces the demethylation of repressive
H3K27me3 in the IRF4 promoter region, resulting in enhanced
expression of the transcription factor IRF4 that binds directly to the
TARC/CCL17 promoter (*the latter mechanism is demonstrated after

IL-4 but not IL-13-induction of STAT6) [53]. A similar pathway is
involved in GM-CSF-induced TARC/CCL17 transcription, probably
through STAT5 activation [52]. Engagement of the type 1 IL-4Rα/
common-γ chain heterodimeric receptor by IL-4 also recruits IRS2,
inducing its phosphorylation and activation. In turn, IRS2
phosphorylates/activates the PI3K/AKT pathway, ultimately leading to
TARC/CCL17 transcription [206]. SOCS1 expression is also induced by
IL-4 in healthy human monocytes and has been shown to interact directly
with IRS2 and downregulate its activity, through ubiquitination and
proteasomal degradation [206]. This figure was created with
BioRender.com. IFN interferon, IL interleukin, IRF interferon
regulatory factor, IRS insulin receptor substrate, JAK Janus kinase,
JMJD3 Jumonji domain-containing protein D3, MAPK mitogen-
activated protein kinases, NFκB nuclear factor-kappa B, PI3K
phosphatidylinositol 3-kinase, STAT signal transducer and activator of
transcription, SOCS suppressor of cytokine signaling protein, TNF tumor
necrosis factor, TYK tyrosine kinase
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CCR4, including ILC2s [70]. Other populations reported to be
CCR4-positive are listed in Table 2.

TARC and its relevance in eosinophilic
diseases

Several studies have shown that TARC/CCL17 may be in-
creased in serum and/or tissues in various eosinophilic condi-
tions. These findings are summarized in Table 3 and described
in more detail below.

Skin disorders

Atopic dermatitis (AD) is a chronic inflammatory disease char-
acterized by upregulation of Th2 and Th22 cytokines in the
acute phase, while a Th1 and Th17 profile has been demonstrat-
ed by gene expression studies in chronic lesions [71]. A type 2
immune response is central in the pathogenesis of AD, with
production of allergen-specific IgE-type antibodies [71].
Eosinophilia is common in blood and skin in this disorder, but
is not likely to play a central role in established lesions, as sug-
gested by the lack of clear-cut efficacy of the anti-IL-5 mono-
clonal antibody (MoAb) mepolizumab in clinical trials [72, 73].

TARC/CCL17 is expressed in both acute and chronic
lesions of AD by epidermal keratinocytes, dermal-infiltrating
cells (CD3+ T cells and CD1a+ DC), and endothelial
cells, while it is absent in normal skin [74]. Consequently,
higher levels of serum (s)TARC/CCL17 are observed in AD
compared to healthy controls (HC) [74]. Their levels correlate
with AEC and weakly with sIL-2R-alpha (sCD25) levels, a
known biomarker of T cell activation in vivo [75, 76]. T cells
expressing CCR4 are detectable in lesional skin at the
dermoepidermal junction, and the proportion of circulating

CD4+CD45RO+ cells expressing CCR4 is higher in patients
with AD compared to HC [75]. Of note, in AD, most of the
circulating CCR4+ T cells were also positive for cutaneous
lymphocyte antigen (CLA) in two other studies [77, 78].

The contribution of the TARC/CCL17-CCR4 axis to AD
pathogenesis involves several mechanisms. We previously
mentioned the importance of TNF-α and IFN-γ in
TARC/CCL17 synthesis by the keratinocyte cell line HaCaT
and its repression by IL-4. Furthermore, in vitro cultured pe-
ripheral T cells fromHC produce IL-22, TNF-α, and IFN-γ in
response to HDM extracts, whereas HaCaT cells upregulate
IL-22Rα at their surface. Activation of the IL-22/IL-22Rα
axis leads to production of TARC/CCL17, IL-1α, and IL-6
by HaCaT cells and recruitment of CCR4+ T cells [79].
Finally, regulatory CD4+CD25+ T cells (Treg) are known to
express CCR4 and display higher expression levels in patients
with severe AD compared to HC combined with a reduced
ability to secrete transforming growth factor (TGF)-β and IL-
10 and to suppress autologous effector T cells in vitro, indi-
cating the probable recruitment of functionally impaired Tregs
into AD skin [80].

