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Abstract. We have recently shown that the accumula- 
tion of diverse viral and cellular membrane proteins in 
the ER activates the higher eukaryotic transcription 
factor NF-KB. This defined a novel ER-nuclear signal 
transduction pathway, which is distinct from the previ- 
ously described unfolded protein response (UPR). The 
well characterized UPR pathway is activated by the 
presence of un- or malfolded proteins in the ER. In 
contrast, the ER stress signal which activates the NF- 
KB pathway is not known. Here we used the adenovirus 
early region protein E3/19K as a model to investigate 
the nature of the NF-KB-activating signal emitted by 
the ER. E3/19K resides in the endoplasmic reticulum 
where it binds to MHC class I molecules, thereby pre- 
venting their transport to the cell surface. It is main- 
tained in the ER by a retention signal sequence in its 
carboxy terminus, which causes the protein to be con- 
tinuously retrieved to the ER from post-ER compart- 
ments. Mutation of this sequence allows E3/19K to 
reach the cell surface. We show here that expression of 
E3/19K potently activates a functional NF-KB tran- 
scription factor. The activated NF-KB complexes con- 
tained p50/p65 and p50/c-rel heterodimers. E3/19K in- 

teraction with MHC class I was not important for NF- 
KB activation since mutant proteins which no longer 
bind MHC molecules remained fully capable of induc- 
ing NF-KB. However, activation of both NF-KB DNA 
binding and KB-dependent transactivation relied on 
E3/19K ER retention: mutants, which were expressed 
on the cell surface, could no longer activate the tran- 
scription factor. This identifies the NF-KB-activating 
signal as the accumulation of proteins in the ER mem- 
brane, a condition we have termed "ER overload." We 
show that ER overload-mediated NF-KB activation but 
not TNF-stimulated NF-KB induction can be inhibited 
by the intracellular Ca 2÷ chelator TMB-8. Moreover, 
treatment of cells with two inhibitors of the ER-resi- 
dent Ca2÷-dependent ATPase, thapsigargin and cyclo- 
piazonic acid, which causes a rapid release of Ca 2÷ from 
the ER, strongly activated NF-KB. We therefore pro- 
pose that ER overload activates NF-KB by causing 
Ca 2+ release from the ER. Because NF-KB plays a key 
role in mounting an immune response, ER overload 
caused by viral proteins may constitute a simple antivi- 
ral response with broad specificity. 

T 
HE inducible transcription factor NF-KB is a central 
mediator of the human immune response (5). In 
most cell types, NF-KB is sequestered in an inactive, 

cytoplasmic complex by binding of IKB, an inhibitory sub- 
unit (4). Exposure of cells to a variety of pathological stim- 
uli, such as bacterial or viral infection, inflammatory cy- 
tokines, and UV irradiation activates the transcription 
factor (5). Active NF-KB is rapidly released from the cyto- 
plasmic complex by phosphorylation-controlled degrada- 
tion of IKB (6, 25, 46, 49, 50). The transcription factor 
translocates to the nucleus, where it binds cognate DNA 
sequences, activating transcription of a large variety of 
genes including cytokine, hematopoietic growth factor, ad- 
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hesion molecule, and other cell surface protein genes (for 
a complete list see reference 5). 

We have recently shown that internal cellular stress, 
caused by the accumulation of proteins in the endoplasmic 
reticulum (ER) and by agents interfering with ER func- 
tion, potently activates NF-KB (41). Treatment of cells 
with the glycosylation inhibitors tunicamycin and 2-deoxy- 
glucose or with brefeldin A, which inhibits protein export 
out of the ER, strongly induces NF-KB. Likewise, overex- 
pression of the influenza virus wild-type hemagglutinin or 
of immunoglobulin Ix heavy chains in the absence of light 
chains activates the transcription factor. This represents a 
novel ER-nuclear signal transduction pathway, which is 
pharmacologically distinct from the unfolded-protein re- 
sponse (UPR) 1 described previously. Several agents such 

1. Abbreviat ions used in this paper: DTT, dithiothreitol; CAT, chloram- 
phenicol acetyl transferase; CTL, cytotoxic T lymphocyte; EMSA, electro- 
phoretic mobility shift assay; Luc, luciferase; OA, okadaic acid; UPR, un- 
folded-protein response. 
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as the glucosidase inhibitor castanospermine and the re- 
ducing agent dithiothreitol (DTr) ,  which activate the 
UPR pathway, did not induce NF-KB activity (41). Simi- 
larly, overexpression of the influenza virus wild-type he- 
magglutinin activates NF-KB, but not the UPR pathway 
(40). The ER must therefore be able to emit distinct sig- 
nals which selectively activate either the NF-KB pathway, 
the UPR, or both. 

Human adenovirus causes respiratory, gastrointestinal, 
urinary, and ocular infections (17, 18). These may become 
persistent, causing the infectious virus to be shed from ap- 
parently healthy individuals several years postinfection 
(16). The adenovirus early region protein E3/19K is 
thought to contribute significantly to the establishment of 
persistent infections. E3/19K binds MHC class I proteins 
and prevents their expression on the cell surface by retain- 
ing them in the ER (1, 9). Thus, compared to uninfected 
cells, adenovirus-infected cells display fewer MHC class I 
molecules on their surface. MHC class I complexes serve 
to present foreign peptides to the immune system, allow- 
ing virus-infected cells to be recognized and destroyed by 
cytotoxic T lymphocytes (CTLs). Thus, because the ex- 
pression of newly synthesized, peptide-loaded MHC class 
I molecules is prevented, adenovirus infected cells become 
protected from CTL lysis (10). 

