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Abstract In recent decades, nanofiltration (NF) is
considered as a promising separation technique to produce
drinking water from different types of water source. In this
paper, we comprehensively reviewed the progress of NF-
based drinking water treatment, through summarizing the
development of materials/fabrication and applications of
NF membranes in various scenarios including surface
water treatment, groundwater treatment, water reuse,
brackish water treatment, and point of use applications.
We not only summarized the removal of target major
pollutants (e.g., hardness, pathogen, and natural organic
matter), but also paid attention to the removal of
micropollutants of major concern (e.g., disinfection
byproducts, per- and polyfluoroalkyl substances, and
arsenic). We highlighted that, for different applications,
fit-for-purpose design is needed to improve the separation
capability for target compounds of NF membranes in
addition to their removal of salts. Outlook and perspectives
on membrane fouling control, chlorine resistance, integ-
rity, and selectivity are also discussed to provide potential
insights for future development of high-efficiency NF
membranes for stable and reliable drinking water treat-
ment.

Keywords nanofiltration, drinking water, disinfection
byproducts, micropollutants, selectivity

1 Introduction

Water scarcity and pollution at a global scale are grand
challenges in the modern society [1,2]. According to the
United Nations, 30% global population does not have the
access to safe and reliable drinking water services, which
drives United Nations to include the universal drinking
water supply in their sustainable development goals [3].
Effective water treatment and management strategies are
urgently called to achieve the goal through eliminating
water pollution and producing clean drinking water.
Membrane-based separation techniques such as reverse
osmosis (RO) and nanofiltration (NF) are considered as
promising candidates for reliable production of drinking
water [4]. RO is mainly used for seawater desalination,
which has rigorous criteria on the rejection of NaCl (e.g.,
normally≥99%) [5]. Such high NaCl rejection generally
requires a dense rejection layer who often comes at the
expense of high energy consumption and low water
permeability. In comparison, NF membranes have rela-
tively loose structure to allow faster water production with
lower energy requirement [6]. Meanwhile, NF membranes
can be designed and optimized in a more flexible way to
maximize their efficiency on drinking water production
according to the different application scenarios (Fig. 1).
Since its first introduction at the late 1980s, NF

membranes have been developed and optimized with
improved separation performance through tuning their
material compositions and structural properties [7,8].
Existing NF membranes often possesses the state-of-the-
art thin film composite (TFC) structure, consisting of a thin
rejection layer (e.g., polyamide), a porous substrate layer,
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and a non-woven fabric support [9]. The TFC structure
allows independent optimization of rejection and support
layer, which offers great flexibility for the design and
fabrication of high-performance NF membranes [10]. In
principal, the top thin rejection layer plays a critical role on
NF membrane separation performance. Various
approaches such as interfacial polymerization (IP) [11],
surface coating/grafting [12], layer-by-layer deposition
[13], and so-gel process [14], can be used to fabricate the
thin layer.
Generally, NF membranes possess an effective pore size

around 0.5–2 nm with a corresponding molecular weight
cut-off (MWCO) ranging from 100 to 1000 Da [6,15].
These features enable NF membranes to achieve effective
removal of suspended solids, colloidal, bacteria, and
organics, as well as partial removal of dissolved ions,
while most of the components are listed as the target
pollutants for drinking water treatment [16]. Compared
with traditional drinking water treatment methods, NF
enjoys several advantages including: 1) small footprint and
ease of automation, 2) wide-spectrum removal of various
water contaminants to ensure high product water quality,
and 3) flexibility to adapt different feed water quality. On
the other hand, the operational cost, membrane fouling,
and long-term stability shall also be considered to
comprehensively evaluate the capability of NF for drinking
water production. In view of the great potential of NF-
based drinking water treatment to address the critical
challenge of water scarcity and pollution, it is important to
timely and thoroughly review the progress of NF technique
for water purification in terms of material development,
membrane fabrication, and practical applications.

Although several reviews on NF membranes have been
published [17–21], they either lack of strong emphasis on
the specific application scenario of drinking water
treatment, or have limited timelines to include latest
research findings.
In this review, we comprehensively summarize the

recent research progress on NF-based drinking water
treatment. NF membrane materials and their fabrication
approaches are first introduced to provide basic informa-
tion on the technique development (Section 2). Subse-
quently, the practical applications of NF membranes for
drinking water treatment under different scenarios are
presented, namely, surface water treatment (Section 3),
groundwater treatment (Section 4), water reuse (Section 5),
brackish water treatment (Section 6), and point of use
applications (Section 7). Based on the membrane perfor-
mance for various applications, perspectives on the
challenges and future development of NF membranes for
drinking water production are also discussed.