Drug rash with eosinophilia and systemic symptoms
(DRESS) is a severe drug reaction associating a dissemi-
nated rash, fever, eosinophilia, atypical circulating lym-
phocytes, lymphadenopathy, and organ dysfunction [81].
Serum TARC/CCL17 levels may be extremely elevated in
this disorder, and CD11c+ DC have been shown to be the
main source in lesional skin [82]. The level of sTARC/
CCL17 correlates positively with the severity of skin
manifestations as well as AEC and sCD25 [82] and is
significantly higher in patients with demonstrated HHV-6
reactivation [83], although the causal link between viral
reactivation and TARC/CCL17 over-expression remains
elusive. Some argue that increased TARC/CCL17 could
attract Tregs and alter antiviral responses leading to
HHV-6 reactivation or, alternatively, TARC/CCL17 could
directly induce HHV-6 activation through the chemokine
receptor homologues of HHV-6 [83, 84].

Bullous pemphigoid (BP) is an autoimmune blistering dis-
ease characterized by autoantibodies targeting hemidesmosomes
and is often accompanied by blood eosinophilia, elevated serum
IgE levels, and a dermal infiltrate mainly composed of lympho-
cytes and eosinophils [1]. Several lymphocyte subsets seem im-
plicated in BP including Th2 and Th17 cells [1]. Eosinophils are
thought to play a pathogenic role since their degranulation is
induced by FcεRI engagement by anti-basement membrane
IgE, leading to blister formation in a humanized mouse model
of BP [85]. Elevated TARC/CCL17 levels have been found in
blister fluid and serum from patients with BP, and this chemo-
kine was detected by immunohistochemistry (IHC) in basal epi-
dermal keratinocytes from lesional skin of BP patients while
CCR4 was expressed by dermal CD4+ and peripheral blood
CD4+CD45RO+ T cells [86].

Table 2 Human cells and tissues with demonstrated CCR4 expression

Cells expressing CCR4 in humans Reference(s)

Type 2 helper cells (Th2) [5, 180, 181]

CLA+ T cells [77, 182]

Type 2 polarized CD8+ T cells (Tc2) [183, 184]

Regulatory T cells (Tregs) [80, 185]

T helper 17 cells (Th17) [186]

T helper 22 cells (Th22) [187]

Type 2 innate lymphoid cells (ILC2s) [70, 188, 189]

Airway eosinophils (AA patients) [32]

Airway mast cells (AA patients) [190]

Plasmacytoid DCs (AA patients) [191]

Conventional DCs (AA patients) [192]

Airway epithelial cells (BEAS-2B, A549 cell lines) [193]
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Senile erythroderma Erythroderma is a debilitating skin disease
defined as more than 90% of skin surface affected by erythema
and scaling. More than a quarter of patients with erythroderma
have peripheral eosinophilia [87]. Erythroderma may be idio-
pathic or secondary, occurring in the setting of disorders such
as psoriasis, atopy, drug hypersensitivity (including DRESS),
MF, or SS, most of which are associated with elevated
sTARC/CCL17. In one series of 68 patients with erythroderma
aged 65 years or older, of which 53% had a detectable secondary
cause, sTARC/CCL17, serum IgE, and the level of blood and
tissue eosinophilia did not differ between idiopathic and second-
ary subgroups [88]. Interestingly, patients with senile
erythroderma (predominantly male in this study) had lower IgE
levels and a lower ratio of antigen-specific IgE/total IgE but
higher levels of sTARC/CCL17 than patients with AD suggest-
ing that IgE synthesis in this disorder is the consequence of a Th2
shift independent of specific allergens [88, 89].

Other skin disorders Elevated sTARC/CCL17 levels have
been reported sporadically in several other dermatological dis-
orders, namely, eosinophilic pustular folliculitis [90], chronic
spontaneous urticaria [91], maculopapular exanthema [92],
and Stevens-Johnson syndrome/toxic epidermal necrolysis
(although levels are significantly lower than in DRESS)
[93]. Patients with non-episodic angioedema with eosinophil-
ia were shown to have elevated sTARC/CCL17 levels at pre-
sentation that regressed in parallel with AEC in response to
corticosteroid (CS) therapy in one study [94]. In episodic an-
gioedema, serum TARC levels are also elevated and cycle
with disease activity as discussed below [95].