The ER retention of E3/19K is well investigated. It de- 
pends on sequences located in the carboxy terminus of the 
protein. A dilysine motif positioned three and four resi- 
dues from the COOH terminus is both necessary and suffi- 
cient for ER retention (29). Introducing these residues 
into the COOH terminus of the cell surface protein CD8 
confers ER residency on this protein. Moreover, CD4 and 
CD8 can be retained in the ER by addition of a polyserine 
tail with two lysines positioned three and four amino acids 
from the COOH terminus. In an independent study, 
Gabathuler and Kvist (19) showed indirectly that deletion 
of the two carboxy-terminal amino acids, which moves the 
critical lysine residues to the end of the protein, releases 
E3/19K from the ER. Likewise, deletion of the four car- 
boxy-terminal residues or the two lysines and five addi- 
tional amino acids, diminishes ER retention (19). How- 
ever, one mutant, E3/19K-M125, which contains a deletion 
of the six COOH-terminal amino acids including the di- 
lysine motif, is efficiently retained in the ER. More re- 
cently, it became clear that proteins with dilysine motifs 
obtain post-ER modifications and appear to be continu- 
ously retrieved to the ER from post-ER compartments 
(30). Binding of coatomer, a polypeptide complex located 
on the cytoplasmic side of ER and Golgi-derived mem- 
branes, might mediate their retrograde Golgi-to-ER trans- 
port (12, 33). 

Assuming that E3/19K expression activates NF-KB, the 
underlying molecular signal could be further analyzed us- 
ing mutants of the viral protein. One possibility is that the 
association of E3/19K with MHC class I molecules is nec- 
essary. In this case, it is the complexation between ER res- 
ident proteins that triggers NF-KB activation. The other 
possibility is that the signal relies on the retention and sub- 
sequent accumulation of E3/19K in the ER membrane. 
Here we report that the adenovirus E3/19K protein is a 
strong activator of NF-KB. Likewise, MHC class I overex- 
pression in the absence of additional 132-microglobulin ex- 

pression induced NF-KB. The interaction between E3/19K 
and MHC class I was not necessary for NF-KB activation. 
However, there was a stringent requirement for ER reten- 
tion. Mutant proteins, which escaped ER retention, no 
longer activated the transcription factor. NF-KB activation 
by wild-type E3/19K was dose dependent. This suggests 
that the copy number of ER resident membrane proteins 
rather than the complexation of proteins within the ER is 
the NF-~B-activating signal. E3/19K-mediated NF-KB in- 
duction was inhibited by pretreatment of cells with the in- 
tracellular Ca 2÷ chelator TMB-8. In addition, Ca 2÷ release 
from the ER induced by inhibition of the ER-resident 
Ca2÷-dependent ATPase with thapsigargin or cyclopia- 
zonic acid (CPA), potently activated NF-KB. We therefore 
suggest that ER overload may activate NF-KB by releasing 
Ca 2÷ from the ER. 

Materials and Methods 

Cell Culture and Transfections 
293 cells (Amer. Type Culture Collection, Rockville, MD; No. CRL 1573) 
and HeLa cells (Amer. Type Culture Collection; No. CCL 2) were main- 
tained in Dulbecco's Modified Eagle Medium supplemented with 10% 
FCS and 50 p~g/ml penicillin-streptomycin (all from GIBCO-BRL, Gaith- 
ersburg, MD). Cells were plated 12-16 h before trausfection at a density 
of 106 cells per 60-mm dish. Transfections were performed using calcium 
phosphate precipitation as previously described (23). The amounts of 
plasmids used are indicated in the figure legends. TMB-8, thapsigargin, 
and cyclopiazonic acid were purchased from Calbiochem Novabiochem 
Corp. (La Jolla, CA). 

Plasmids 
All E3/19K constructs contain the EcoRI D fragment of adenovirus 2 (26) 
in the pBluescript II KS vector. The mutants E3/19K-Serl 1 and E3/19K- 
Ser83 have been previously described (45). The constructs E3/19K-K139/ 
149S and E3/19K-K a were generated by PCR-mediated oligonucleotide- 
directed mutagenesis (reference 27, details to be published elsewhere). 
The MHC class I K k and K d expression vectors have also been described 
(3, 32). The plasmid 6x-KB-tk-Luc contains three repeats of the HIV-1 
tandem NF-KB sites in front of a minimal tk promoter and has been de- 
scribed previously (38). 6x-KB-tk-Luc and the parental tk-Luc vector were 
a generous gift of Dr. Markus Mayer (EMBL, Heidelberg, Germany). The 
IKB expression vector Rc/CMV-IKB has been described previously (52), it 
contains the entire IKB-a cDNA inserted as a HindllI fragment into Rc/ 
CMV. The parental Rc/CMV vector was purchased from Invitrogen (San 
Diego, CA). 

Electrophoretic Mobility Shift Assay 
and Antibody Supershifts 
Total cell extracts were prepared using a high-salt detergent buffer (To- 
tex) (20 mM Hepes, pH 7.9, 350 mM NaCI, 20% [wt/vol] glycerol, 1% [wt/ 
vol] NP-40, 1 mM MgC12, 0.5 mM EDTA, 0.1 mM EGTA, 0.5 mM DTT, 
0.1% PMSF, 1% Aprotinin). Cells were harvested by centrifugation, 
washed once in ice cold PBS (Sigma Chem. Co., St. Louis, MO) and resus- 
pended in four cell volumes of Totex buffer. After 30 min on ice, the ly- 
sates were centrifuged for 5 min at t3,000 g at 4°C. The protein content of 
the supernatant was determined and equal amounts of protein (10-20 I~g) 
added to a reaction mixture containing 20 Ixg BSA (Sigma Chem. Co.), 
2 la.g poly (dI-dC) (Boehringer-Mannheim Corp., Indianapolis, IN), 2 ixl 
buffer D+  (20 mM Hepes; pH 7.9; 20% glycerin, 100 mM KCI, 0.5 mM 
EDTA, 0.25% NP-40, 2 mM DTT, 0.1% PMSF), 4 I~1 buffer F (20% Ficoll 
400, 100 mM Hepes, 300 mM KCI, 10 mM DTT, 0.1% PMSF) and 100,000 
cpm (Cerenkov) of a 32p-labeled oligonucleotide in a final volume of 20 
~1. The AP-l-binding reaction contained 5 mM MgCI2 in addition. Sam- 
ples were incubated at room temperature for 25 min. For the supershift 
assays, 2.5 Ixl of antibody were added to the reaction simultaneously with 
the protein and incubated as described. Anti-p50, anti-p65, and anti-c-rel 
antibodies were purchased from Santa Cruz Biotechnology. NF-KB and 
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Figure 1. Expression of ade- 
novirus E3/19K protein acti- 
vates NF-KB. 293 cells were 
transiently transfected with 
the following plasmids: 
(Lane 1) untransfected; (lane 
2) transfected with 6 p~g E3/ 
19K expression vector; (lane 
3) transfected with 6 ~g lu- 
ciferase expression vector; 
(lanes 4 and 5) transfected 
with 6 ~g of two CAT ex- 
pression vectors driven by 
different promoters. 24 h af- 
ter transfection total cell ex- 
tracts were prepared and as- 
sayed in an EMSA using a 
high affinity KB-binding site 
as a probe. A filled arrow- 
head indicates specific NF- 
KB complexes. The open circle 
denotes nonspecific binding 
to the probe and the open ar- 
rowhead shows unbound oli° 
gonucleotide. 

