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Machine learning- assisted discovery of 
growth decision elements by relating 
bacterial population dynamics to 
environmental diversity
Honoka Aida, Takamasa Hashizume, Kazuha Ashino, Bei- Wen Ying*

School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan

Abstract Microorganisms growing in their habitat constitute a complex system. How the indi-
vidual constituents of the environment contribute to microbial growth remains largely unknown. The 
present study focused on the contribution of environmental constituents to population dynamics 
via a high- throughput assay and data- driven analysis of a wild- type Escherichia coli strain. A large 
dataset constituting a total of 12,828 bacterial growth curves with 966 medium combinations, which 
were composed of 44 pure chemical compounds, was acquired. Machine learning analysis of the big 
data relating the growth parameters to the medium combinations revealed that the decision- making 
components for bacterial growth were distinct among various growth phases, e.g., glucose, sulfate, 
and serine for maximum growth, growth rate, and growth delay, respectively. Further analyses and 
simulations indicated that branched- chain amino acids functioned as global coordinators for popula-
tion dynamics, as well as a survival strategy of risk diversification to prevent the bacterial population 
from undergoing extinction.

Editor's evaluation
In this manuscript, the authors quantitatively analyze the growth curves for E. coli under a large 
number of growth conditions and use different machine learning methods to tackle the combinato-
rial complexity of conditions as well as to predict growth parameters from media composition. The 
large datasets and the use of ML to handle such complex modeling will be of general interest to the 
biology community.

Introduction
Highly diversified microorganisms grow in highly differentiated habits (Escalas et al., 2019; Levin 
et  al., 2021). The measurement of diversity in both genetics and the environment is essential to 
understand community outcomes as an ecological cause and/or consequence (Shade, 2017) and 
the evolutionary and responsive strategies constrained by the environment (Celani and Vergassola, 
2010; Fraebel et al., 2017). To date, studies have focused more on genetic diversity, e.g., metag-
enomics (Handelsman, 2004; Chistoserdova, 2010) and microbial communities (Mitri and Foster, 
2013; Heinken et al., 2021), than on environmental diversity, despite the high complexity of both 
microbes and environments (Langenheder et al., 2010; Pacheco et al., 2021). It remains unclear how 
the individual constituents of the environment (i.e. habitat) contribute to the population dynamics of 
the microbe or community. Mimicking the environmental diversity in the laboratory by reconstituting 
the environment (e.g. medium) with known components of defined amounts or magnitudes might be 
applicable to address this issue.
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Microbial population dynamics are commonly represented by growth curves (Egli, 2015; Zwiet-
ering et al., 1990; Tonner et al., 2017). How a microbial population (species) fits the habitat (envi-
ronment) has largely been evaluated by three parameters derived from the growth curve, i.e., the lag 
time, growth rate, and saturated population size, which quantitatively represent the lag, exponen-
tial, and stationary phases of the growth curve, respectively (Blomberg, 2011; Peleg and Corradini, 
2011). The lag time has been reported to be crucial for bacterial growth under environmental stress 
(Zhou et al., 2011; Guillier et al., 2005). The growth rate has been associated with proteome allo-
cation (Scott et al., 2010; Zhu and Dai, 2019), ribosome function (Gourse et al., 1996; Dai and 
Zhu, 2020), and gene expression (Nilsson et al., 1984; Klumpp et al., 2009); thus, it represents the 
adaptiveness (fitness) of the microbial population (Towbin et al., 2017; Saether and Engen, 2015). 
The three growth parameters are likely coordinated with each other. Previous studies have observed 
trade- offs between the growth rate and either the population size (Novak et al., 2006; Engen and 
Saether, 2006) or the lag time (Basan et al., 2020) within identical species, as well as correlated 
changes in the growth rate and saturated population size among genetically diversified strains (Liu 
et al., 2006; Nishimura et al., 2017). Whether and how environmental diversity affects the three 
growth parameters remain unknown.

To address these questions, a quantitatively high- throughput survey linking growth parameters 
to environmental diversity is required. As the microbial population dynamics have been shown to be 
strongly dependent on the growth medium (Egli, 2015), relating the bacterial growth profile to the 
medium constitution is applicable to address the issue. Recently, both high- throughput technologies 
for bacterial growth analysis (Blomberg, 2011) and data- driven computational approaches have been 
developed for studying complex systems (Jordan and Mitchell, 2015; Gilpin et al., 2020; Xu and 
Jackson, 2019). In particular, machine learning (ML) techniques have been widely applied to studies 
on genetic diversity (Schrider and Kern, 2018; Libbrecht and Noble, 2015), metabolic engineering 

Figure 1. Relating bacterial growth to environmental diversity. (A) Flowchart of experimental conditions and data 
attainment. Colour gradation indicates the concentration gradient of the pure chemical compound used in the 
medium combinations. (B) Concentration variation of the components comprising the medium combinations. 
Colour variation indicates the categories of elements. The concentrations are indicated on a logarithmic scale.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Variations in concentration gradients of the components.

Figure supplement 2. Experimental tests of the changes in growth rate (r) responding to the concentration 
gradients of the minor compounds.

Figure supplement 3. Experimental tests of the relationship between saturated population density (K) and the 
minor compounds.

https://doi.org/10.7554/eLife.76846
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(Kim et al., 2020), and population dynamics (Campos et al., 2018; Hiura et al., 2021; Ashino et al., 
2019). Combining ML approaches with the use of high- throughput measurements of a well- known 
microbe in well- defined environments has become practical for comprehensive quantitative evalu-
ation of the contribution of environmental factors (e.g. chemical compositions of the habitats) to 
microbial population dynamics (e.g. bacterial growth). In the present study, a large dataset describing 
the bacterial population dynamics in a broad environmental gradient of largely varied combinations 
was experimentally acquired under well- controlled laboratory conditions. ML prediction and niche 
broadness analysis of the big data linking bacterial growth to environmental diversity (i.e. medium 
combinations) were performed. The bacterial growth strategy was investigated by means of data- 
driven approaches.