Pulmonary disorders

Allergic asthma (AA) is a chronic respiratory disease often
characterized by eosinophilic inflammation of the airways to-
gether with increased mucus secretion and bronchial hyperre-
activity. The underlying type 2 immune response combines
ILC2s that represent an early source of type 2 cytokines after
allergen challenge and Th2 cells [96]. Consistent with the key
role of eosinophils in a subgroup of patients, biologics
targeting IL-5 and its receptor reduce exacerbations and im-
prove lung function in severe eosinophilic asthma and have
been approved as add-on therapies in this indication [97].

The TARC/CCL17-CCR4 axis has been well studied in asth-
ma, since it contributes at least partially to Th2 cell recruitment to
the lung. Ex vivo allergen challenge of human bronchial explants
has been shown to induce synthesis of functionally active
TARC/CCL17 in patients with asthma but not HC [98].
Furthermore, several studies in asthmatic patients have reported
induction of TARC/CCL17 in bronchoalveolar lavage fluid
(BALF) after allergen challenge [99, 100]. Cellular sources of
TARC/CCL17 in this context include not only bronchial and
alveolar epithelial cells [57, 58, 101] but also CD11c+ DCsT
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[102], M2 macrophages [103], and CD4+CD45RA+ T cells
[104]. Eosinophils themselves are a potential source of
TARC/CCL17 and MDC/CCL22 as demonstrated in a mouse
model of allergic airway inflammation [105] and after in vitro
stimulation with different cytokines in humans [106]. Altogether,
these data indicate that TARC/CCL17may contribute to effector
T cell chemotaxis to lungs in asthma. Although it has been
shown that CCR4+ T cells are the main source of type 2 cyto-
kines in asthmatic patients [98], the functional relevance of the
TARC/CCL17-CCR4 axis in AA remains to be elucidated, as
targeting this pathway in animalmodels has produced conflicting
results with regard to the consequences on airway
hyperresponsiveness and airway inflammation [102, 107–110].

Other airway disorders Patients with allergic rhinitis and
chronic rhinosinusitis with nasal polyps (CRSwNP) were re-
ported to have higher TARC/CCL17 levels in nasal secretions
than patients with non-allergic, non-infectious rhinitis and
chronic rhinosinusitis without nasal polyps, and higher
sTARC/CCL17 than HC [111]. Elevated sTARC/CCL17
levels have also been observed in patients with allergic
bronchopulmonary aspergillosis (ABPA) both in the setting
of cystic fibrosis (CF) and AA [112]. In patients with CF, a
positive correlation was observed with A. fumigatus-specific
IgE [112].

Eosinophilic granulomatosis with polyangiitis (EGPA,
formerly Churg-Strauss syndrome) is a rare granulomatous,
eosinophil-rich, necrotizing vasculitis affecting small- and
medium-sized vessels and associated with late-onset asthma
and eosinophilia [113]. In 30–40% of cases, EGPA is associ-
ated with antineutrophil-cytoplasmic-antibodies (ANCAs)
[114]. The pathogenesis of EGPA is complex, involving type
2 immunity, B cell activation with antibody production, and
Th17 cells [114]. Patients with EGPA often have a history of
allergic disease and high serum IgE levels [114].
TARC/CCL17 is expressed in active EGPA lesions in associ-
ation with eosinophilic infiltrates, colocalizes with CRTH2+ T
cells, and elevated serum levels have been reported in several
studies [115–117]. sTARC/CCL17 has been shown to corre-
late with disease activity, AEC, and serum IgE levels in this
disease [115].