2 NF membrane materials and fabrication

2.1 Polymeric NF membranes

The majority of existing NF membranes has a TFC
structure consisting of a thin polyamide layer, a porous
substrate layer (e.g., polysulfone or polyethersulfone), and
a non-woven support [9]. Figure 2 shows the fabrication
strategy of polyamide-based NF membranes, the morphol-
ogy and structure of a NF270 membrane, as well as their
separation performance and application potential. The

Fig. 1 Various application scenarios of NF technique, including surface water treatment, groundwater treatment, water reuse, brackish
water treatment, and point of use applications.
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polyamide is generally fabricated by performing the IP
reaction between an aqueous amine solution containing
piperazine or m-phenylenediamine and an organic solution
containing trimesoyl chloride (Fig. 2(a)). The formed
polyamide layer (Figs. 2(b) and 2(c)) plays a critical role
on membrane separation performance. Nevertheless, the
separation performance of polyamide membranes are often
limited by the trade-off between membrane permeability
and selectivity (Fig. 2(d)) [22]. To break the limitation,
various strategies were explored to improve membrane
separation efficiency (Fig. 2(e)). For example, nanomater-
ials can be introduced into the polyamide layer via adding
them in the aqueous/organic phase during IP reaction,
forming thin-film nanocomposite (TFN) membranes [23].
These incorporated nanomaterials in TFN membranes not

only create vast nanochannels for enhanced water transport
[24] but also introduce beneficial functions such as
antimicrobial properties [25]. Alternatively, constructing
an interlayer onto the support membrane before the IP
process has been confirmed as an effective approach to
regulate the properties of polyamide layer with enhanced
membrane separation performance [26,27]. The incorpora-
tion of the interlayer could not only facilitate the formation
of better-quality polyamide rejection layer (e.g., through
fine-tuning reaction rate and the extent of the IP reaction
[28,29]) but also optimize the water transport pathways in
the dense polyamide rejection layer by acting as a high-
permeability gutter layer [26]. These synergistical effects
could simultaneously improve membrane water permeance
(up to an order of magnitude) and rejection of solutes [29].

Fig. 2 (a) Schematic of interfacial polymerization process, (b) scanning electron microscope image of the surface for NF270 membrane,
(c) transmission electron microscope image of the cross-section for NF270 membrane, (d) the upper bound of TFC polyamide membranes
for desalination, and (e) comparison of membrane performance improvement and commercial potential of the TFC polyamide
membranes. These figures are reprinted from ref. [22,30–33] with copyright permission.
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As a result, this TFN structure with an interlayer (TFNi) is
promising to break the longstanding permselectivity trade-
off effects (also known as the upper bond [22]) owing to
their largely improved permeability without compromising
solutes retention.
In addition to polyamide, alternative polymers, such as

polyurethanes, poly(bio-amides), polyanilines, polyesters,
and polyimides, can also be used as membrane rejection
layer materials through IP reaction (Table 1) [34].
Cellulose-based NF membranes are also commercially
available, who have been used for water purification since
their successful fabrication in the 1960s [35]. For example,
cellulose acetate NF membrane was used to remove
organic micropollutants from drinking water [36], and
encountered low membrane fouling because of the
hydrophilicity of the cellulose material. However,
cellulose-based membranes (e.g., cellulose acetate)
have relatively low tolerance to pH (2–8) and thermal
(< 30 °C) change, which greatly restricts their applications
[37]. In addition, sulfonated polyethersulfone is also used
as the rejection layer of some commercially available NF
membranes (e.g., NTR-7450, Nitto Denko, Japan) [38].
The existence of sulfonate group leads to a negatively
charged membrane surface, which could benefit to the
rejection of anions as a result of electrostatic repulsion
[39].
Polyelectrolyte NF membranes fabricated by layer-by-

layer assembly have also been investigated for water
treatment [45]. The chemistry and structure of polyelec-
trolyte membranes can be tuned via controlling the
polyelectrolyte types and number of deposited bilayers
during layer-by-layer procedure. An extension of this
technique is the electrospray-enabled layer-by-layer fabri-
cation of NF membranes (also called three-dimensional
printing) [46]. This technique allows the control of
membrane structure vie adjusting electrospray conditions,
which could fabricate thinner and more uniform mem-
branes with enhanced separation performance.

2.2 Non-polymeric NF membranes

Ceramic membranes with superior physical and chemical
stabilities have also gained a growing interest. Similar to

polymeric membranes, ceramic NF membranes generally
possess average pore size of 1–2 nm with effective MWCO
ranging from 200 to 1000 Da [14]. As presented in Table 2,
the nanoparticles of metal oxides such as SiO2, TiO2, and
ZrO2 are often used as the selective layer of ceramic NF
membranes, which are usually fabricated through the sol-
gel process [14]. In addition to single kind of metal oxide
nanoparticles, the composite ceramic NF membranes using
mixed metal oxide, such as ZrO2/TiO2, have also been
commercially produced to improve membrane separation
performance [47]. However, the water permeability of
ceramic NF membrane is often lower than that of
polymeric NF membranes with similar MWCO, which
can be attributed to their lower porosity and higher
thickness. To improve membrane porosity, additional
sacrificial pore-foaming agents (e.g., cotton, starch,
polymer beads, graphite, and Ni) could be introduced
into the ceramic slurry [48]. In addition to sol-gel
processes, other advanced fabrication methods, such as
atomic layer deposition (ALD) and chemical vapor
deposition (CVD) (Fig. 3), are also explored to prepare a
more uniform and tight separation layer [49].
In addition to polymeric and ceramic membranes,

