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Emerging evidence shows a striking link between periodontal diseases and various

human cancers including oral cancer. And periodontal pathogens, leading to periodontal

diseases development, may serve a crucial role in oral cancer. This review elucidated

the molecular mechanisms of periodontal pathogens in oral cancer. The pathogens

directly engage in their own unique molecular dialogue with the host epithelium

to acquire cancer phenotypes, and indirectly induce a proinflammatory environment

and carcinogenic substance in favor of cancer development. And functional, rather

than compositional, properties of oral microbial community correlated with cancer

development are discussed. The effect of periodontal pathogens on periodontal diseases

and oral cancer will further detail the pathogenesis of oral cancer and intensify the need

of maintaining oral hygiene for the prevention of oral diseases including oral cancer.
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INTRODUCTION

Oral cancer (OC), predominantly oral squamous cell carcinoma (OSCC), accounted for almost
2.0% of all cancer cases and 1.9% of all cancer deaths globally from the report by the International
Agency for Research on Cancer (IARC) in 2018 (Bray et al., 2018). Alcohol and tobacco
assumptions are the foremost risk factors, however, cannot explain that the result of OC also
commonly occurs in patients without exposure to alcohol or tobacco. Recently, infectious agents,
researched as a significant role in the development and progression of OC, gradually come into
view. The oral microbiome plays an essential role in the maintenance of normal oral physiology,
and more attention has been currently given to the possible causality between the instabilities of
microbiome dynamics and cancer. The role of bacterial infection in cancer initiation, promotion,
and progression is firstly demonstrated by Helicobacter pylori (H. pyloria), a carcinogen of gastric
cancer classified by IARC (Fox and Wang, 2007). H. pyloria is a dominant species of the human
gastric microbiome, and the colonization of H. pyloria causes a persistent inflammatory response.
H. pyloria-induced gastritis is the strongest singular risk factor for gastric cancer (Ranjbar et al.,
2017). Present epidemiological data found that cancers are generally caused by the inflammatory
response to bacterial infections. Some bacteria directly manipulate their host cell to affect the
integrity and contribute to tumor formation in various phases of their infection cycle. Such as
bacterial surface moieties, bacterial protein toxins, and bacterial effector proteins can induce
host cell DNA damage, thereby interfering with essential signaling pathways involved in cancer
cell development.
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Periodontal disease (PD) is one of the most common
inflammatory diseases in adults, predominantly caused by
bacterial infection (Genco and Borgnakke, 2013). Most bacteria
in the plaque are normal floras. However, a few bacteria in
the plaque associated with diseased periodontal tissues have
been identified as putative pathogens. Compared with patients
without PD, mounting studies have reported a two- to five-fold
increase in the risk of OC among those with PD (Javed and
Warnakulasuriya, 2016; Shin et al., 2019). Studies also suggested
that the causal relationship between the extent and severity of
chronic periodontitis and the risk of OC is significant, even after
the adjustments for traditional confound factors, i.e., smoking,
alcohol, and human papillomavirus (HPV) (Moraes et al., 2016).
It has been found that tooth loss as a result of bone loss in
PD is an independent risk factor for head and neck cancer (Shi
et al., 2018a). Also, high expression of the human telomerase
reverse transcription, the expression of which is highly specific to
cancer cells, was detected in patients with periodontitis (Katarkar
et al., 2015). These all suggest that there is a striking link
between PD and OC. Moreover, this link may be explained by
the followings. (1) Broken mucosal barrier in PD consequently
enhances penetration of carcinogens such as tobacco and alcohol.
(2) Immunosuppression leads both to PD and OC. (3) Viruses
such as HPV and Candida albicans are found both in PD and
OC. (4) Chronic inflammation in PD contributes to cancer. (5)
Dysbacteriosis in PD further leads to carcinogenic effects.

Furthermore, recent studies have confirmed that colonization
of periodontal pathogens is a risk factor for OC independent
of alcohol, smoking, and HPV (Ganly et al., 2019). It is
interpreted to indicate that periodontal pathogens contribute to
the link between PD and OC, and it would represent an obvious
potential target for therapeutic intervention. Therefore, this
review summarized the molecular mechanism of organisms and
the production of carcinogenic substances and proinflammatory
environment caused by pathogens, which shed light on
the impact of periodontal pathogens on OC. The literature
search was conducted through PubMed and Google Scholar.
Research articles, published from 2000 to 2021, describing
periodontitis, periodontal pathogens, PD, bacteria, cancer, and
OC were selected.