Acute and chronic eosinophilic pneumonia (AEP and
CEP) are characterized by eosinophilic infiltration of the lung
parenchyma, and the former may progress to an acute respi-
ratory distress syndrome in some cases [118]. Blood eosino-
phil counts are generally within normal ranges at diagnosis of
AEP while they are increased in 80% of patients with CEP
[118]. Elevated levels of type 2 cytokines and TARC/CCL17
in BALF have been reported in both disorders [119]. There
was a tendency toward higher TARC/CCL17 levels in AEP,
and a positive correlation was observed with IL-5 and IL-13 in
this disorder [119]. Similarly, sTARC/CCL17 levels were sig-
nificantly higher in AEP than in sarcoidosis, hypersensitivity

pneumonitis, and interstitial pulmonary fibrosis [119]. A chal-
lenge with the suspected trigger of AEP in two patients was
followed by a rise in sTARC/CCL17 within 16 h after prov-
ocation [120]. Cellular sources of TARC/CCL17 identified in
AEP comprise alveolar DC and macrophages [121]. CCR4-
positive CD4+ T cells were significantly higher in BALF than
in blood in patients with AEP and CEP and were not observed
in BALF from HC or patients with sarcoidosis [122]; their
numbers correlated positively with BALF TARC/CCL17,
MDC/CCL22, and IL-5 [122]. Ultimately, transendothelial
migration of eosinophils in response to BALF from patients
with AEP, assessed in vitro using human pulmonary micro-
vascular cells, was not abrogated by a CCR4 antagonist
in vitro [123]. Together, these findings highlight the increased
presence and probable role of the CCR4/CCL17 axis in T cell
chemotaxis to the lungs in AEP, but other factors may con-
tribute to eosinophil accumulation.

Lymphoproliferative malignancies

Mycosis fungoides (MF) and Sezary syndrome (SS) be-
long to the spectrum of cutaneous T cell lymphoma and
are characterized by clonal proliferation of mature T cells
in the skin [124]. Disease course in MF is progressive
while SS is more aggressive and generally combines cir-
culating neoplastic T cells, erythroderma, and lymphade-
nopathy [125]. As disease progresses, the cytokine pro-
file in MF evolves from type 1 to type 2, while SS
typically displays only a type 2 profile where cytokine
levels correlate with blood eosinophilia and serum IgE
[125]. The atypical lymphoid cells that characterize this
disease spectrum have hyperchromatic cerebriform nu-
clei, they can be detected in peripheral blood, and their
distribution within tissue depends on the disease stage
[125, 126]. These cells typically express CLA and
CCR4 at their surface, while TARC/CCL17 is present
within keratinocytes in affected skin [74]. sTARC/
CCL17 levels are elevated in all disease stages but are
significantly higher in advanced (tumor) stage MF and in
SS [127, 128].

Expression of CCR4 may be observed in other T cell
malignancies as well, such as angioimmunoblastic T cell
lymphoma (AITL), unspecified peripheral T cell lympho-
ma (PTCL-U), and adult T cell leukemia/lymphoma
(ATLL) [129]. TARC/CCL17 was detected by IHC in
lymph nodes from patients with AITL and PTCL-U with-
in cells with dendritic morphology, and its expression
level correlated with eosinophilic infiltration in lympho-
matous tissue [130]. Elevated TARC/CCL17, MDC/
CCL22, and CCR4 mRNA expression was reported in
skin from patients with ATLL compared with HC
[131]. In vitro chemotaxis assays showing that the
CCR4+ malignant T cells isolated from peripheral blood
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of ATL patients respond strongly to TARC/CCL17 and
MDC/CCL22 indicate that this axis plays a functional
role in pathogenesis of this disorder [131].

Hypereosinophilic syndromes

Lymphocytic variant HES (L-HES) is an indolent T
cell lymphoproliferative disorder in which the clonal
cells display an abnormal surface phenotype (most often
CD3-CD4+TCRα/β-) and produce type 2 cytokines in-
cluding IL-5 [132], explaining its classification as
HESR. Common clinical manifestations include skin le-
sions, angioedema, lymphadenopathy, and rheumatologi-
cal involvement [133, 134]. In a study investigating che-
mokine receptor expression on these naturally occurring
human Th2 cells, our group showed that CD3−CD4+