Results
Relating bacterial growth to environmental diversity
Precise bacterial growth profiling was performed by a high- throughput growth assay in varied medium 
combinations (Figure 1A), which were prepared with 44 pure chemical substances that are commonly 
used in different microbial culture media. As the chemical substances are ionized in solution, these 
medium combinations finally comprised 41 components (e.g. metal ions, amino acids [AAs], etc.) whose 
concentrations varied broadly on a logarithmic scale (Figure 1B). In brief, a total of 12,828 growth 
curves of Escherichia coli BW25113 grown in 966 different medium combinations were acquired. 
Three parameters, the lag time (τ), maximal growth rate (r), and saturated population density (K), were 
subsequently calculated according to the growth curves, which represented the quantitative features 
in the lag, exponential, and stationary growth phases, respectively (Figure 2A). The averaging of the 
biological replications and the removal of the unreliable measurements finally resulted in 961, 961, 
and 937 values of τ, r, and K, respectively (Figure 2B, Figure 2—source data 1). The three parame-
ters all presented multimodal distributions in response to environmental variation, which agreed well 

Figure 2. Bacterial growth profiling. (A) Three growth parameters calculated from growth curves. The lag time (τ), 
the growth rate (r), and the saturated population size (K) are indicated. (B) Distributions of the three parameters. 
The numbers of medium combinations (N) used are indicated. (C) Principal component analysis (PCA) of medium 
combinations. The contributions of PC1 and PC2 are shown. (D) Correlations of the three parameters to PC1 and 
PC2. Spearman’s correlation coefficients and the p values are indicated.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Medium combinations used in the growth assay.

Figure supplement 1. Clustering of the medium combinations.

Figure supplement 2. Illustration of the fitness landscape.

Figure supplement 3. Subculture of the E. coli cell population used in the growth assay.

https://doi.org/10.7554/eLife.76846


 Research article      Computational and Systems Biology | Microbiology and Infectious Disease

Aida et al. eLife 2022;11:e76846. DOI: https://doi.org/10.7554/eLife.76846  4 of 19

with the rugged fitness landscapes proposed for adaptive evolution (Neidhart et al., 2014) and the 
immune response (Kauffman and Weinberger, 1989).

Clustering analyses and principal component analysis (PCA) were applied to the medium combina-
tions. The 966 medium combinations could be mainly divided into four clusters (Figure 2C), roughly 
with respect to the multimodality of the distributions (Figure 2—figure supplement 1). If the three 
parameters of τ, r, and K, which all showed the multimodal distributions, were independent, more than 
eight clusters were anticipated. Only four separate clusters were identified, indicating that the growth 
parameters were somehow dependent. The three parameters were all correlated with the two main 
PCs (Figure 2D), suggesting that bacterial growth was determined by certain common components 
comprising medium combinations. The results presented an overview of the relationship between the 
medium combinations and bacterial growth and indicated the growth law in common mediated by 
the medium components.

Decision-making components for bacterial growth
ML approaches were applied to predict the three parameters according to the medium combinations 
(Figure 3A). As a preliminary test, five representative ML models and an ensemble model were trained 
and evaluated. The results showed that the prediction accuracy was approximately equivalent among 
the six ML models (Figure 3B), independent of the evaluation metrics (Figure 3—figure supplement 
1). It indicated that the simple ML models were available to tackle the large dataset generated by the 
throughput growth assay and appropriate for the prediction of bacterial growth according to the envi-
ronmental details, e.g., medium composition. To determine an explainable linkage between bacterial 
growth and the medium constitution, the ML model of the gradient- boosted decision tree (GBDT) was 
chosen for further investigation.

Intriguingly, repeated GBDT prediction showed that the growth parameters were largely deter-
mined by a single component out of 41 components comprising the medium (Figure 4A, Figure 4—
source data 1). It seemed that a few key components played a determinant role in bacterial growth. 
The top 10 features (i.e. components) contributing to the three parameters somehow overlapped 
(e.g. K, Na, and phosphate), which might reflect the common effect of osmotic balance resulting 
from these components. Nevertheless, the components of the highest priority in governing the three 
parameters were highly differentiated, i.e., serine, sulfate, and glucose for τ, r, and K, respectively 
(Figure 4A). This finding was confirmed by the correlations of the three parameters to the changes in 
the concentrations of the three components, irrespective of the large variation in other components 

Figure 3. Evaluation of machine learning (ML) models. (A) Workflow of ML. (B) Accuracy of the ML models. 
Boxplots of the evaluation metrics obtained in the ML prediction of growth rate are shown. The root mean squared 
errors (RMSEs) of five independent tests are indicated as black points.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Accuracy of the machine learning (ML) and multiple regression models.

Figure supplement 2. Time required for the machine learning (ML) model training.

Figure supplement 3. Effect of the abundance of training data on the accuracy of gradient- boosted decision tree 
(GBDT).

Figure supplement 4. Accuracy of the machine learning ML models varied with the experimental errors of the 
data for training.

https://doi.org/10.7554/eLife.76846
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present (Figure 4B, Figure 4—figure supplement 1). Since the Spearman’s rank correlation was used, 
the large size of dataset led to high significance, which was somehow discrepant to the graphics. It 
suggested that growth decisions were highly constrained by a few components and were largely 
distinguished in response to the growth phase.