AP-1 oligonucleotides (Promega, Madison, WI) were labeled using 
-/-[32p]ATP (3,000 Ci/mmol; Amersham Corp., Arlington Heights, IL) and 
T4 polynucleotide kinase (Promega). 

Luciferase Assays 
Cells were harvested 24 h posttransfection and luciferase (Luc) activity 
determined precisely as described (42). The cell pellet obtained from one 
60-ram dish was resuspended in 150 txl of lysis buffer (25 mM glycylgly- 
cine, 1% Triton X-100, 15 mM MgSO4, 4 mM EGTA, 1 mM DTT) and 
centrifuged at 13,000 g at 4°C for 5 min. 50 microliters of the supernatant 
were assayed in 150 p.1 assay buffer (25 mM glycylglycine, 15 mM MgSO4, 
4 mM EGTA, 15 mM KPi, pH 7.5, 1 mM DTT, 1 mM ATP) using an LB 
96 P luminometer (EG & G-Bertold, Bad Wildbad, Germany). Light 
emission was measured over a 30-s interval and the results are given in rel- 
ative light units. 

FA CS Analysis 
Cell surface staining of 293 cells was carried out as previously described 
(45). For intracellular staining, cells were incubated with antibodies in the 
presence of 0.075% Saponin (Sigma). The Twl.3 monoclonal antibody 
recognizes a luminal epitope of E3/19K and was a generous gift of Dr. J.W. 
Yewdell, (NIH, Bethesda, MD) (13). 

Immunoprecipitation 
Cell labeling with [3SS]methionine, immunoprecipitation, and SDS-PAGE 
were carried out as previously described (9). The E3/19K antiserum, ab- 
breviated C-tail in Fig. 7, is directed against the cytoplasmic tail of E3/19K 
(45). The anti-MHC class I rabbit antiserum (K-tail in Fig. 7) was raised 
against a peptide containing the 11 COOH-terminal amino acids of the K d 
molecule (Burgert, H.-G., and M. Sester, unpublished data). 

Results 

Expression of Adenovirus E3/19K Protein Potently 
Activates NF-r.B 

To investigate whether expression of the ER-resident ade- 
novirus E3/19K protein activates NF-KB, 293 ceils were 

transiently transfected with a vector carrying the adenovi- 
rus 2 EcoRI D fragment. This sequence contains the entire 
E3/19K coding region as well as the E3 promoter (26). As 
controls, cells were transfected with expression plasmids 
for t he  cytoplasmic: proteins luciferase (Luc) and chloram- 
phenicol acetyl transferase (CAT). 24 h after transfection, 
total cell extracts were prepared and assayed for NF-KB 
DNA binding in an electrophoretic mobility shift assay 
(EMSA). Cells expressing E3/19K gave rise to a novel 
complex not found in mock-transfected cells and present 
only in small quantities in cells transfected with either Luc 
or CAT (Fig. 1). A faster migrating complex, which was al- 
ready present in mock-transfected cells remained un- 
changed or was diminished in transfected cells. 

NF-KB proteins constitute a large family of transcription 
factors, whose members can homo- and heterodimerize 
with each other (24). Hence, specific antibodies were 
added to DNA-binding reactions to identify the various 
NF-KB subunits in the E3/19K-induced complex. Addition 
of antibodies against the p50 subunit of NF-KB abrogated 
the entire complex. In return, more slowly migrating im- 
mune complexes were observed (Fig. 2, lane 2). Antibod- 
ies to either p65 or c-rel caused only a partial reduction of 
protein-DNA complex formation (lanes 3 and 4). Only the 
addition of both antibodies completely abolished complex 
formation (lane 5). An antibody to E3/19K, used as a con- 
trol, changed neither the amount nor the migration of the 
complex. Addition of a 50-fold excess of nonradioactive 
oligonucleotide containing a NF-KB-binding site effec- 
tively competed for complex binding while the same 

Figure 2. Ident i f icat ion of  the  NF-KB subuni t  composi t ion.  
E M S A  of  total  cell extracts  f rom 293 cells t ransient ly t ransfec ted  
with 6 txg E3/19K express ion vector.  (Lane  1) Control;  ( lanes 2-6)  
extracts  were  incuba ted  with the  ant ibodies  indicated;  ( lane 7) 
extracts  were  incuba ted  with a 50-fold excess of  un labe led  NF-KB 
ol igonucleot ide;  ( lane 8) extracts  were  incubated  with a 50-fold 
excess of  unlabeled  AP-1 ol igonucleot ide.  A filled a r rowhead  
points  to  the  specific NF-KB complex.  
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Figure 3. Effect of E3/19K expression on AP-1. The extracts 
shown in Fig. 1 were incubated in an EMSA reaction using a high 
affinity AP-l-binding site as a probe. A filled arrowhead indi- 
cates specific AP-1 complexes. The open circle denotes nonspe- 
cific binding to the probe and the open arrowhead shows un- 
bound oligonucleotide. 

amount of oligonucleotide carrying an AP-l-binding site 
had no effect (lanes 7 and 8). In conclusion, in transiently 
transfected 293 cells, E3/19K potently induced D N A  bind- 
ing of a NF-KB complex composed of p50/p65 and p50/c- 
rel heterodimers. 