cells expressed CCR5, CXCR4, and CCR4, although
the latter was observed only when cells were left in au-
tologous serum-free milieu suggesting that CCR4 was
internalized in vivo [135]. Measurement of its ligands
TARC/CCL17 and MDC/CCL22 in serum from subjects
with CD3-CD4+ L-HES confirmed that sTARC/CCL17,
but not sMDC/CCL22, levels were markedly elevated
compared to controls, a finding that was subsequently
observed in L-HES patients with other phenotypically
aberrant T cell subsets as well [135, 136]. Cellular
sources of TARC/CCL17 have not yet been explored
in vivo, but it was shown in vitro that IL-4 issued from
CD3−CD4+ cells can stimulate its production by DC, but
not by eosinophils or T cells [135]. A subset of patients
with CD3-CD4+ L-HES present clinically with Gleich’s
syndrome, also known as episodic angioedema with eo-
sinophilia. One study has shown that serum IL-5 and
sTARC/CCL17 peak prior to blood eosinophilia and
symptoms in such patients, suggesting an early role for
this chemokine in the cascade of events leading to a flare
[95].

Besides those with well-documented L-HES, a subset of
patients with I-HES have higher sTARC/CCL17 levels than
HC. One study showed that PBMC isolated from these pa-
tients display some degree of spontaneous IL-5 production
in vitro, contrasting with I-HES patients with normal
sTARC/CCL17 levels [136]. The proportion of I-HES pa-
tients with above-normal sTARC/CCL17 levels reached
36% in a large retrospective multicentric study, although the
geometric mean was lower than in patients with L-HES (3406
vs 12,979 pg/mL respectively, p=0.02) [137].

Clinical implications

Activation of the TARC/CCL17-CCR4 axis, as reflected
by elevated sTARC/CCL17 levels, may provide clues to

the differential diagnosis of certain inflammatory disor-
ders, predict disease severity, and/or help monitor disease
activity (Table 3). In certain instances, this axis plays a
pathogenic role, either because TARC/CCL17 is a key fac-
tor eliciting inflammation or because aberrant cells that
drive pathogenesis express CCR4, and therefore represents
a potential therapeutic target.

TARC as a biomarker for diagnosis, disease
activity, and prediction of disease severity
and treatment responses

Atopic dermatitis In AD patients, an early study showed that
sTARC/CCL17 correlated with disease activity (assessed by
Scoring AD index, SCORAD) and AEC [75]. A prospective
study conducted on a large cohort (n=320) of adults with AD
highlighted the accuracy of sTARC/CCL17 to monitor dis-
ease severity given the positive relationship between this che-
mokine and clinical skin scores [7]. Moreover, elevated
sTARC/CCL17 at presentation could also predict a more se-
vere course, although this remains to be firmly established
given some observed heterogeneity in results so far [7].

DRESS In patients with severe drug reactions, elevated
sTARC/CCL17 has been shown to be a discriminating factor
for diagnosis of DRESS rather than Steven-Johnson syndrome
and maculopapular erythema [83]. In patients with DRESS,
sTARC/CCL17 correlates with the severity of skin manifes-
tations at onset and decreases together with skin healing and
normalization of serum IL-5 [82].

Bullous pemphigoid A positive correlation has been observed
between AEC and sTARC/CCL17 as well as disease activity,
indirectly suggesting that sTARC/CCL17 could also correlate
with disease activity [86]. In this line, sTARC/CCL17 levels
were shown to correlate with the BP Disease Area Index score
as well as urticaria/erythema scores in a series of 20 BP pa-
tients [138]. Serum TARC/CCL17 may actually be a better
marker of disease activity than anti-BP180 autoantibodies, as
fluctuations occurred earlier in patients experiencing disease
flares in a recent study [138].

Senile erythroderma Although a positive correlation has been
observed between IgE and sTARC/CCL17 in patients with
both idiopathic and secondary senile erythroderma [88],
sTARC/CCL17 was more markedly elevated in patients with
chronic idiopathic erythroderma (predominantly male) in one
study, leading the authors to propose the use of a sTARC/IgE
ratio to distinguish this patient sub-group from elderly patients
with AD, showing a sensitivity of 80% and a specificity of
95% when the ratio is superior to 7.24 [89].
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Chronic obstructive pulmonary disease TARC/CCL17was an
independent predictive biomarker for the rapid decline in
forced expiratory volume in one second (FEV1) in stable pa-
tients with COPD [139].