Sensitive components affecting bacterial growth
As the three growth parameters were somehow determinatively decided by a few components, the 
changes in growth parameters in response to the concentration gradient of each component were 
evaluated according to the previous study (Kurokawa et al., 2021). Here, the area (i.e. the shadowed 
space, S) above the fitting curve of cubic polynomial regression to the normalized plot was newly 
defined, in which the maxima of both the concentration gradients and the growth parameters were 
rescaled to one unit (Figure 5A, Figure 5—figure supplement 1). An assortment of fitting curves 
was acquired for the target component (Figure 5—figure supplements 2–4) because of the various 
combinations of the remaining 40 components (Figure 5B). The mean of these S values was calculated 
and designated the sensitivity of the component for bacterial growth in response to the alternative 
combinations of other components. A larger value of S indicated a higher sensitivity of the compo-
nent, i.e., indicated larger changes in the growth parameters due to the variation in the concentration 
gradients of the other 40 components. Consequently, a total of 41 S values were acquired with respect 
to the three parameters, i.e., Sτ, Sr, and SK (Figure 5—figure supplement 5, Figure 5—source data 1), 
which all presented long- tailed distributions (Figure 5C). The sum of Sτ, Sr, and SK, which was defined 

Figure 4. Contribution of the components to bacterial growth. (A) Relative contributions of the components to the 
three parameters predicted by gradient- boosted decision tree (GBDT). 10 components with large contributions 
to the three parameters of lag time (τ), growth rate (r), and saturated population size (K) are shown in order. The 
remaining 31 components are summed as ‘Others’. (B) Correlation of the concentrations of the components with 
the growth parameters. The components with the largest contributions to the three parameters τ, r, and K are 
shown individually. Spearman’s correlation coefficients and the p values are indicated.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Summary of the feature importance of the components for τ, r, and K.

Figure supplement 1. Violin plots of the growth parameters at varied ranges of chemical concentrations.

Figure supplement 2. Separation of the multimodal distribution of growth rate (r).

Figure supplement 3. Separation of the multimodal distribution of saturated population size (K).

Figure supplement 4. Separation of the multimodal distribution of lag time (τ).

https://doi.org/10.7554/eLife.76846
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as the global sensitivity (Sg) of the component across the three growth phases, showed a similar long- 
tailed distribution shape. The four distributions were all likely to follow the power law (Evans et al., 
2021; Furusawa and Kaneko, 2006), which agreed well with the ML- predicted conclusion that only 
a few components determined the growth. This finding strongly suggested that the decision- making 
components for bacterial growth were present among the 41 components, regardless of the complex 
interactions among these components.

The components with the largest S values, i.e., Ile, K, and phosphate (Figure  5D), overlapped 
among the three parameters, suggesting that these components were highly sensitive to the fluctua-
tion of other components for all growth phases. In particular, Ile was the most sensitive component, as 
it presented the largest Sg, i.e., the largest changes in bacterial growth responding to the concentration 
gradient of Ile in different combinations of other chemicals (i.e. patterns shown in Figure 5—figure 

Figure 5. Sensitivity of the components. (A) Definition of sensitivity. As an example, the upper and bottom panels 
indicate the regression curve across the concentration gradient of glucose and the normalized regression curve, in 
which both the concentration gradient and the growth rates are rescaled within one unit, respectively. The shaded 
area was determined as the sensitivity (S) of glucose. (B) Variation in the sensitivity. Six different regression curves, 
i.e., six different S values, of glucose are shown, which result from the alternative combinations of the other 40 
components (left panels). The yellow gradation and blue lines represent the variation in medium combinations 
and the corresponding regression curves, respectively (right panels). (C) Distributions of the mean sensitivities. The 
mean S values evaluated according to lag time (τ), growth rate (r), and saturated population size (K) are shown as 
Sτ, Sr, and SK, respectively. The sum of the three S values is shown as global sensitivity (Sg). The black lines indicate 
the fitting curves of the power law. (D) Most sensitive components. The components with the largest S values are 
shown in the order of value. (E) Balance of sensitivity. The balance of sensitivity is visualized by the triangle of Sr, SK, 
and Sτ in red dotted lines. The solid lines in pink, blue, and green represent Sr, SK, and Sτ, respectively. Those close 
to or far from an equilateral triangle are determined as the balanced (Ile) or biased (Cys) sensitivity in response to 
the growth phases, respectively. (F) Variance of sensitivity. The components with either the smallest or the largest Vs 
are shown in the order of value. Five components of either balanced or biased sensitivity are shown.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Summary of sensitivity.

Figure supplement 1. Schematic drawing of the analytical procedure of S.

Figure supplement 2. Normalized regression curves of the growth rates (r).

Figure supplement 3. Normalized regression curves of the saturated population size (K).

Figure supplement 4. Normalized regression curves of the lag time (τ).
Figure supplement 5. Sensitivity of the components.

https://doi.org/10.7554/eLife.76846
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supplement 1). The result well supported the finding that the components dominating the three 
second- priority parameters were Leu and Ile (Figure 4A). Additionally, analysing the variance (Vs) of 
the Sτ, Sr, and SK values showed that the largest Vs values was in Cys (Figure 5F, Figure 5—figure 
supplement 5), indicating biased sensitivity for the three growth phases. In addition, the smallest 
Vs was detected in Ile, suggesting equivalent sensitivity all growth phases. Taken together, Ile and/
or branched- chain AAs (BCAAs) participate commonly in all growth phases and are probably global 
coordinators for bacterial growth. This finding was independent of the methods used for the evalua-
tion of the variance (Figure 5—source data 1).

Risk diversification strategy for population survival
The three components serine, sulfate, and glucose, determining the growth lag, growth rate, and 
growth yield, respectively (Figure 6A), could be categorized into the three major elements of nitrogen 
(N), sulfur (S), and carbon (C). The contribution and mechanism of C and N to population dynamics 
have been intensively studied (Brown et al., 2014; Côté et al., 2016; El Zahed and Brown, 2018; 
Egli, 1991), whereas little is known concerning S. To link sulfate to growth, flux balance analysis 
(FBA) (Orth et al., 2010) simulation was performed. The result showed that a decreased growth rate 
was associated with an increased rate of sulfate uptake (Figure 6B), supporting the determinative 
contribution of S to the growth rate. Nevertheless, the FBA simulation did not provide a perfect 
explanation, as the concentration of sulfate used in the simulation was somehow excessive compared 
to that used for culture in general. The determinative role of S (SO4

2-) in the growth rate might be 
related to its function as a material because it is not only a major constituent of the earth but also 
the major element in organisms (Morgan and Anders, 1980; Heldal et al., 1985; Novoselov et al., 
2013). Since S (SO4

2-) was a highly reactive chemical, e.g., exposure to SO4
2- increased reactive oxygen 

species levels in bacteria (Chen et al., 2016), its determinative role in growth rates was probably 
mediated by the stress response.