Transfection and expression of E3/19K might represent 
a general stress situation for the cell, resulting in the acti- 
vation of several stress-inducible transcription factors. We 
therefore tested whether E3/19K could activate AP-1, an- 
other stress-inducible transcription factor (2). The extracts 
used in Fig. 1 were incubated in an EMSA reaction with a 
DNA probe containing an AP-l-binding site. E3/19K ex- 
pression also activated an AP-1 DNA-binding activity ap- 
proximately fivefold. (Fig. 3, lane 2). This complex was 
identified as AP-1 by competition and supershifting assays 

(data not shown). However, in contrast to NF-KB, AP-1 
was almost equally activated by the transfection of plas- 
mids encoding luciferase or CAT proteins (lanes 3-5). 
AP-1 activation thus more likely results from manipula- 
tions of the CaPO4 transfection rather than from the spe- 
cific expression of E3/19K. Therefore, only NF-KB was se- 
lectively activated by E3/19K expression. 

NF-uB Activation Is Independent of E3119K Binding to 
MHC Class I Molecules 

The ability of the E3/19K molecule to activate NF-KB may 
result from several of its properties. One possibility is that 
its binding to MHC class I molecules produces protein ag- 
gregates in the ER which impair the organelle and cause 
ER stress. We tested this hypothesis in two experiments. 
First, we compared wild-type E3/19K and two point mu- 
tants, which no longer bind MHC class I molecules, in 
their ability to activate NF-KB. In both point mutants, cys- 
teine residues, either at positions 11 or 83, were mutated 
to serines which completely abolishes E3/19K binding to 
MHC class I molecules (45). 6 }xg of either the wild-type or 
the mutant E3/19K expression plasmids were transfected 
into 293 cells and cell extracts prepared for NF-KB-bind- 
ing assays 24 h later. Both point mutants remained fully 
capable of activating NF-KB to the same extent as the 
wild-type protein (Fig. 4 A, lanes 2-4). This suggests that 
binding to MHC class I molecules is not required for E3/ 
19K-mediated activation of NF-KB. 

The E3/19K protein may be highly overexpressed in 
these assays thereby overriding the effect of MHC class I 
complexation. In a titration experiment, we found that 
transfection of 60 ng of E3/19K expression plasmid suf- 
fices to activate NF-KB, and that NF-KB activation in- 
creases linearly with the amount of plasmid transfected 
(data not shown; see Fig. 5). We also observed that trans- 
fection of an MHC class I expression plasmid activated 
NF-KB on its own. (Fig. 4 B, lanes 3 and 7). MHC class I 
molecules require 132-microglobulin binding for transport 
out of the ER (39). Cells overexpressing MHC class I may 
not contain sufficient amounts of endogenous [32-micro- 
globulin to transport all MHC molecules to the cell sur- 
face. MHC class I proteins thus accumulate in the ER, 
thereby activating NF-KB. We observed a similar effect 
when immunoglobulin p~ heavy chains were expressed in 
the absence of light chains (41). 

To further investigate the importance of E3/19K-MHC 
class I interactions for NF-KB activation, 293 cells were 
transfected with very low amounts of expression vectors. 
Cells were cotransfected with 60 ng of E3/19K vector and 
60 ng of an expression vector encoding either the MHC 
class I allele K d, which is bound by E3/19K, or the allele 
K k, which is not bound. We also transfected cells with 60 
ng or 120 ng of the K k expression vector alone. 24 h post- 
transfection, total cell extracts were analyzed for NF-KB 
DNA binding. While transfection of 60 ng of E3/19K or 
MHC K k expression vector alone activated NF-KB (Fig. 4 
B, lanes 2 and 3), cotransfection of either 60 ng of K a o r  K k 

with 60 ng of E3/19K had no larger effect than the trans- 
fection of 120 ng of either vector alone (compare lanes 4-7). 
Thus, the interaction of E3/19K with MHC class I proteins 
shows no synergistic effect on NF-KB activation. These re- 
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Figure 4. E3/19K-mediated NF-KB activation is independent of binding to MHC class I. (A) 293 cells were transiently transfected with 6 
Ixg of either the wild-type E3/19K expression vector (lane 2), or expression vectors for E3/19K point mutants (lanes 3 and 4). (Lane 1) 
Untransfected controls; (lane 5) cells transfected with empty pBS vector; (lane 6) cells treated with CaPOn precipitates containing no 
DNA. 24 h after transfection total cell extracts were prepared and assayed for NF-KB DNA binding in an EMSA. A section of a fluoro- 
gram is shown. A filled arrowhead indicates specific NF-KB complexes, the open circle denotes nonspecific binding to the probe. (B) 293 
cells were transfected with the indicated amounts of either the wild-type E3/19K expression plasmid or expression plasmids for the mu- 
rine MHC class I alleles K d and K k. 24 h after transfecfion total cell extracts were prepared and assayed for NF-KB DNA binding in an 
EMSA. A section of a fluorogram is shown. A filled arrowhead indicates specific NF-KB complexes. 

sults corroborate our findings from the previous experi- 
ment that E3/19K activates NF-KB independent of its 
binding to MHC class I molecules. 

Activation of NF-r,B by E3/19K Requires ER Retention 

Since NF-KB activation by E3/19K is independent of com- 
plex formation with MHC class I, we investigated whether 
its ER retention is necessary for induction of the transcrip- 
tion factor. Two mutant E3/19K proteins were con- 
structed. The first, called E3/19K-K d, contains amino acids 
1-127 of E3/19K but the 15 COOH-terminal amino acids, 
in which the ER retention signal resides, were replaced by 
40 amino acids from the COOH terminus of the MHC 
class I K d molecule. This chimeric protein contains the lu- 
minal ER domain and the transmembrane segment of E3/ 
19K fused to the cytoplasmic tail of the K d molecule, and is 
slightly larger than wild-type E3/19K. A second mutant, 
called E3/19K-K139/140S, contains two point mutations. 
In this construct, the lysines at positions 139 and 140, 
which are situated four and three residues from the car- 
boxy terminus of the protein and constitute the dilysine 
tag critical for ER retention (29), were replaced by serines. 