emerging NF membranes fabricated by novel nanomater-
ials have attracted increasing attentions in recent years. For
example, two-dimensional (2D) materials (such as MoS2,
graphene, graphene oxide, metal-organic frameworks,
MXene, and covalent organic frameworks) exhibited
high potential for NF membrane fabrication [51,52]. In
general, 2D materials possess unique physicochemical
properties (e.g., nanochannel size and thickness) which
allow precise separation and thus enhance membrane
selectivity. The 2D material-based NF membranes can be
fabricated through physical stacking [53], chemical
bonding [54], electro-assisted deposition [55], etc.
Currently, polyamide-based NF membranes are most

commonly used for drinking water production owing to the
matured fabrication technique, successful applications in
separation industries, and reasonable cost-effectiveness
[19]. Ceramic NF membranes also have great potential for
drinking water treatment owing to their high chemical
stability, which allows them to be used with oxidants (e.g.,
Cl) for disinfection and membrane cleaning [56]. However,

Table 1 Materials used for NF membrane preparation via IP

Material Advantage Drawback Field of application Ref.

Polyamide Matured fabrication and high
separation performance

Vulnerable to chlorination Membranes mainly for NF and RO [9]

Poly(bio-amide) Biocompatibility and
switchable properties

Relatively high MWCO values NF applications with high
permeability

[34]

Polyester High resistance to
chlorine

Susceptibility to hydrolytic
degradation

NF applications with improved
chlorine stability

[40,41]

Polyimide High tolerance to organic
solvent and thermal stability

Instability of amic acid
groups in water

Organic solvent NF [42]

Polyaniline Electrochemical properties Difficult to control
nanostructures

Organic solvent NF and
electrically conductive membranes

[43,44]
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the application of ceramic membranes in drinking water
treatment is largely limited due to the high cost (e.g., up to
10 times of the cost for polymeric membranes [50]). In
recent decades, the development of novel materials (e.g.,
2D materials) is also driving the fabrication of high-
performance NF membranes using such materials [57,58].
Nevertheless, these emerging membranes using novel
materials/fabrication methods are mainly investigated at
laboratory-scale, their full-scale manufacturing is facing
various challenges (e.g., low production rate, high cost,
etc.). Future research needs to pay more attention to the
scale-up of novel membranes and their performance for
realistic applications.

3 NF for surface water treatment

Surface water, the water in a river, stream, creek, lake, and
reservoir, is the major source of drinking water. In China,
surface water accounted for 84.2% of the total water
supply in 2019. In general, surface water possesses
relatively high quality with a total dissolved solids less
than 1000 mg$L–1. However, the water quality is easily

affected by runoff, rainfall, point/non-point source pollu-
tion, etc. Consequently, the water quality may seasonally
fluctuate [59] with potential contamination from various
contaminants such as synthetic organic compounds [60].
Moreover, surface water is likely to be accidentally
polluted by chemical discharge and algal blooms [61].
Conventional treatment process (coagulation-sedimen-

tation-filtration-disinfection) is mostly used for the pur-
ification of surface water. This conventional process is
designed for the removal of particles and pathogens, and
may not effectively remove some emerging pollutants [62].
More importantly, in the unit process of disinfection,
disinfection byproducts (DBPs) are formed because of the
reaction between the disinfectants and precursors in
surface water, such as natural organic matter (NOM) and
bromide. Because NF membrane could reject most of
organic matters, it becomes an alternative to address above
challenges in addition to existing treatment system.

3.1 NF system for surface water treatment

In 1999, the world’s first large-scale water treatment plant
using NF, i.e., Méry-sur-Oise plant, was built in France.

Fig. 3 Schematic illustration of sol-gel and ALD/CVD processes.

Table 2 Key features of various ceramic NF membranes and commercially available products a)

Material MWCO/Da Fabrication method Product Ref.

SiO2 600 Colloidal sol-gel method Ceramic Inopor® membrane [14]

TiO2 200–1000 Colloidal sol-gel method;
electrophoretic deposition

Fine UF N001 of TAMI Industries and
Ceramic Inopor® membrane

[14]

ZrO2 350–400 Colloidal sol-gel method – [14]

ZrO2/TiO2 400–500 Colloidal sol-gel method – [14]

a) According to the literature, the price of commercial ceramic NF membrane is around 1000–2500 USD$m–2 [50].
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The plant had a production capacity of 140000 m3$d–1 and
could effectively remove the NOM and pesticides in the
feed river water [63]. In China, although NF has been used
for saline water treatment for many years (total dissolved
solids is the major concern), it has not been specifically
used for the control of DBPs and other pollutants in
drinking water until recent years. For example, a 300000
m3$d–1 NF-based water plant is under construction in
Zhangjiagang City of China, who will use NF to treat the
Yangtze River water to improve the quality of drinking
water.
A typical NF system for surface water purification