Notably, the different elements regulating various growth phases strongly implied risk diversifica-
tion in fate decisions as a survival strategy. To demonstrate whether the differentiation of elements for 
growth decisions are a practicable survival strategy, theoretical simulations based on either a single or 
multiple determinants for the three parameters were additionally performed. Every 1000 simulations 

Figure 6. Growth strategy of risk diversification. (A) Schematic drawing of the decision- making components for 
bacterial growth. (B) Flux balance analysis (FBA) simulation. The predicted growth rates are plotted against the 
input rate of sulfate uptake. (C) Theoretical simulation of survival probability. The blue and red lines represent the 
growth strategies of the multiple and single decision makers, respectively. The shading covering the red and blue 
lines indicates the SD.

https://doi.org/10.7554/eLife.76846
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were conducted at the varied threshold (d), i.e., the ratio was defined as population extinction. The 
results showed that a three- component set of decision makers led to a higher probability of survival, 
particularly when raising the extinction threshold (Figure 6C). It suggested that the differentiation in 
fate decision makers prevented the bacterial population from undergoing extinction more compe-
tently than the single decision maker did. It must be beneficial for the bacteria growing in a fluctuating 
environment, as it agreed well with the prospected Y- A- S strategy of the microorganisms in nature, 
i.e., the growth strategy for high yield, resource acquisition, and stress tolerance, respectively (Malik 
et al., 2020). In addition, the simulated result of reduced risk of extinction mediated by the differ-
entiation in decision makers seemed to be biologically reasonable. The previous studies observed 
the trophic (Sanders et  al., 2018) and functional (Li et  al., 2021) redundancy in ecosystems and 
the genetic redundancy in living cells (El- Brolosy and Stainier, 2017), which demonstrated that the 
survivability was secured by the participation of multiple factors. It must be beneficial for maintaining 
the robustness of ecosystems and cells.

Coordination in bacterial population dynamics
As the differentiation in decision- making components for bacterial growth allowed the independent 
decision for varied growth phases, the previously reported correlated changes in the growth parame-
ters (Novak et al., 2006; Engen and Saether, 2006; Basan et al., 2020; Liu et al., 2006; Nishimura 
et al., 2017) were supposed to be weakened. However, the three parameters remained significantly 
correlated (Figure  7A), which indicated that the risk diversification strategy did not disturb the 
trade- off or coordination, e.g., K/r selection (Cavalier- Smith, 1980). The correlations demonstrated 
that τ, r, and K were highly dependent, which well explained why the multimodal distributions of the 
growth parameters led to only four PCA clusters (Figure 2). Considering the dependency among the 
three growth parameters, which were decided by three different chemicals (Figure 6A), every 10,000 
simulations of population dynamics considering the correlation coefficients (Figure 7A) were addition-
ally performed. The results showed that the three decision makers facilitated the larger population 
size than the single decision maker did (Figure  7B), revealing that the differentiation in decision- 
making chemicals benefited the bacteria in maintain the final population size.

The correlated changes of the growth parameters might be due to the global participation of Ile 
and/or BCAAs, as the decision makers and common sensors. The frequency of Ile and BCAAs coded 
into the proteins in growing cells was evaluated according to the expression levels of the genes 
coding for the proteins (Figure 8A). The relative abundance of AAs was determined as the ratio of the 
frequency of the target AA to the sum of all 20 AAs in all proteins. Taking into account the variation 
in the copy number of proteins in growing cells, the frequency of each AA was normalized based on 
the relative abundance of gene expression (Figure 8B). The relative expression level of each gene 
(protein) was calculated as the mean of biologically repeated transcripts according to previous reports 
(Liu et al., 2006; Ying et al., 2013). The results showed that the relative abundances of intracellular 
Ile and BCAAs were significantly higher than their theoretical ratios, i.e., 1 or 3 out of 20 AAs, 5 or 
15%, respectively (Figure 8C). Although the most abundant AA was not Ile but Leu (Figure 8—figure 
supplement 1), their regulation and metabolism are closely related (Newman et  al., 1992). The 
results revealed that the protein building blocks required more BCAAs than other AAs, except Ala and 

Figure 7. Correlation of the growth parameters. (A) Density plots of the three parameters. Pairs of the three 
parameters lag time (τ), growth rates (r), and saturated population size (K) are plotted as dots. The colour bars 
indicate the numbers of data points. Spearman’s correlation coefficients and the p values are indicated. (B) Violin 
plots of the final population size. Relative population size of every 10,000 simulations considering the correlation 
coefficients of any pairs of the three parameters τ, r, and K is shown. Statistical significance of the Mann- Whitney U 
test is indicated.

https://doi.org/10.7554/eLife.76846
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Gly (Figure 8—figure supplement 1). The coordination among the three growth parameters might 
be balanced by BCAAs. In addition, the correlations of the growth parameters to each other and 
to the chemical gradients were detected at a population level (as shown in Figure 4 and Figure 7), 
although both the cellular status and the environmental condition must have been fluctuated and 
changed along with the bacterial growth (i.e. batch culture). These coordinated alterations indicated 
the homeostasis in the complex systems, e.g., living cells and ecosystems.