We first tested whether the mutant E3/19K proteins are 

expressed on the cell surface, as was previously shown for 
similar mutants (19, 29). 293 cells were transfected with 
wild-type E3/19K, E3/19K-K d, or E3/19K-K139/140S ex- 
pression plasmids together with a plasmid encoding neo- 
mycin resistance. Stably transfected clones were selected 
and tested for protein expression by FACS analysis. Un- 
transfected 293 cells and three clones expressing approxi- 
mately equal amounts of E3/19K proteins were compared 
in FACS analysis for the subcellular distribution of the vi- 
ral protein. Ceils were stained using the anti-E3/19K anti- 
body Twl.3 by two procedures. To detect intracellular ex- 
pression of the protein the membrane-permeabilizing 
detergent saponin was added to one set of samples (Fig. 5, 
A-D). A second set of samples was stained for surface ex- 
pression of E3/19K (Fig. 5, E-H). All three cell lines ex- 
pressed the E3/19K proteins to approximately the same 
levels. However, while wild-type E3/19K remained en- 
tirely intracellular, both the E3/19K-K d and the E3/19K- 
K139/140S proteins appeared on the cell surface (compare 
panel F to panels G and H). Thus, replacement of the E3/ 
19K COOH terminus or mutation of two critical lysine res- 
idues altered the intracellular distribution of the protein. 

We subsequently investigated the effect of these muta- 
tions on the ability of E3/19K to activate NF-~B. Since 
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Figure 5. Expression of wild-type E3/ 
19K, E3/19K-K139/140S, and E3/19K- 
K d mutants in stably transfected 293 
cells. 293 cells were stably transfected 
with expression vectors for wild-type 
E3/19K (B and F), or the mutants E3/ 
19K-K d (C and G) and E3/19K-K139/ 
140S (D and H). Clones expressing ap- 
proximately equal levels of proteins, as 
judged by immunoprecipitation (data 
not shown), were chosen for FACS 
analysis. Untransfected 293 cells were 
included as a control and are shown in 
A and E. Cells were stained with the 
anti-E3/19K antibody Twl.3. In A-D, 
the detergent saponin was added in or- 
der to assess intracellular expression of 
the protein. E-H show staining for sur- 
face expression. 

such an effect can be very subtle, the wild-type and the 
point mutant  were compared in a titration assay. Between 
60 ng and 6 Ixg of  vectors encoding either the wild-type or 
the mutant  protein were transfected into 293 cells. 24 h af- 
ter transfection, total cell extracts were prepared and ana- 
lyzed for NF-KB D N A  binding. Transfection of  as little as 
60 ng of  wild-type expression vector sufficed to activate 
NF-KB and the amount  of complex increased as larger 
amounts of plasmid were used (Fig. 6, lanes 2-5). In con- 
trast, even the transfection of 6 txg of E3/19K-K139/140S 
plasmid, i.e., 100 times the amount  required for detectable 
activation by the wild-type vector, failed to induce NF-KB 
D N A  binding (Fig. 6, lanes 6-10). 

One possible explanation for these data is that in tran- 
siently transfected cells the mutant  protein is expressed to 
a significantly lower level than the wild-type protein. We 
thus compared the transient expression levels of wild-type 
E3/19K, E3/19K-K139/140S, and E3/19K-K d by in vivo la- 
beling and immunoprecipitation. 293 cells were trans- 
fected with 6 ~g of either the wild-type E3/19K expression 
plasmid, the E3/19K-K139/140S, or the E3/19K-K d vector. 
48 h after transfection half of the cells were harvested and 
analyzed for NF-KB D N A  binding. The remaining cells 
were labeled with [35S]methionine and cell lysates sub- 
jected to immunoprecipitation with two different antibod- 
ies. While expression of  the wild-type E3/19K activates 
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Figure 6. Dose response of NF-KB activation by wild-type E3/ 
19K and E3/19K-K139/140S expression. 293 cells were trans- 
fected with the indicated amounts of wild-type or mutant E3/19K 
expression vector. 24 h after transfection total cell extracts were 
prepared and assayed for NF-KB DNA binding in an EMSA. A 
filled arrowhead indicates specific NF-KB complexes, the open 
circle denotes nonspecific binding to the probe and the open ar- 
rowhead shows unbound oligonucleotide. 

NF-KB D N A  binding under these conditions (Fig. 7 A, 
lane 2), transfection of both the E3/19K-K139/140S point 
mutant and the E3/19K-K d fusion protein failed to activate 
the transcription factor (Fig. 7 A, lanes 3 and 4). Nonethe- 
less, immunoprecipitation with two different antibodies 
showed that the proteins were expressed to equal levels in 
these cells (Fig. 7 B). Quantitative analysis by phosphoim- 
aging determined that the E3/19K-K139/140S mutant was 
expressed at 104% and the E3/19K-K d mutant at 114% of 
the wild-type protein in this experiment. Therefore, the 
difference in NF-KB activation does not reflect different 
transient expression levels of the mutant proteins, but 
rather their inability to elicit the NF-KB-inducing signal in 
the ER. 

The Dilysine Motif Is Not Required 
for NF-r,B Activation 

Mutation of the dilysine motif in the E3/19K-K139/140S 
construct has two simultaneous effects: for one, it relieves 
E3/19K ER retention, allowing the protein to escape to 
the cell surface. At the same time, however, the dilysine 
motif itself is destroyed. It has been postulated that this 
motif binds microtubules and coatomers, providing a link 
between the ER and the cytoplasm which might serve to 
transduce the NF-KB-activating signal (12, 14). Failure of 
the E3/19K-K139/140S mutant to activate NF-KB might 
thus result from either the loss of ER retention or from 

loss of dilysine motif-mediated signal transduction. We 
therefore investigated whether presence of the dilysine 
motif is required for NF-KB activation. In a previous 
study, Gabathuler and Kvist (19) described an E3/19K mu- 
tant, E3/19K-M125, which lacks the six carboxy-terminal 
amino acids, including the dilysine motif, but which is non- 
theless retained in the ER. In a pulse chase experiment, 
we confirmed that this mutant is retained in the ER as effi- 
ciently as wild-type E3/19K (Sester, M., and H.-G. Burg- 
ert, unpublished data). We compared the ability of wild- 
type E3/19K and E3/19K-M125 to activate NF-KB. 293 
cells were transfected with 6 Ixg of expression vectors for 
either protein and cell lysates assayed for NF-KB DNA 
binding 24 h after transfection. Removal of the dilysine 
motif does not affect E3/19K-mediated NF-KB activation, 
since the E3/19K-M125 mutant induces the transcription 
factor to almost the same level as the wild-type protein 
(Fig. 8, compare lanes 2 and 3). These data argue that the 
NF-KB-activating signal emitted from the ER is not medi- 
ated by the dilysine motif but is rather elicited by the re- 
tention and accumulation of E3/19K. 