EGPA sTARC/CCL17 is elevated in EGPA and correlates with
disease activity [115]. Unfortunately, neither eotaxin-3/
CCL26 nor TARC/CCL17 had sufficient accuracy for
relapse-prediction in previously treated patients [116]. In ad-
dition, neither chemokine was useful to distinguish patients
with ANCA-negative EGPA from those with HES presenting
with a history of asthma and sinusitis [117].

ABPA sTARC/CCL17 was shown to be more reliable than
total IgE and A. fumigatus-specific IgE in serum for the diag-
nosis of ABPA in patients with CF and helped discriminate
this condition from simple colonization or sensitization to
A. fumigatus where levels are normal [112]. In addition, the
rise in sTARC/CCL17 precedes that of IgE during disease
development, offering the potential for early detection and
management of this debilitating condition [140]. Higher
sTARC/CCL17 levels may predict more severe disease as
the levels of this chemokine correlated negatively with lung
function in CF patients with ABPA [112].

Acute eosinophilic pneumonia In patients with acute lung
injury (ALI), sTARC/CCL17 levels accurately differentiate
patients with severe forms of AEP from those with acute in-
terstitial pneumonia, pneumonia-associated ALI/ARDS, and
patients with alveolar hemorrhage. In fact, among several can-
didate biomarkers (including eotaxin-1/CCL11, Krebs von
den Lungen-6 (KL-6) and surfactant protein-D), sTARC/
CCL17 had the largest AUC (1.00, 95% CI 1.00 to 1.00) with
a concentration threshold from 6259 to 7040 pg/mL [120].
Furthermore, sTARC/CCL17 levels correlated with those in
BALF during active disease and decreased in parallel with
regression of symptoms [120].

T cell lymphoma In MF and SS, CCR4+ cell numbers increase
in parallel with disease progression [128], and higher expres-
sion of CCR3 and CCR4 by lymphomatous cells in skin sam-
ples is associated with poor survival [141]. In MF, sTARC/
CCL17 were significantly higher in tumor stage than in patch
or plaque stage [127]. CCR4 expression by malignant cells is
also associated with a poor prognosis in patients with ATLL
and PTCL-U [129, 142].

Hypereosinophilic syndrome In patients presenting with per-
sistent unexplained HE, markedly elevated sTARC/CCL17
levels are associated with L-HES whereas normal values are
observed in patients with no evidence for underlying Th2-
driven pathogenesis [136]. In a recent study on a large cohort
of HES patients, our group determined that a threshold value

of 3000 pg/ml should raise suspicion of L-HES [143] although
similarly elevated levels were also observed in patients with I-
HES presenting clinically as eosinophilic dermatitis. A rise in
sTARC/CCL17 could also be an early marker heralding a
disease flare in patients with episodic angioedema with eosin-
ophilia associated with CD3-CD4+ T cells [95].

Furthermore, sTARC/CCL17 levels may help predict treat-
ment responses in HES. In a large multi-center retrospective
study, the geometric mean sTARC/CCL17 level was signifi-
cantly higher in CS-responsive patients compared to non-
responders (979 vs 242 pg/mL, p=0.01) [137]. In another
study evaluating the efficacy of mepolizumab in patients with
FIP1L1-PDGFRA-negative HES, a suboptimal hematological
response to mepolizumab was observed in patients with ele-
vated sTARC/CCL17 levels, whether or not they had L-HES
[144].

The TARC/CCL17-CCR4 pathway as a therapeutic
target in eosinophil-associated disorders

To date, two main approaches have been employed to target
CCR4-positive cells and/or antagonize the actions of
TARC/CCL17 andMDC/CCL22. The first one is represented
by a MoAb specifically targeting the extracellular portion of
CCR4, namely, mogamulizumab (KW0761). It is a
defucosylated humanized IgG1 kappa MoAb that destroys
CCR4-positive cells through ADCC and is approved for the
treatment of certain T cell neoplasms [8, 145]. Of note,
mogamulizumab administration can be associated with occur-
rence of severe skin reactions (e.g., SJS), probably as a con-
sequence of CCR4+ Treg depletion [146]. Other MoAbs
targeting different regions and presumably different confor-
mations of CCR4 have also been designed with the potential
to specifically interfere with TARC/CCL17 or MDC/CCL22
activities [68]. The second approach consists in small-
molecule CCR4 antagonists [61]. Despite encouraging data
from pre-clinical models, none of these small molecules have
been registered to date [145].