Discussion
The experimental restriction of the present survey was supposed to be the variety of environmental 
conditions and the interval of the concentration gradient. First, the study focused on the contribution 
of chemical conditions to bacterial growth, which was also affected by other environmental condi-
tions, such as temperature and oxygen (Ratkowsky et al., 1982; Baig and Hopton, 1969; McDaniel 
and Bailey, 1969). As the quantitative adjustment of these conditions was currently impracticable for 
the high- throughput assay, these conditions were beyond the scope of the present study. The findings 
on the contribution of medium components to bacterial growth were true under laboratory condi-
tions. Second, the concentration gradients of the components were prepared as broadly as possible 
to achieve the maximal solubility available for medium combinations, some of which were largely 
different from those used in the laboratory and/or found in nature (Heldal et al., 1985; Novoselov 
et al., 2013). The broad range of concentrations allowed us to acquire a boundless fitness landscape 
across the greatest environmental gradient and led to a wide concentration interval, i.e., changes on 
a logarithmic scale, in the growth assay. The concentration gradient of the most sensitive range to 
change bacterial growth might have been missed or masked. As the proper range of concentration 
gradients for sensitive growth change remained a black box, practicable conditions were applied. 
Theoretically, the issue concerning the best concentration gradient could be solved by extensive 

Figure 8. Relative abundance of branched- chain amino acids (BCAAs) in growing E. coli. (A) Chromosomal 
distribution of 20 amino acids (AAs). The numbers of 20 AAs coded into the proteins are indicated with the upward 
vertical bars at the chromosomal positions of the corresponding genes. BCAAs and the remaining 17 AAs are 
in colour and monotone, respectively. The expression levels of all genes coding for the proteins are shown in a 
logarithmic scale and are indicated by the downward vertical bar in grey. (B) Relative abundance of 20 AAs. Twenty 
AAs are shown with a single letter abbreviation. BCAAs are highlighted. The E. coli strains BW25113 and MG1655 
are indicated. Frequency represents the relative abundance of the AAs, while all proteins encoded on the genome 
are of equivalent amount. LB, M63, regular and heat shock indicate the relative abundance of the AAs according 
to the transcriptomes of the E. coli cells grown in LB, in M63, at 37°C and at heat shock conditions, respectively. 
(C) Relative abundance of Ile and BCAAs in growing E. coli. The boxplots represent the relative ratios estimated 
according to the genome and transcriptome information, and the red lines indicate the theoretical ratios of the 20 
AAs.

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Relative abundance of 20 amino acids (AAs) in growing Escherichia coli.

https://doi.org/10.7554/eLife.76846


 Research article      Computational and Systems Biology | Microbiology and Infectious Disease

Aida et al. eLife 2022;11:e76846. DOI: https://doi.org/10.7554/eLife.76846  10 of 19

growth assays associated with the ML prediction of concentration determination (rescale), i.e., intro-
ducing the predicted concentration to the following round of the growth assay and repeating the ML 
training and the experimental test. The extended repeats would result in the best medium combina-
tion for bacterial growth, which could be applied for culture optimization and development.

As the present study was to investigate the contribution of medium variation to bacterial popula-
tion dynamics, the differentiation was only made in the media, and the cell populations (stocks) were 
strictly controlled to be equivalent. A total of 12,828 growth assays used the identical cell population 
cultured in the minimal medium. The additional pre- culture in individual medium combinations, which 
was often performed in microbiology studies, would change the initial state of the cell population 
(Figure 2—figure supplement 2). If 966 subcultures had been performed to 966 media independently, 
the study would become investigating the contributions of 966 different media to 966 different cell 
populations. The experimental tests verified that the repeated transfer caused the continuous growth 
improvement (Figure 2—figure supplement 3), as commonly reported in the experimental evolu-
tion (Kurokawa et al., 2022; Barrick et al., 2009). Since the initial cell population was grown in the 
minimal medium, which was different from 966 medium combinations, the growth evaluated here 
could be considered as the adaptiveness in response to the environmental changes. The present 
survey somehow discovered the fitness landscape of the bacterial cells across a wide and complex 
chemical space. In addition, the concentrations of medium components usually altered accompanied 
by the population increase in the growth assays. Such fluctuation in chemical concentrations was out 
of consideration in the analyses, which was a common limitation in batch cultures. Strictly speaking, 
the present study provided the dataset connecting the initial concentration of chemical components 
to the maximal growth rate that the cells could achieve. As the initial chemical concentration could 
be easily manipulated and precisely controlled, the results here were assumed to be applicable in 
preparing the medium for desired bacterial growth.

Since the accuracy and reliability of ML are largely dependent on the quality and quantity of the 
training data, the impact of the experimental data on the ML models was carefully assessed. First, 
the representative ML models and a commonly used statistic model of multiple regression were 
compared. Although multiple regression is known to have the highest interpretability, its accuracy of 
predictability was likely to be worse than that of the ML models (Figure 3—figure supplement 1). 
The results well supported the common sense that the ML approach was more suitable for studying 
the complex systems, which were the growing bacterial cells and the chemical media in the present 
survey. Additionally, among the tested ML models, the best accuracy was acquired with the ensemble 
model; nevertheless, as it required the longest time for model training (Figure 3—figure supplement 
2) and was uninterpretable, the GBDT model was finally employed. Second, whether the abundance 
of the dataset affected the accuracy of the GBDT model was evaluated. The amount of data used 
for model training varied from 10 to 90% of the entire big dataset. Although a small amount of data 
(~10%) led to a relatively high accuracy on average, the variance in the accuracy of repeated model 
training was too large to reach a reliable prediction (Figure 3—figure supplement 3). An increase in 
the abundance of the training data decreased the variance of the model accuracy (Figure 3—figure 
supplement 3), demonstrating that a sufficiently large dataset was essentially required to achieve 
robust ML prediction for the biological experiments, as discussed in the different ML- associated 
microbial studies (Topçuoğlu et al., 2020). The dataset used here was large enough to grant a small 
variance, indicating the robust result of model training. Third, whether the accuracy of prediction was 
attributed to the experimental errors was evaluated. An equal amount of training data (n=400) with 
varied experimental accuracy, i.e., the variance of biological replication (CV = 0.05–0.12), was used 
to test the accuracy of the ML models. Intriguingly, the training data with large variance, i.e., a large 
experimental error caused by biological replication, resulted in the high accuracy of ML in comparison 
to those with small variance, which led to the decreased accuracy of ML (Figure 3—figure supple-
ment 4). Accordingly, the entire experimental dataset, regardless of the experimental error, was used 
for ML to draw the conclusion presented here.