Wild-Type E3119K but Not a Secreted Mutant Protein 
Induces rB-dependent Gene Expression 

We tested whether the E3/19K-induced NF-KB is func- 
tional in that it can activate KB-dependent reporter gene 
activity. 293 cells were transfected with 5 ng of either a 
vector containing the luciferase gene driven by a minimal 
tk-promoter, or a vector containing the same promoter 
preceded by six copies of an NF-KB-binding site. In addi- 
tion, the cells were cotransfected with 6 Ixg of the wild- 
type E3/19K or the E3/19K-K139/140S point mutant ex- 
pression vectors. To ensure that increased reporter gene 
activity was specific for the activation of NF-KB, cells were 
also cotransfected with an expression vector for IKB-ct, an 
inhibitory subunit, which prevents NF-~B activation when 
overexpressed (7). Expression of either the wild-type or 
the mutant E3/19K proteins did not affect basal tk-driven 
luciferase activity (Fig. 9, left side). KB-dependent reporter 
gene activity, however, was increased 17-fold by the ex- 
pression of wild-type E3/19K, but not by the expression of 
the mutant protein (Fig. 9, right side). This activation was 
dependent on NF-KB, since it was entirely abolished by 
the overexpression of IkB. These data show that activation 
of transcription factor NF-KB by adenovirus E3/19K de- 
pends on ER retention of the protein and leads to nuclear 
gene expression. 

E3119K-induced NF-rB Activation Is Apparently 
Mediated by Release of Ca 2+ from the ER 

Retention of proteins in the ER must elicit a signal which 
reaches NF-KB in the cytoplasm. The ER is a reservoir for 
Ca 2+, which may be released into the cytoplasm upon 
stimulation. Since Ca 2+ is a widely used second messenger, 
we investigated whether Ca 2+ release from the ER might 
play a role in NF-KB activation by E3/19K. 293 cells were 
preincubated with increasing concentrations of the intra- 
cellular Ca 2÷ chelator TMB-8 (36). TMB-8 has been 
shown to inhibit Ca 2÷ release from the ER without affect- 
ing the influx of extracellular Ca 2+ (11). 1 h after TMB-8 
treatment, cells were either transfected with 6 Ixg of the 
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wild-type E3/19K expression vector or stimulated with 200 
U/ml TNF. 4 h after transfection/stimulation, total cell ex- 
tracts were prepared and analyzed for NF-KB D N A  bind- 
ing in an EMSA. Pretreatment with TMB-8 potently sup- 
pressed E3/19K-mediated NF-KB activation (Fig. 10 A). In 
contrast, it had virtually no effect on TNF-stimulated NF- 
KB induction (Fig. 10 B). Since NF-KB activation by E3/ 
19K depends on efficient transfection and expression of 
the protein, we compared the amount  of E3/19K protein in 
untreated and TMB-8- t rea ted  cells. Untreated 293 cells 
and cells pretreated with 1 mM TMB-8 for 1 h were trans- 
fected with 6 ~g of the wild-type E3/19K expression vec- 
tor. Mock-transfected cells were included as a control. 4 h 
after transfection, cells were labeled with [35S]methionine 
for 75 min. Cell lysates were immunoprecipitated with a 
monoclonal  antibody against E3/19K and analyzed by 
SDS-PAGE.  Untreated and TMB-8-treated cells expressed 
identical amounts of  E3/19K (Fig. 10 C, compare lanes 2 
and 3), indicating that the Ca 2÷ chelator affected neither 
transfection nor protein expression. The inhibitory effect 
of  TMB-8 thus suggests a requirement for intracellularly 
released Ca 2+ ions in E3/19K-mediated NF-KB activation. 

Ca 2+ release from the E R  can be induced by inhibition 
of the ER-resident Ca2+-dependent ATPase.  Two struc- 
turally unrelated, selective inhibitors of this enzyme have 
been described: thapsigargin and cyclopiazonic acid (CPA) 
(22, 47). If E R  overload activates NF-KB by causing Ca 2÷ 
efflux from the ER,  treatment of cells with Ca2+ATPase 
inhibitors should also induce the transcription factor. We 
investigated this hypothesis by treating HeLa  cells with ei- 
ther 15 IzM thapsigargin or 75 p~M CPA for various times. 
Treatment  with 50 ng/ml TPA,  which was previously 
shown to induce NF-~B was included as a positive control. 
Treatment  of HeLa cells with both thapsigargin and CPA 
strongly and rapidly activated NF-KB (Fig. 11). Activation 
was already seen 15 min after stimulation (lanes 2 and 7) 
and reached maximal levels after 1-3 h (lanes 4, 9, and 10) 
similar to T P A  (lanes 12-16). Induction by the agents was 
transient, decreasing to basal levels by 24 h (lanes 6, 11, 
and 16). It has been shown that thapsigargin- and CPA- 
stimulated Ca 2÷ release is fast, occurring within seconds 