consists of pretreatment process, membrane process, and
posttreatment process (Fig. 4). Because of the relatively
high NOM content in surface water, the priority of
pretreatment is to reduce the risks of membrane fouling
for NF unit. The commonly used pretreatment processes
include coagulation, flocculation, sedimentation, sand
filtration, microfiltration, and ultrafiltration [64–66].
These pretreatments could largely remove particles,
organic matters, and bacteria, thereby reducing membrane
fouling in NF units. After filtering through the NF
membrane, most of the pollutants are removed. However,
alkalinity is also partially removed during pretreatment,
resulting in high corrosion potential. Therefore, stabilizing
chemicals such as sodium carbonate and lime should be
added to adjust the water alkalinity [64]. A more flexible
approach for water stabilization is to blend the effluent of
the pretreatment units (i.e., the feed of NF unit) with the
NF permeate (Fig. 4), while this approach was practiced by
Kaotan Water Treatment Plant (300000 m3$d–1, Taiwan,
China) [67]. Before entering to the distribution system, the
treated water needs chlorination to prevent the regrowth of
bacteria in the pipe network.

3.2 Control of DBPs formation

The NF membrane could effectively remove microorgan-
isms, divalent ions, heavy metal ions, NOMs, and many
trace organic matters [7]. Here, we mainly discuss the
major issues of controlling DBPs in the surface water
treatment system. The removal of organic contaminants,
pathogens, and dissolved ions will be discussed in Section
5 NF for water reuse and Section 6 NF for brackish water
treatment.
Disinfection is a vital step to eliminate the concerns of

pathogens in drinking water. However, the process has

high tendency to generate toxic DBPs associated with
healthy concerns [68]. Most DBPs are formed by the
reaction between chlorine/chloramines (disinfectants) and
the precursors such as NOM [69]. Typical DBPs include
trihalomethanes, haloacetic acids, and N-nitrosodimethy-
lamine. NF has a high rejection of NOM (50%–95%) [70],
which could largely suppress the formation of DBPs in
subsequent disinfection. For example, commercial NF
membranes (ESNA, TS80, and NF270) could achieve a
removal rate of 72%–97% and 57%–83% for N-nitroso-
dimethylamine and trihalomethanes, respectively [71]. For
the world’s first large-scale NF water treatment plants (i.e.,
Méry-sur-Oise plant), the trihalomethanes reduced by 50%
in their distribution system after introducing NF process
[72]. In addition to chlorine, the presence of bromine can
also increase the generation of DBPs and shift the
speciation to brominated species. However, NF shows
low rejection for bromide (< 30%) [73]. The low removal
of bromide coupled to the high removal of NOM could
shift the trihalomethanes and haloacetic acids to more
brominated species during the chlorination of NF permeate
[74]. Because NF process has a high removal of pathogen
(physical disinfection), the dosage of chlorine could be
reduced in the following disinfection unit [75], which
could also reduce the formation of DBPs and the odor of
chlorine in tap water. In short, NF process can effectively
remove the DPBs precursors and decrease the chlorine
dosage, thereby effectively reducing the DBPs formation.

4 NF for groundwater treatment

Groundwater is an important natural resource serving for
agricultural irrigation and drinking water supply in most
countries over the globe [76]. Many groundwaters contain
high concentration of hardness ions such as Ca andMg due
to ambient geochemical conditions, and these ions have to
be removed prior to use [77]. Meanwhile, with the
intensified chemical use and continuous discharge of
industrial waste, groundwater quality has been greatly
hampered and resulted in numerous contaminated sites
[78]. Emerging contaminants such as per- and polyfluor-
oalkyl substances (PFASs) and As appeared in the
groundwater and posed great health concern to humans
[79,80]. NF technology, as a technology for multi-
contaminants removal, are thus required to purify ground-
water for drinking purpose.

Fig. 4 A typical NF system for surface water purification.
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4.1 Hardness removal

NF membranes have been used for hardness removal in
groundwater treatment for decades [81]. The immerging
use of NF membranes originates from two reasons:
1) traditional high-pressure RO membranes resulted in
high energy cost; 2) the permeate quality was often too
good and required post remineralization [82]. NF mem-
branes possessed moderate rejections with higher fluxes
compared to high pressure RO membranes, which make
NF advantageous for hardness removal in groundwater
treatment. NF membranes can typically achieve> 98%
removal of Ca and Mg, through size exclusion mechanism
[83,84]. As Ca is essentially beneficial for human health,
recent research started focusing on enlarging the pore size
of NF through incorporation of a high molecular weight
bipiperidine monomer during the IP to form a loose,
nanoporous selective layer structure, which selectively
rejected sulfate while partially passing through Ca ion [85].
The fabricated NF membrane not only maximized water
permeability but also reduced membrane scaling due to
less CaSO4 accumulation on membrane surface. It
provides important insights for future groundwater treat-
ment adopting NF processes with strong emphasis on
tailoring the selectivity and permeability of NF with
enhanced water recovery.