The multimodal distributions of the three parameters reflected a broad variation in medium combi-
nations. Whether the main conclusion regarding the differentiated decision makers for varied growth 
phases was biased by the medium combinations was also evaluated. First, the variation in the concen-
tration of each component was counted. The most abundant variation of concentration was that for 
the chlorine ion (Cl), which was a low- priority contributor to growth, whereas the decision- making 

https://doi.org/10.7554/eLife.76846


 Research article      Computational and Systems Biology | Microbiology and Infectious Disease

Aida et al. eLife 2022;11:e76846. DOI: https://doi.org/10.7554/eLife.76846  11 of 19

components showed either high or low variation of concentrations, such as for sulfate or glucose, 
respectively (Figure 1—figure supplement 1). Second, although the AAs presented equivalent varia-
tions in concentration, only Ile, Ser, and Leu were determined to be the growth determinative compo-
nents. Finally, even if the multimodal distributions of the three parameters were arbitrarily divided 
into two monomodal- like distributions for data separation, which led to the reduced abundancy of 
the dataset, the differentiation in decision- making components for the three growth phases remained 
(Figure 4—figure supplements 2–4). As the data separation reduced the variety of medium combina-
tions, the highest- priority components were either similar or varied from those identified while using 
the whole dataset. This result indicated that the diversity of experimental conditions, i.e., the abun-
dance of training data, could influence the ML prediction. The present study applied the exceeding 
range of the concentration gradient and the high variability of medium combinations, which might 
cover the landscape of population dynamics as broadly as possible in the laboratory; therefore, the 
finding of the differentiation in the components deciding the three growth phases was independent 
of the experimental restriction.

In summary, the present study provided an informative and quantitative big dataset relating bacte-
rial growth (population dynamics) to environmental factors as a successful example of a combination of 
high- throughput data generation and ML. Using a simple ML model to evaluate three growth param-
eters was likely sufficient to capture the bacterial population dynamics in well- controlled conditions. 
The differentiation in decision- making components for the lag, exponential, and stationary phases 
protected the bacterial population against extinction. This finding revealed a common and simple 
strategy of risk diversification for bacterial growth in conditions of excessive resources or starvation, 
which is a reasonable approach in evolution and ecology. As a representative demonstration, this 
study showed that investigating the microbial world by data- driven approaches allows us to perceive 
highly intriguing insights that were inconceivable by traditional biological experiments. Nevertheless, 
the ML- assisted approach remains as an emerging technology and is required to improve its biological 
reliability and accessibility for common applications in the studies of life science, microbiology, and 
ecology.

Materials and methods
Bacterial strain and stock preparation
The wild- type E. coli strain BW25113 was used, which was provided by the National BioResource 
Project (National Institute of Genetics, Shizuoka, Japan). To reduce the experimental errors of the 
repeated growth assay on different days, common stocks of the exponentially growing E. coli cell 
culture were prepared beforehand, as described previously (Kurokawa and Ying, 2017). In brief, 
the E. coli cells were cultured in 5 mL of M63 minimal medium using a bioshaker (BR23- PF, Taitec) at 
200 rpm and 37°C. The cell culture was stopped when its optical density measured at 600 nm (OD600) 
reached ~0.1. The culture was subsequently divided into a small portion (60 µL) in 1.5 mL microtubes 
(Watson) and stored at –80°C for future use. Hundreds of aliquots (stocks) were prepared at once and 
disposably used in the growth assay; that is, the aliquots were used only once, and remaining cultures 
were discarded.

Medium composition and combinations
A total of 44 pure chemical substances, determined according to the literature (Oberhardt et al., 
2015; Neidhardt et al., 1974), were all commercially available (Wako or Sigma). The minimal concen-
trations of these compounds were set at zero in general, and the maximal concentrations were deter-
mined individually according to the literature or laboratory manuals. In addition, the concentrations 
of the compounds rarely used in the known media were experimentally examined (Figure 1—figure 
supplements 2 and 3). According to the determined maximal concentration, stock solutions of these 
chemical substances were prepared in advance for the easy preparation of medium combinations. 
The chemical substrates were dissolved in highly pure water (Direct- Q UV, Merck) at high concentra-
tions. Subsequently, the resultant solutions were sterilized, either using a sterile syringe filter with a 
0.22 µm pore size and hydrophilic PVDF membrane (Merck) for those heat sensitive compounds or by 
autoclaving at 121°C for 20 min. The stock solutions were divided into aliquots (10–100 μL) in 1.5 mL 
microtubes (Watson) and stored at –30°C for future use. A total of 100–300 stocks were prepared at 
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once for individual chemical substrates. To avoid repeated thawing and freezing of the stock solutions, 
aliquots were used only once. The medium combinations were prepared by mixing the stock solutions 
(aliquots) just before the growth assay. The concentrations of the substrates were varied on a loga-
rithmic scale, and only a single substrate was altered for each assay. A total of 966 combinations were 
tested in the growth assay (Figure 2—source data 1).

Growth assay
The high- throughput growth assay was conducted to acquire the growth curves in the medium combi-
nations, as described previously (Ashino et  al., 2019). The culture stocks were diluted 1000- fold 
with 5 mL of fresh media of varying medium combinations in 5 mL tubes (Watson). The diluted cell 
culture mixtures were loaded into a 96- well microplate (Costar) in four- to- six wells (200 μL per well) 
with varied locations per medium combination. The 96- well plates were incubated in a plate reader 
(Epoch2, BioTek) with a rotation rate of 567 rpm at 37°C. The temporal growth of the E. coli cells 
was detected at an absorbance of 600 nm, and the readings were obtained at 30 min intervals for 
24–48 hr. A total of 12,828 reliable growth curves were acquired.