ASSOCIATION BETWEEN PERIODONTAL
PATHOGENS AND ORAL CANCER

It is well known the “red complex” has been proposed as a
pathogenic consortium of PD, consisting of Porphyromonas
gingivalis (P. gingivalis), Tannerella forsythia (T. forsythia),
and Treponema denticola (T. denticola) (Holt and Ebersole,
2000). Also, mounting evidence has identified that more
bacteria were detected from PD sites as causative periodontal
pathogens, namely, Aggregatibacter actinomycetemcomitans
(A. actinomycetemcomitans), Fusobacterium nucleatum (F.
nucleatum), Prevotella intermedia (P. intermedia), Streptococcus
intermedius (S. intermedius), Prevotella tannerae (P. tannerae),
Prevotella melaninogenica (P. melaninogenica), Prevotella
intermedia (P. intermedia), Campylobacter recta (C. recta),

Capnocytophaga gingivalis (C. gingivalis), Streptococcus mitis (S.
mitis), and so on (Nonnenmacher et al., 2001; Colombo et al.,
2009). Furthermore, many other microbial pathogens have been
detected in periodontal lesions apart from bacteria, namely,
human cytomegalovirus, Epstein-Barr virus, HPV, and Candida
(especially C. albicans), which all proved to be associated with
the PD (Slots and Slots, 2000; Sardi et al., 2010).

Research data to date corroborated the significant positive
association between PD (especially periodontitis) and total
cancer risk, particularly for head and neck cancer, digestive tract
cancer, pancreatic cancer, prostate cancer, breast cancer, lung
cancer, hematological cancer, and lymphatic cancer (Corbella
et al., 2018) (Table 1). That abnormal levels of periodontal
pathogens detected in tissue samples from the patients with
various forms of cancer suggested that periodontal pathogens
serve a potentially crucial role in the development and
progression of cancer.

The role of periodontal pathogens in head and neck squamous
cell carcinoma (HNSCC) particularly OSCC is a hotspot
and keystone. A group of periodontitis-correlated taxa was
detected in patients with OC. For instance, Fusobacterium,
Dialister, Peptostreptococcus, Filifactor, Peptococcus, Catonella,
and Parvimonas were significantly enriched in OSCC samples,
and Veillonella, Fusobacterium, Prevotella, Porphyromonas,
Actinomyces, Clostridium, Haemophilus, Enterobacteriaceae, and
Streptococcus spp. were increased at tumor sites (Zhao et al.,
2017; Zhang et al., 2019). Three bacterial species, C. gingivalis,
P. melaninogenica, and S. mitis were elevated in the 80% saliva
of individuals with OSCC and have been suggested as potential
biomarkers for OC on account of a diagnostic sensitivity of
80% and a specificity of 82% (Mager et al., 2005). P. gingivalis
and F. nucleatum were detected at higher levels in patients with
OSCC tissues than in normal tissues (Chang et al., 2019a), and F.
nucleatum, P. intermedia, and P. tannerae showed a significantly
higher relative abundance in patients with OSCC compared
with controls (Hsiao et al., 2018). Particularly, P. gingivalis
infection was positively associated with late clinical staging,
low differentiation, and lymph node metastasis in patients with
OSCC (Chang et al., 2019a). Notably, for patients with OSCC, C
albicans was detected at tumor sites, but never at control sites,
which suggests that C. albicans has a property that is important
in OC (Nagy et al., 1998). Growing studies provide supportive
evidence that oral microbiota especially periodontal pathogens
are involved in the development of OC. However, the direct
causal effect of PD onOC, likeH. pyloria infection is a pathogenic
factor of gastric cancer, is still needed to explore.

MECHANISM OF PERIODONTAL
PATHOGENS LEADING TO CANCER

Periodontal pathogens have been proposed to induce
carcinogenesis either through induction of chronic
inflammation, interference with eukaryotic cell cycle and
signaling pathways, or metabolism of potentially carcinogenic
substances (Figure 1). Numerous studies demonstrated that
some periodontal pathogens can affect specific intracellular
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TABLE 1 | List of different types of cancer associated with periodontitis and possible associated periodontal pathogens.

Cancer type Research Possible associated periodontal pathogens

Oral cancer Javed and Warnakulasuriya (2016), Shin et al.