Figure 7. Expression of wild-type and mutant E3/19K proteins in 
transiently transfected 293 cells and their effect on NF-KB activa- 
tion. (A) 293 cells were transfected with 6 I~g of expression vec- 
tors for the wild-type E3/19K (lane 2), the E3/19K-K139/140S 
(lane 3), or the E3/19K-K d mutant (lane 4). Lane 1 contains un- 
transfected control cells. 48 h after transfection total cell extracts 
were prepared and assayed for NF-KB DNA binding in an 
EMSA. A filled arrowhead indicates specific NF-KB complexes. 
The open circle denotes nonspecific binding to the probe and the 
open arrowhead shows unbound oligonucleotide. (B) Immuno- 
precipitation of E3/19K proteins transiently transfected into 239 
cells. 6 txg of expression vectors for the wild-type E3/19K (lanes 3 
and 4), the E3/19K-K139/140S (lanes 5 and 6), or the E3/19K-K a 
mutant (lanes 7 and 8) were transfected into 293 cells. 48 h after 
transfection, cells were starved of methionine for 45 rain and sub- 
sequently incubated with 35S-labeled methionine for 75 min. Cell 
extracts were prepared and immunoprecipitated with two differ- 
ent antibodies for each protein as indicated. Lanes 1 and 2 con- 
tain lysates from mock-transfected cells. A star indicates slower 
migrating E3/19K proteins that have received post-ER modifica- 
tions. 
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Figure 8. The dilysine motif 
is not required for E3/19K 
mediated NF-KB activation. 
293 cells were transfected 
with 6 txg of expression vec- 
tors for the wild-type E3/19K 
(lane 2) or the E3/19K-M125 
mutant (lane 3). Lane 1 con- 
tains untransfected control 
cells. 24 h after transfection 
total cell extracts were pre- 
pared and assayed for NF-KB 
DNA binding in an EMSA. 
A filled arrowhead indicates 
specific NF-KB complexes. 
The open circle denotes non- 
specific binding to the probe 
and the open arrowhead 
shows unbound oligonucle- 
otide. 

after drug application (8). The rapid activation of  NF-KB 
by CaZ+ATPase inhibitors is consistent with the hypothe- 
sis that Ca 2+ release from the E R  can cause NF-KB activa- 
tion. NF-KB activation by thapsigargin and CPA is dose 
dependent  and can be inhibited by pretreatment of cells 
with the Ca 2÷ chelators TMB-8 and B A P T A - A M  (data 
not shown). Taken together, our data suggest that Ca 2÷ ef- 
flux from the E R  represents one cytoplasmic signal by 
which E R  overload activates NF-KB. 

Discussion 

We have recently shown that the transcription factor NF- 
KB participates in a novel E R  nuclear signal transduction 
pathway (41). The NF-KB-inducing pathway is distin- 
guishable from the previously described U P R  pathway, 

Figure 9. E3/19K-mediated KB-dependent gene expression re- 
quires an intact ER-retention signal. 293 cells were transfected 
with 5 ng of either the tk-Luc (leftside) or the 6x-KB-tk-Luc (right 
side) plasmid. 6 I~g of expression vectors for either the wild-type 
E3/19K or the E3/19K-K139/140S mutant were cotransfected to- 
gether with 5 I~g of either an IKB expression vector or empty Rc/ 
CMV vector as indicated. Cells were harvested 48 h posttransfec- 
tion and luciferase activity determined. Results represent aver- 
ages of duplicate experiments. 

which is activated by the presence of un- or malfolded pro- 
teins in the E R  (20). In contrast, the E R  stress signal acti- 
vating NF-KB is not well understood. To investigate the 
nature of this signal we used the adenovirus early region 
protein E3/19K. Two properties of  this protein can poten- 
tially contribute to its capacity to activate NF-KB: its com- 
plexation with M H C  class I molecules or its retention and 
subsequent accumulation in the ER. Since E3/19K has 
been studied in detail, several amino acid residues re- 
quired for M H C  class I binding and a dilysine motif re- 
quired for E R  retention have been identified (29, 45). This 
allows the introduction of minimal changes in the protein 
to abolish either property. In particular, the intracellular 
localization of the protein can be altered by point muta- 
tions without perturbing the E R  luminal domain, an ap- 
proach which is not possible with other NF-KB-activating 
proteins. 

Point mutants of  E3/19K which eliminate either M H C  
class I binding or E R  retention were tested for their ability 
to activate NF-KB. Two mutants which no longer bind 
M H C  class I molecules (45) remained fully capable of in- 
ducing NF-KB (Fig. 4 A). Moreover,  accumulation of a 
certain number  of E3/19K-MHC class I complexes ap- 
pears to cause the same degree of E R  stress as the accu- 
mulation of the same number  of  uncomplexed E3/19K 
molecules (Fig. 4 B). The sensor which signals E R  stress 
must therefore recognize the number  of proteins in the 
E R  membrane but not their size or interaction in the E R  
lumen. 
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E R  retention, however, is essential for the capacity of  
E3/19K to activate NF-KB. A point mutant  in which two 
lysine residues were replaced by serines causing it to be 
expressed on the cell surface, no longer induced the tran- 
scription factor. Using this mutant, however, we cannot 
distinguish between the contribution of  the dilysine motif 
itself and ER-retention: by mutating the two lysine resi- 
dues to abolish E R  retention, we concurrently destroy the 
dilysine tag. We therefore examined a second E3/19K mu- 
tant, in which the six COOH-terminal  amino acids, includ- 
ing the dilysine motif at positions -3 and -4, are deleted. 
Several assays show that this construct is nonetheless re- 
tained in the E R  (19 and Sester, M., and H.-G. Burgert, 
unpublished data). Deletion of the dilysine motif did not 
diminish the ability of E3/19K to induce NF-KB. This iden- 
tifies the NF-•B activating ER-stress signal as the accumu- 
lation of proteins in the organelle. These data also explain 
why other proteins such as influenza hemagglutinin (40), 
immunoglobulin I~ heavy chains (41) and M H C  class I 
molecules (Fig. 4), which do not possess dilysine retention 
motifs but can nonetheless accumulate in the ER, and acti- 
vate NF-KB. We have suggested that " E R  overload", the 
congestion of  the E R  membrane  with too many proteins, 
activates a signal transduction pathway which induces NF- 
KB. In this model, expression of E3/19K proteins which ac- 
cumulate in the ER, causes E R  overload. E3/19K mutants 
which are not retained in the E R  do not significantly accu- 
mulate and therefore do not cause E R  overload. 