Studies investigating the functional and clinical impact of
targeting the TARC/CCL17-CCR4 axis have been conducted
in murine models and in humans for several of the aforemen-
tioned eosinophil-associated diseases (Table 4).

Atopic dermatitis In an ovalbumin-sensitized mouse model,
the CCR4 antagonist compound 22 reduced AD-like lesions
as well as CCR4+ T cell infiltrates in the skin [147]. In a
canine model of AD however, another antagonist (AZ445)
was unable to significantly reduce skin lesions compared to
CS, although CCR4+ T cell numbers were locally reduced
[148]. Similar antagonists are in development for humans
[149]. Of note, the histamine H4 receptor antagonist (ZPL-
3893787) which allegedly reduces TARC/CCL17 synthesis
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[150] was tested in subjects with AD in a randomized, double-
blind, placebo-controlled trial and was shown to reduce the
SCORAD score and eczema area and severity index (EASI),
but not pruritus [151].

Allergic asthma To date, no therapy targeting TARC/CCL17
or CCR4 has been reported effective in human AA. In fact,
among CCR4 antagonists shown to reduce allergic inflamma-
tion in mice, the only one tested in a phase I study in humans
(GSK2239633) failed to induce sufficient CCR4 blockade at
the highest dosing regimen [145]. Another phase I trial
(NCT01514981) conducted with mogamulizumab was termi-
nated prematurely due to drug-related adverse events. Finally,
concerns have been raised regarding CCR4 blockade in asth-
ma, as Tregs also express this receptor and are reported to
colonize lung tissue and to be functional in the effector phase
(“recall”) of allergic inflammation in murine models and in
humans following segmental allergen challenge [152, 153].

T cell lymphoma Mogamulizumab was evaluated in a phase
III randomized controlled trial in comparison with vorinostat
in relapsed/refractory MF and SS. Patients in the
mogamulizumab arm had significantly longer progression-
free survival (PFS) compared to vorinostat (median PFS of
7.7 months versus 3.1 months respectively, HR 0.53 with
95% CI 0.41–0.59) [154]. Mogamulizumab has also shown
efficacy in ATLL when combined with intensive chemother-
apy [155]. Indeed, its addition to background treatment result-
ed in improved PFS and overall survival, and it is now ap-
proved by Japanese authorities in newly diagnosed aggressive
ATLL in combination with intensive chemotherapy [156].

L-HES Ledoult and colleagues recently reported that circulat-
ing CD3-CD4+ cells bear a Th2 chemokine receptor pheno-
type ex vivo defined as CCR4+CCR6− in twenty patients with
L-HES [157]. This phenotype was also expressed by 6 to 35%
of CD3+CD4+ T cells from these patients and was not altered
by CS therapy. These results have potential therapeutic impli-
cations as mogamulizumab could destroy the clonal IL-5-
producing T cells that drive the disease.

Conclusion and perspectives

Both pre-clinical data and the clinical observations described
herein firmly establish the intimate link between the
TARC/CCL17-CCR4 axis, type 2 immunity, and eosinophilic
inflammation. As such, TARC/CCL17 represents a useful
biomarker for diagnosis and assessment of disease activity
for several allegedly T cell-driven eosinophilic disorders and
may also help predict more severe disease forms and/or treat-
ment responses. Furthermore, overexpression/activation of
this axis in these disorders makes it an appealing therapeutic

target, as illustrated by the successful use of anti-CCR4MoAb
in certain T cell malignancies. Unfortunately, this approach
has not yet produced results in the more common type 2 dis-
orders such as AD and AA, and the potential impact on
CCR4-expressing Tregs is a subject of concern. Future studies
focusing on the precise role played by TARC/CCL17 in var-
ious eosinophilic conditions, mechanisms involved in its over-
expression, CCR4 isoforms, and downstream signaling path-
ways will help determine whether the TARC/CCL17-CCR4
axis represents an interesting therapeutic target in non-
malignant disorders.

AA allergic asthma, CLA cutaneous lymphocyte antigen,
DC dendritic cell
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