4.2 As and PFASs removal

Figure 5 illustrates the rejection mechanisms of As and
PFASs under different water chemistry by NF membranes.
As has now become a typical toxic element in groundwater
systems due to geochemical occurrence and industrial
pollution, and posed elevated health risks such as skin and
lung cancer [86,87]. Common forms of As in groundwater
are trivalent arsenite, i.e., As(III), and pentavalent arsenate,
i.e., As(V), with concentration ranges from< 0.05 ppb up

to 5000 ppb [88]. The As(III) and As(V) rejections by NF
varied depending on different charge states. The rejection
of uncharged As(III) by NF membranes is mainly
governed by size exclusion, while it often suffered lower
rejections of< 90% [88,89]. In comparison, NF mem-
branes could achieve high rejection of 96%–99% for
negatively charged As(V) thanks to the combined effects
of electrostatic repulsion and size exclusion (Fig. 5(a))
[79,90]. Peroxidation of As(III) to As(V) is a viable
method and can be integrated with NF process to boost the
overall arsenic removal efficiency [91]. Therefore, it is
important to have adequate knowledge of As speciation
and ambient aqueous chemistry condition for the efficient
removal of As during groundwater purification with NF
technology. Moreover, tailoring the pore size of NF
membranes with enhanced effect of size exclusion might
be another way for removing uncharged As(III) form [92].
PFASs are a class of emerging contaminants that are

persistent in groundwater and resistant to natural degrada-
tion process [95–97]. PFASs have been shown to be bio-
accumulative and toxic at trace concentrations, thereby
causing great health concerns [98,99]. NF membranes are
likely to achieve relatively high rejection of> 95% of
PFASs, which allows them to purify groundwater with
fluctuating PFASs concentrations and ensure stable
permeate quality [100–102]. The removal of PFASs by
NF membranes is mainly governed by size exclusion in
addition to electrostatic repulsion between anionic PFASs
and negatively charged membrane surface. For example,
NF270 membrane has an average pore size of 0.88 nm
[31], which is significantly smaller than the molecule size
of 1.09 nm for PFOS, resulting in a high PFOS rejection
of> 95% by the membrane [94]. The rejection could be
further enhanced with increasing the pH of feed solution as
a result of stronger electrostatic repulsion at high pH [94].
Nevertheless, further research on the efficacy and mechan-
ism of PFASs removal by NF under different fouling

Fig. 5 (a) Schematic diagram presenting the removal of As(V) at different pH and fouling condition by a NF membrane. Reprinted with
permission from ref. [93], copyright 2021, Elsevier BV. (b) Illustration of perfluorooctane sulfonate (PFOS) removal at the presence of
calcium. Reprinted with permission from ref. [94], copyright 2013, Elsevier BV.
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conditions and water matrices is still needed (Fig. 5(b)).
In addition, it is also worthwhile to explore the control
of emerging PFASs (e.g., hexafluoropropylene oxide
dimer acid, also known as GenX) using NF membranes
[103].
The use of NF in groundwater purification is an all-in-

one approach to concurrently remove hardness, organic
matters, and micropollutants. Previous studies generally
focused on removing one or two targeted species, while
groundwater is usually complex and consists of varied
substances. Tailoring the separation properties of NF
membranes for complex types of groundwater is important
in future studies to balance the trade-off between
permeability and selectivity [104]. Developing novel NF
membranes with environmentally friendly materials and
manufacturing processes is also needed for sustainable
development.

5 NF for water reuse

In addition to conventional water source (e.g., surface
water and groundwater), wastewater is also considered as a
supplementary source to produce potable/non-potable
water through membrane-based water reuse [105]. In
fact, some countries/regions with limited water source
(e.g., Singapore, California, and Australia) have integrate
reused water into their drinking water supply system for
decades [106,107]. For example, Singapore has recognized
the reused water (known as NEWater) as one of their
national taps, contributing up to 40% water supply of the
country [108]. Advanced membrane separation process
such as RO/NF is a vital unit in water reuse system as they
can effectively remove the majority of toxic and harmful
pollutants from the feed. Although RO is more competitive
to produce highly purified water, NF is also considered as a
qualified barrier for the removal of water pollutants in
water reuse [109]. For instance, NF is often proposed to
generate reused water through the treatment of textile
wastewater containing large amount of dyes and salts
[110,111].

5.1 Removal of organic contaminants

The effluent of wastewater treatment plant is mainly used
as the feed water for membrane-base water reuse.
Compared with surface water and groundwater, the
effluent tends to have more complicated water matrices
even after appropriate treatment, which poses great
challenges to the separation performance of NF mem-
branes [112]. One of the challenges is to achieve effective
removal of organic contaminants, a major component
presented in the effluents of wastewater treatment plant
associated with healthy concerns and reused water safety
[113–115]. NF membrane rejection of organic contami-
nants is governed by several mechanisms, including size