Two lines of evidence suggest that E R  stress triggers the 
release of  Ca 2+, which acts as a second messenger in the 
activation of  NF-KB. First, E3/19K-mediated NF-KB acti- 
vation can be inhibited by pretreatment of cells with the 
intracellular calcium chelator TMB-8. Second, inhibitors 
of the ER-resident Ca 2÷ ATPase,  which cause a rapid re- 
lease of Ca 2÷ from the ER,  are potent  activators of NF-KB. 
It has recently been shown that t reatment of  peritoneal 
macrophages with thapsigargin and CPA induces a rapid 
and dramatic increase in IL-6 m R N A  expression and IL-6 
secretion (8). In these cells, IL-6 transcription increases 
10-fold after 15 min of treatment with thapsigargin. Since 
inducible IL-6 transcription is mediated by NF-KB (34), 
these data are explained by our demonstrat ion of  a rapid 
NF-KB activation in response to thapsigargin and CPA. 
Further studies will investigate whether the accumulation 
of proteins during E R  overload elicits Ca 2÷ release by in- 
hibiting the Ca2+-ATPase. In this way, the enzyme might 
serve as the E R  stress sensor. 

Figure 10. E3/19K-mediated but not TNF-stimulated NF-KB ac- 
tivation is inhibited by the intracellular Ca 2+ chelator TMB-8. 293 
ceils were pretreated with increasing doses of TMB-8 as indicated 

for 1 h and subsequently either transfected with 6 Izg of an E3/ 
19K expression vector (A) or stimulated with 200 0Jml TNF for 4 h 
(B). Cell extracts were prepared and analyzed in an EMSA using 
a high affinity KB-binding site as a probe. A filled arrowhead in- 
dicates specific NF-KB complexes. (C) Immunoprecipitation of 
E3/19K proteins transiently transfected into untreated 293 cells 
(lane 2) and cells pretreated for 1 h with 1,000 mM TMB-8 (lane 
3). Cells were transfected with 6 Ixg of expression vectors for E3/ 
19K (lanes 2 and 3), lane I contains lysate from mock-transfected 
cells. 4 h after transfection, cells were starved of methionine for 
45 min and subsequently incubated with 35S-labeled methionine 
for 75 rain. Cell extracts were prepared and immunoprecipitated 
with the anti-E3/19K monoclonal antibody Tw 1.3. 
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Figure 11. NF-KB is activated by two in- 
hibitors of the ER-resident Ca 2+ ATP- 
ase, thapsigargin, and cyclopiazonic acid. 
HeLa cells were treated with either 15 
ixM thapsigargin (lanes 2-6), 75 wM cy- 
clopiazonic acid (CPA, lanes 7-12), or 50 
ng/ml TPA (lanes 13-16) for various 
times as indicated. Treatment time is 
noted in hours. Equal amounts of pro- 
tein from cell extracts were analyzed for 
NF-KB activity by EMSA. A filled ar- 
rowhead indicates the position of NF-KB 
DNA complexes. The open circle de- 
notes a nonspecific activity binding to 
the probe and the open arrowhead 
shows unbound oligonucleotide. 

TNF-mediated NF-KB activation is not inhibited by 
TMB-8. In contrast, we recently reported that NF-KB in- 
duction by the phosphatase inhibitor okadaic acid (OA) is 
also inhibited by preincubation with the Ca 2÷ chelator 
TMB-8 (44). OA has also been shown to disrupt ER func- 
tion (35). Most likely, OA induces NF-KB by eliciting ER 
stress, rather than by inhibition of phosphatases, as was 
previously thought. NF-KB-activating agents can thus be 
divided into two classes: inducers such as TNF, which are 
not inhibited by intracellular Ca 2+ chelators, and agents 
including phosphatase inhibitors and ER overload, which 
require intracellular Ca 2+ release. With the exception of 
T cells, Ca 2÷ ions have not previously been implicated in 
NF-~B activation. In T cells, Ca 2÷ ionophores stimulate 
NF-KB very weakly on their own, but act synergistically 
with PMA to induce the transcription factor (48). By mo- 
bilizing intracellular Ca 2÷, ER stress thus uses a novel 
messenger for NF-KB activation. 

It has previously been shown that adenovirus infection 
induces TNF production in mice (21) and that TNF stimu- 
lates E3 protein expression (15, 31). What role may ade- 
novirus E3/19K-mediated NF-KB activation play in the life 
cycle of the virus and the infected cell? NF-KB stimulates 
transcription of MHC class I genes (28, 43). This counter- 
acts the effect of E3/19K, which binds MHC class I in the 
ER to prevent its surface expression. However, the ade- 
novirus E3 promoter contains two functional NF-KB sites 
(reference 51, Deryckere, F., and H.-G. Burgert, manu- 
script in preparation). Activation of NF-KB thus increases 
transcription of both the E3/19K and MHC class I genes. 
This leads to the accumulation of more proteins in the ER, 
thereby eliciting more ER stress, leading to increased NF- 
KB activation and yet increased E3/19K and MHC class I 
expression. This is an example of a mutual adaptation of 
virus and host which may culminate in a chronically en- 

hanced level of NF-KB activity and KB controlled gene ex- 
pression. We have now shown that three structurally unre- 
lated viral membrane proteins activate NF-KB: the truncated 
virion protein MHBS t of HBV, wild-type hemagglutinin of 
influenza virus and wild-type E3/19K of adenovirus (37, 
40). Since the transcription factor is known to induce 
genes for interferon and inflammatory cytokines in addi- 
tion to MHC class I, ER overload by viral membrane pro- 
teins might represent a generalized antiviral response of 
the cell. Because the pathway is simply elicited by the ac- 
cumulation of viral proteins in the ER membrane, it has 
very broad specificity. A cell would not need a specific 
mechanism to recognize a particular virus, but simply 
sense the ER stress caused by the novel production of 
secretory viral proteins. By activating NF-KB, a central 
mediator of the immune response, a fast and extremely ef- 
ficient antiviral response is achieved. In the case of ade- 
novirus and HIV-1, the virus has adapted to this response 
by selecting NF-KB motifs for regulation of its own protein 
transcription, thereby eventually counteracting the protec- 
tive effects of NF-KB activation. 
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