Data processing and calculation of the growth parameters
The temporal OD600 reads were exported from the plate reader and processed with Python, as 
described in detail elsewhere (Ashino et al., 2019). The growth parameters τ, r, and K were evaluated 
according to previous reports (Ashino et al., 2019; Kurokawa et al., 2016) using a previously devel-
oped Python program (Ashino et al., 2019). In brief, τ was determined as the time when the increase 
in OD600 was observed in five consecutive reads; r was defined as the mean of three continuous loga-
rithmic slopes of every two neighbouring OD600 values within the exponential growth phase using 
‘gradient’ in the ‘numpy’ library; and K was calculated as the mean of three continuous OD600 values 
including the maximum, which was determined using ‘argmax’ in the ‘numpy’ library.

PCA and clustering
PCA (Ringnér, 2008; Abdi and Williams, 2010) was performed using ‘PCA’ in the ‘decomposition’ 
module from ‘scikit- learn’ (Pedregosa, 2011). The concentrations of 41 components were normalized 
within one unit, and the 966 combinations were used as input. The principal component scores of 
PC1 and PC2 were used for the correlation analysis of the three growth parameters. Clustering of 
the PC1–PC2 scores was performed using ‘KMeans’ in the ‘cluster’ module of the ‘scikit- learn’ library.

ML models and multiple regression model and evaluation
ML was performed using a supercomputer, the Cygnus system (NEC LX 124Rh- 4G). The ML models 
of GBDT, k- nearest neighbour (k- NN), neural network (NN), random forest, support vector machine 
(SVM), and multiple regression were performed using ‘GradientBoostingRegressor’ in the ‘ensemble’ 
module, ‘KNeighborsRegressor’ in the ‘neighbors’ module, ‘MLPRegressor’ in the ‘neural_network’ 
module, ‘RandomForestRegressor’ in the ‘ensemble’ module, ‘SVR’ in the ‘svm’ module, and “Line-
arRegression” in the ‘linear_model’ module, respectively. The ensemble model was performed using 
‘StackingRegressor’ in the ‘ensemble’ module and ‘LinearRegression’ in the ‘linear_model’ module. 
Data normalization was performed using ‘StandardScaler’ in the ‘preprocessing’ module for k- NN, NN 
and multiple regression, and ‘MinMaxScaler’ in the ‘svm’ module for SVM. All these modules were in 
the ‘scikit- learn’ library.

A fivefold nested cross validation was performed to evaluate the ML models. A grid search was 
used for the hyperparameter search, as follows. In the GBDT model, ‘random_state’ and ‘n_estima-
tors’ were configured as 0 and 300, respectively; ‘learning_rate’ and ‘max_depth’ were searched from 
0.001 to 0.5 in increments of 0.005 and among 2, 3, 4, and 5, respectively. In the k- NN model, ‘n_
neighbors’ was searched among 1, 2, 3, and 4. In the NN model, ‘solver’ and ‘alpha’ were configured 
as ‘adam’ and 0.001, respectively; ‘hidden_layer_sizes’ was searched among (100,100,100), (100,100), 
(50,50), and (50,50,50). In the random forest model, ‘random_state’ and ‘n_estimators’ were config-
ured as 0 and 300, respectively; ‘max_depth’ was searched among 2, 3, and 4. In the SVM model, the 
‘kernel’ was configured as ‘rbf’; ‘C’, ‘gamma’, and ‘epsilon’ were searched from 2–5 to 210, 2–20 to 210, 
and 2–10 to 20, respectively, in increments of 22. All other hyperparameters were used as default. A 
fivefold cross validation was performed to evaluate the multiple regression model.
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The metrics adopted to estimate the accuracy of the ML models were determined as follows. 
The coefficient of determination (R2), mean squared error (MSE), mean absolute error, and explained 
variance score were calculated using ‘r2_score’, ‘mean_squared_error’, ‘mean_absolute_error’, and 
‘explained_variance_score’ in the ‘metrics’ module of the ‘scikit- learn’ library, respectively. The root 
mean squared error was calculated with the MSE values using ‘sqrt’ in the ‘numpy’ library. For each 
metric, Scheffe’s multiple comparison procedure was used to test for differences in the ML and 
multiple regression models.

GBDT prediction
A regression model was created by using the log- transformed concentrations of the components. The 
‘feature_importances_’ attribute represents the importance of each component to the creation of the 
model. Outer and inner cross validation was performed using ‘cross_val_score’ in the ‘model_selec-
tion’ module of the ‘scikit- learn’ library. The hyperparameters were searched using ‘GridSearchCV’ 
in the ‘model_selection’ module of the ‘scikit- learn’ library. ‘learning_rate’ and ‘max_depth’ were 
searched from 0.01 to 0.5 in increments of 0.01 and among 2, 3, 4, and 5, respectively. ‘n_estimatiors’ 
was configured at 300, and the other hyperparameters were set to default values. The ‘feature_inpor-
tance_’ values were calculated by fivefold cross validation, and the mean of the five values was used 
as the result of the GBDT prediction.

Evaluation of sensitivity
The changes in the growth parameters associated with the concentration gradient of each component 
were evaluated by curve fitting of a cubic polynomial as described previously (Kurokawa et al., 2021).

 
Sp, i = 1 −

(
Area × p−1

i, max ×
(
xmax − xmin

)−1
)
  (1)

Here, Sp,i, Area, pi, max, xmin, and xmax represent the sensitivity evaluated with any of the growth 
parameters in condition i, the area under the regression curve, the largest value of the growth param-
eter in condition i, and the minimum and maximum concentrations of each chemical component, 
respectively. The sensitivity was further evaluated as follows.