exclusion, electrostatic interactions, hydrophobic interac-
tions, and polar effects [116,117]. The organic contami-
nants presented with hydrophilic nature and large
molecular weight (e.g., higher than the MWCO of
membranes) are more easily removed by NF membranes
thanks to the strong size exclusion effect. For example,
NF90 membrane has a MWCO of 200 Da, which allow it
to achieve> 95% rejection of hydrophilic antibiotics with
molecular weight ranging from 250 to 361 Da [118].
Meanwhile, NF membrane surface is often negatively
charged at environmental pH (e.g., pH 6–9) which is
beneficial for the removal of contaminants with negative
charge (e.g., dyes and PFASs) as a result of electrostatic
repulsion [110,119]. In contrast, positively charged organic
contaminants may suffer low membrane rejection due to
the Donnan effect [120].
On the other hand, organic contaminants with strong

hydrophobicity and/or high polarity are often poorly
rejected by NF membranes, e.g.,< 50% for endocrine
disrupting compounds (EDCs) by NF90 [121] and NF270
membranes [31]. The hydrophobic interactions between
EDCs and membrane facilitated the partition of these
compounds into membrane material (e.g., polyamide)
following by the diffusion through the membrane
[122,123], resulting in the high permeance of EDCs
(thus low rejection). Suppressing the hydrophobic inter-
actions between compounds and membrane is an effective
way to reduce the partition behavior and improve
membrane rejection of hydrophobic contaminants
(Fig. 6). For example, a hydrophilic polydopamine coating
on a commercial NF90 membrane could significantly
enhance its rejection of hydrophobic EDCs [121]. Similar
phenomena were also observed in the cases of using tannic
acid-iron based NF membrane (Fig. 6(a)) [118] and
hydrophilic ceramic NF membrane [124] to remove
hydrophobic contaminants. In addition, accelerating
water transport through the membrane (i.e., enhancing
membrane water permeance) is also useful to enhance
membrane rejection of organic contaminants because of
the dilution effects in the permeate side (Fig. 6(b)). Various
strategies such as addition of porous nanofillers [125],
creation of selective nanochannels [24], and introduction
of interlayer [126] can prompt membrane water permeance
and thus increase the rejection of contaminants.

5.2 Pathogen removal

Pathogens (e.g., bacteria and virus) are of critical concerns
in wastewater treatment chain and are listed as the removal
target with highest priority in membrane-based water
reuse, especially after the global outbreak of COVID-19
[127]. Generally, the average size of pathogens (e.g., 20–
300 nm for virus [128]) are significantly larger than the
effective pore size of NF membranes (£2 nm), therefore
they should be completely removed by the membrane.
However, there are several studies that reported incomplete
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removal of virus and bacteria by RO membranes [129–
131]. For example, Mi et al. reported a rejection of
> 99.9995% (i.e.,> 5-log removal) for bacteriophage MS2
(~25 nm) by spiral-wound RO elements [129]. A possible
explanation for the incomplete rejection is that the virus
may pass through the imperfections in the elements (e.g.,
insufficient sealing at the glue lines). In addition, a recent
study reported that intrinsic nanosized defects are likely to
be formed during the fabrication of polyamide NF
membranes by IP [132]. The defects may serve as hot
spots for virus transport, partially resulting in the
incomplete rejection. To keep the safety of reused water
away from pathogens, highly sensitive methods are
strongly required to monitor the integrity of membrane
and elements. Polishing strategies (e.g., in situ healing)
may also be considered to improve membrane integrity
toward satisfactory virus removal.

6 NF for brackish water treatment

Brackish water is one of the salinity water resources for

potable use with the salinity between fresh water and
seawater. Commonly, the total dissolved solids of brackish
water are in the range of 1–5 g$L–1 with highly different
compositions, such as Ca2+, Mg2+, SO4

2–, F–, NO3
–, and

NOM. NF is an alternative separation technology with
great application potential in brackish water desalination.
According to the main separation mechanisms of NF, e.g.,
Donnan (charge) exclusion and size (steric) exclusion
[133], NF can be used for the removal of hardness [81], F–

[134], and NO3
– [135] from brackish water to improve the

produced water quality or to reduce membrane scaling in
the following desalination stage. Similarly, partial salts in
brackish water could also be removed by NF as a result of
the moderate rejection of NF membrane for monovalent
salts and high rejection for divalent salts. Brackish water
desalination performance of commercial TFC NF mem-
branes were evaluated by Hilal et al. [136]. The results
showed a reduced NaCl rejection from 95% to 41% with
increasing the salinity of feed solution from to 25 g$L–1.
Gekas et al. used NF membrane to treat brackish ground-
water with a high hardness [137], and the NF membrane
gave a relatively high water flux of 15–47 L$m–2$h–1