 
Sp = 1

n ×
n∑

i=1
Sp, i (n = 6, p = τ , r, K)

  
(2)

 Sg = Sτ + Sr + SK   (3)

 Vs =

√∑(
Sp
Sg

−S̄
)2

m−1 (m = 3)  
(4.1)

 S̄ = 1
3 × Sτ +Sr+SK

Sg   (4.2)

Here, Sτ, Sr, and SK represent the sensitivity of τ, r, and K, respectively. Sg and Vs represent the sum 
and the variance of Sτ, Sr, and SK, respectively. Additionally, four different methods were applied to 
estimate Vs, as follows.

 Crit. 1 = Sτ +Sr+ SK
Sg   (5)

 Crit. 2 = Sτ + Sr + SK − 3S′
Sg   (6)

 
Crit. 3 =

√∑(
Sp − S′

)2

m−1   
(7)

 Crit. 4 = min
(
∠Sτ , ∠Sr, ∠SK

)
  (8)

Here, S’ indicates the mean of Sτ, Sr, and SK.  ∠Sτ   ,  ∠Sr , and  ∠SK   represent the three angles calcu-
lated from the triangle (Figure 5E).

FBA simulation
FBA simulation was performed using the open software COBRAme (Lloyd et al., 2018) iJL1678b- ME 
and qMINOS, which were available in the Docker images (Lloyd et al., 2018), were used as the model 
and the solver, respectively, where ‘mumax’ and ‘precision’ were set as 2 and 1E- 6, respectively. 4 
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out of 41 components, i.e., VB9, VB2, borate, and PABA, were excluded in the simulation, as they 
were absent in the ME model. The lower bounds of the efflux of the components were set as the 
negative values, which allowed the E. coli cells to take them up from the media. The lower bound of 
the efflux of AAs and citrate was set to –10, and –1000 was set for the others. The lower bounds of 
the efflux of selenite, selenite, tungstate, Li, Sc, and Tl were set to zero, and those of cobalt, Mn, Ni, 
RNase_m5, RNase_16, and RNase_m23 were set as −0.00001, –0.001, −0.001, –1, –1, and –1, respec-
tively, because these components were absent in the present study. The uptake of sulfate was fixed by 
setting the upper bound of the efflux to a negative value to predict the growth rate when the uptake 
of sulfate was varied.

Genomic datasets and annotation
The genome and transcriptome datasets of the E. coli BW25113 and MG1655 strains were obtained 
from GenBank (CP009273 and NC_000913) and GEO (GSE33212 and GSE136101), respectively. The 
gene (protein) annotation and counting of the AAs were processed using BioPython (Cock et al., 
2009).

Theoretical simulation of survival probability
The simulation of population dynamics over 24 hr was conducted according to the following equations.

 N0 = Kmax × 0.001  (9)

 τ = T × τr (T = 24)  (10.1)

 r = rr  (10.2)

 K = Kmax × Kr (Kmax = 1)  (10.3)

Here, N0, Kmax τr, rr, and Kr are the initial population, the population maximum, and the three vari-
ables τ, r, and K, respectively. In the case of triple independent decision makers, the values of τr, rr, and 
Kr were randomly selected from 0 to 1 without coordinated change. In the case of a single common 
decision maker, once any of the three parameters was randomly selected from 0 to 1, the other two 
were decided as follows.

 τr = 1 − rr  (10.4)

 Kr = 1 − rr  (10.5)

The population dynamics were defined as follows.

 ti < τ , N
(
ti
)

= N0  (11.1)

 
ti ≥ τ N

(
ti
)

= K+N0
N0+(K−N0)e−rtj   (11.2)

 tj = ti − τ   (11.3)

where N(ti), tj, and ti are the population size at time ti, any time point within the exponential phase, 
and any time point from 0 to 24 hr in a 0.5 hr interval, respectively. Whether the population was extinct 
or survived was determined according to the survival threshold, d, as follows.

 N
(
24

)
< d, death  (12.1)

 N
(
24

)
≥ d, survival  (12.2)

 d = Kmax × dr  (12.3)

Here, N(24) and dr are the final population size at 24 hr and the threshold varying from 0 to 1 in 
increments of 0.05, respectively. The survival probability was defined as the frequency of ‘survival’ in 
every 1000 simulations at each dr.
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Theoretical simulation of population dynamics considering the 
correlation
Considering the correlations among the growth parameters, τr in 10.1 (denoted τr_Tcorr) was randomly 
varying from 0 to 1, and rr in 10.2 (denoted as rr_Tcorr) and Kr in 10. 3 (denoted as Kr_Tcorr) were deter-
mined as follows.

 rr_Tcorr = Cτr
(
1 − τr_Tcorr

)
+
(
1 − Cτr

)
Ir  (13.1)

 Kr_Tcorr = CτK × τr_Tcorr + CrK
(
1 − rr_Tcorr

)
+
(
1 − CτK − CrK

)
IK   (13.2)

Here, Cτr, CτK, and CrK represented the correlation coefficients of any pairs of τ, r, and K, respec-
tively. According to the correlation coefficients acquired from the growth assay (Figure 7A), Cτr, CτK, 
and CrK were set to 0.74, 0.58, and 0.17, respectively. In addition, Ir and IK were variables randomly 
selected from 0 to 1. Simulation of population dynamics was performed according to 10.3 and 11.3, 
and the relative population size at 24 hr, i.e., N(24), was calculated consequently for 10,000 times.

Separation of the multimodal distributions
Gaussian kernel density estimation was used to determine the boundaries of the multimodal distribu-
tions, which were considered as bimodal, for data separation of the growth parameters. The proba-
bility density function was conducted using ‘gaussian_kde’ in the ‘stats’ module of the ‘scipy’ library, in 
which ‘bw_method’ was configured as 0.3. These distributions were divided vertically into 1000 equal 
areas. The trough point, i.e., the smallest area, for data separation was determined using ‘argrelmin’ 
in the ‘signal’ module of the ‘scipy’ library. The three growth parameters were independently divided 
into two datasets of low and high mean values. The following GBDT prediction of τ, r, and K was 
performed separately.
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