Fig. 6 (a) Removal of trace organic contaminants by a tannic acid-iron complexes-based NF membrane. Reprinted with permission from
ref. [118], copyright 2019, American Chemiacl Society. (b) Incorporation of hydrophilic metal organic frameworks into a polyamide
active layer for improved rejection of hydrophobic EDCs. Reprinted with permission from ref. [125], copyright 2019, American Chemiacl
Society.
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together with a hardness removal of 70%–76% and salt
rejection of 44%–46%. Other candidates for brackish water
treatment, such as RO and electrodialysis were also studied
and compared with NF [138]. The results showed that NF
permitted to reduce the concentrations of divalent ions, but
the total dissolved solids of the produced water was still
higher than World Health Organization standard. In
addition to commercial membranes, novel NF membranes
were also explored to improve the efficiency of brackish
water treatment. For example, electrically assisted NF
membranes were designed to improve membrane desalina-
tion performance (e.g., enhanced NaCl rejection from 54%
to 82% via increasing applied voltage from 0 to 2.5 V)
through finely tuned surface charge [139]. TFN mem-
branes were also investigated to treat real brackish water
[140].
NF process also has great flexibility to integrate with

other separation technique to enhance the overall treatment
efficiency (Fig. 7). For example, NF process was designed
to couple with coagulation process to reduce membrane
fouling propensity and improve desalination performance
(Fig. 7(a)) [141–143]. Colloidal/organic fouling and
scaling during NF would be successfully mitigated by
the coagulation process. The integrated desalination
system showed excellent sulfate removal and high
rejection of divalent cations. Ion exchange could also be

integrated with NF process for brackish water desalination
(Fig. 7(b)). The results indicate the significant reduction on
energy consumption by the hybrid ion exchange-NF
process compared with RO treatment [144]. Moreover,
the hybrid system could potentially treat hard brackish
water via separately removing Ca2+ and SO4

2– through ion
exchange and NF process, respectively. Meanwhile, the
concentrate solution containing NaCl could be used to
regenerate the ion exchange resins. Capacitive deioniza-
tion (CDI) process has also been coupled with NF process
to treat brackish water (Fig. 7(c)) [145]. The CDI-NF
hybrid system could produce high-quality drinking water
with a significantly reduced energy consumption compared
to RO. Forward osmosis (FO) could also be combined NF
to treat brackish water (Fig. 7(d)) [146]. Briefly, FO
process used divalent salts solution (e.g., Na2SO4 or
MgSO4) as draw solution to treat brackish water, following
by the NF re-concentration of diluted draw solution and
production of clean water.

7 NF for point of use applications

Conventional drinking water supply system consists of
collection system, centralized treatment plant, and dis-
tribution system. After the treatment in plant, water may

Fig. 7 (a) Removal of various ions and compounds from reservoir water using an integrated electrocoagulation-microfiltration-NF
system. Reprinted with permission from ref. [143], copyright 2017, John Wiley & Sons. (b) Illustration of an ion exchange-NF system for
desalination. Reprinted with permission from ref. [144], copyright 2008, Elsevier BV. (c) An energy saving CDI-NF hybrid system for
brackish water treatment. Reprinted with permission from ref. [145], copyright 2017, Elsevier BV. (d) An FO-NF system for brackish
water treatment. Reprinted with permission from ref. [146], copyright 2012, John Wiley & Sons.
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also be polluted by pipe deterioration, pipe leakage, and
microbial contamination in water distribution system
[147]. Moreover, the occurrence of DBPs in the drinking
water distribution system also poses great challenges to the
safety of end users [148,149]. The mismatch between the
increasing concerns on drinking water safety and increas-
ing demand on high-quality drinking water is calling for
effective strategies to produce reliable and safe water for
end users.
One promising strategy is point of use drinking water

treatment, which employs water purification systems at the
end of the drinking water system (e.g., water tap, Fig. 8)
[150]. As a decentralized water purification device, the
point-of-use purifier should meet the criteria of low
maintenance, ease of automation, and chemical free. NF
cannot only well meet these requirements, but also shows
good efficiencies for pollutant removal [151,152]. For
example, a recent study reported the application of NF for
treating disinfected drinking water [153], which should be
directly send to the end users via distribution system. The
results showed that the water quality was significantly
improved via reducing dissolved organic carbon, total
dissolved solids, and DBPs in the permeate water.
Furthermore, NF-based point of use water purification
system has great flexibility to integrate with other
treatment methods to ensure the quality of product water.
For instance, a NF system combined with granular-
filtration/granular activated carbon sorption could substan-
tially improve the quality of tap waters [154]. Point of use
NF filter also benefits to the drinking water supply in
vehicles. For example, NF-based locomotive drinking
water purification could be realized at low pressure of 0.3–
0.5 MPa with varying feed water quality and environ-
mental conditions. The removal efficiency of excessive
MgSO4 by the point of use system could reach 97%–98%
[155]. In addition, NF-based point of use drinking water
treatment systems are beneficial for rural areas and

developing countries/regions thanks to its small footprint
and easy maintenance [150]. The technology showed
promising results for removing hardness, fluoride, dis-
solved organic carbon, and viruses, allowing people to
obtain reliable drinking water.

8 Outlook and perspectives

This review comprehensively summarized the progress of
NF-based technology for drinking water production under
different application scenarios. With the development of
novel membrane materials (e.g., carbon-based materials
[156], 2D materials [58,157], metal organic frameworks
[57], and covalent organic frameworks [158]) and
improvement on membrane fabrication technique, NF
membranes can achieve enhanced drinking water produc-
tion and quality together with reduced energy consump-
tion. Although NF enjoys significant advantages on
membrane-based drinking water treatment, there are still
several challenges including fouling, chemical stability,
integrity, and selectivity, which need to be more effectively
addressed in the future.

8.1 Fouling control

Fouling is a major obstacle for membrane-based drinking
water treatment [159–161]. Specifically, severe fouling
could not only increase membrane hydraulic resistance
(i.e., increase operational pressure) but also decreased
solutes rejection [162–164]. Surface coating, such as
polydopamine [165,166] and polyvinyl alcohol [167] can
effectively enhance membrane surface hydrophilicity,
hence increasing membrane antifouling properties toward
hydrophobic foulants, such as bovine serum albumin.
Nevertheless, coating an additional layer onto a membrane
could adversely result in decrease membrane permeance

Fig. 8 Schematic illustration of a membrane-based tap water filter for point of use drinking water production. The filter shall able to
remove various contaminants such as pathogens, dissolved ions, and micropollutants from drinking water source and thus safeguard
product water quality.
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due to the increased hydraulic resistance according to the
resistance-in-series model [168]. Another effective strat-
egy for membrane fouling control is to tune membrane
surface roughness. Traditional wisdom believes a mem-
brane with a smoother surface is less prone to fouling
[169,170]. In contrast, a recent highlight some compelling
evidence that a membrane with a rougher surface may less
be fouled [171]. Such controversy may be related to the
characteristic length of roughness and calls for more future
studies to resolve the relationship membrane fouling
behavior and its surface roughness. In addition to organic
and inorganic fouling, microbial fouling (i.e., biofouling)
issues can be potentially mitigated by incorporating
antimicrobial agents in membranes (e.g., silver nanopar-
ticles [172] and graphene oxide [173]) and engineering the
biofilm formed on the membrane surface [174].

8.2 Chlorine stability

Another important dilemma of the TFC NF membrane is
its vulnerability to chlorine, which is often incorporated in
the drinking water treatment process for disinfection
purpose [175]. In principle, polyamide could be chemically
degraded when encountering chlorine species, resulting in
reduced membrane separation performance [176,177].
Many efforts have been undertaken to design membranes
with enhanced anti-chlorine properties, such as synthesiz-
ing novel monomer [40] and membrane surface modifica-
tion [167,178]. For instance, polyester chemistry shows
improved chlorine resistance compared to polyamide,
which has been extensively studied and utilized as a
membrane rejection layer [40,41]. Nevertheless, to fully
unleash the potential of the polyester-based membrane, the
chemical and mechanical stability of the polyester
chemistry needs further systematic investigation, such as
the pH tolerance and long-term filtration stability under
cross-flow conditions.

8.3 Integrity

Membrane integrity is also a critical aspect influencing
membrane separation performance, especially for the
rejection of pathogens. However, the integrity of the
membrane module is not the primary focus for manufac-
turers because NF module is primarily designed for total
dissolved solids removal. To better remove pathogen in
NF, the integrity of NF could be improved by optimizing
manufacturing process, and sensitive methods should be
established for integrity monitoring. As discussed in
Section 5.2, NF membranes may contain intrinsically
nanosized defects [132] which would partially contribute
to the unsatisfactory rejection of virus (i.e., ~25 nm in
size,> 5-log removal) [129]. Accordingly, many strategies
have been proposed to minimize defect regions in the
rejection layer, such as regulating IP reaction by the
addition of surfactant in aqueous amine solution [179], the

incorporation of an inhibitor to control monomer’s
diffusion [180], and the inclusion of an additional
interlayer between the substrate and polyamide rejection
layer [26]. Nevertheless, future studies need to system-
atically address the formation mechanisms and healing
strategies to minimize the effects of membrane integrity
loss and thus improve membrane separation efficiency.

8.4 Selectivity

Based on the above discussion, a key priority for NF-based
drinking water treatment is to effectively remove organic
micropollutants and heavy metals with critical concerns,
while the removal of salt ions may not be over emphasized
in most cases. The high rejection of salt ions (e.g., Ca2+,
Mg2+, and SO4

2–) by a NF membrane may not only lead to
the severe concentration polarization and further scaling
issue, but also compromise the health values of produced
drinking water. Instead, a NF membrane with a high
selectivity against the targeted pollutants and a relatively
low removal of salt is preferred. The selectivity of NF
membrane can be tailored through suppressing the passage
of targeted solutes and/or accelerating water transport
across the membrane. For example, membrane surface
properties (e.g., charge [181], pore size/distribution [15],
and hydrophilicity [121]) can be tuned through surface
modification to reduce the partition of pollutants into
membrane thereby enhancing their rejections. Introduction
of additional components (e.g., nanofillers and interlayer)
into the membrane matrix (e.g., TFN and TFNi mem-
branes) could often facilitate water transport across the
membrane because of the creation of additional water
channels and/or reduced membrane thickness [24,26].
Nevertheless, a systematic understanding on the selectivity
of NF membranes is still lack in the existing literature.
Following research efforts are needed to build a concise
and effective framework to guide the optimization of NF
membranes targeting for highly selective removal of
pollutants in drinking water treatment.
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