(2019)

P. gingivalis, F. nucleatum, T. forsythia, P. intermedia, C. gingivalis,

P. melaninogenica, S.mitis (Nagy et al., 1998; Mager et al., 2005;

Hu et al., 2016; Chang et al., 2019a)

Head and neck SCC Tezal et al. (2009), Zeng et al. (2013) P. gingivalis, F. nucleatum, Actinomyces (Mougeot et al., 2020;

Metsäniitty et al., 2021)

Digestive tract cancer Kim et al. (2019), Zhang et al. (2020) T. denticola, P. intermedia, Rothia, Prevotella (Kato et al., 2016;

Flemer et al., 2018; Yang et al., 2019)

Pancreatic cancer Chang et al. (2016), Maisonneuve et al. (2017) P. gingivalis, A. actinomycetemcomitans (Fan et al., 2018)

Prostate cancer Lee et al. (2017a), Wei et al. (2020) P. gingivalis, T. denticola (Estemalik et al., 2017) and so on

Lung cancer Zeng et al. (2016), Wang et al. (2020) P. intermedia, C. rectus, F. nucleatum, Capnocytophaga (Yan

et al., 2015; Mai et al., 2016) and so on

Breast cancer Sfreddo et al. (2017), Shi et al. (2018b) F. nucleatum (Van der Merwe et al., 2021) and so on

Hematological cancer Chung et al. (2016), Wu et al. (2020) Rothia, Actinomyces (Mougeot et al., 2020) and so on

Non-hodgkin lymphoma Bertrand et al. (2017), Wu et al. (2020) Not mentioned

pathways, promote cell survival, activate oncogenic pathways,
reduce proapoptotic protein expression, and increase cell
migration and invasion. Also, it is a fact not lost on the microbial
community, which is thought to determine the potential
for disease.

Stimulation of Chronic Inflammation
Chronic or dysregulated inflammation has long been appreciated
as a major contributor to tumor induction, progression, invasion,
and metastasis, in part through modulation of the tumor
microenvironment by cytokines, chemokines, prostaglandins,
and reactive oxygen and nitrogen radicals accumulation in
the microenvironment of tissues (Feller et al., 2013). These
inflammatory factors, if persistent, have the capacity to induce
cell proliferation and promote prolonged cell survival through
activation of oncogenes and inactivation of tumor-suppressor
genes. There is now a wealth of evidence indicating a link
between chronic inflammation and malignant transformation of
the affected oral epithelium (Tampa et al., 2018). And periodontal
pathogenic bacteria (especially P. gingivalis, P. intermedia, T.
denticola, and F. nucleatum) cause and maintain constant
chronic inflammatory response, which induces the destruction
of periodontal tissue and furthermore carcinoma development
(Hajishengallis, 2015). The periodontal pathogens participate
in osteoclastogenesis, collagen degradation, and alveolar bone
resorption by secreting interleukins (ILs), which are members
of cytokines that contribute to the immunological responses of
many cells and tissues (Behzadi et al., 2016, 2022), tumor necrosis
factor-alpha (TNF-α), matrix metalloproteinases (MMPs), and
so on from inflammatory macrophages (Hienz et al., 2015).
Furthermore, pathogens also impact oral carcinogenesis based
on these increased levels of inflammatory factors after the initial
inflammatory response (Table 2).

In OSCC cells, P. gingivalis stimulates the release of a
variety of chemokines and cytokines contributing to cancer,
namely, IL-1β, IL-6, IL-8, TGF-β1, EGF, and TNF-α (Yee et al.,
2014; Abdulkareem et al., 2018). In addition, P. gingivalis
and A. actinomycetemcomitans can activate monocytes resulting

in increased IL-17 production by human CD4+ T cells in
vitro, a process that appears to have enhanced in patients
with PD (Cheng et al., 2016), and IL-23/IL-17 pathway is
proved promotive in tumorigenesis (Grivennikov et al., 2012).
F. nucleatum increases the secretion of IL-1β via activation
of the NOD-, LRR-, and pyrin domain-containing protein
3 (NLRP3) inflammasome and caspase 1 to induce nuclear
localization of NF-κB in gingival epithelial cells (GECs) (Bui
et al., 2016). Moreover, F. nucleatum can induce an epithelial-to-
mesenchymal transition (EMT) process in OSCC cells through
upregulation of TGF-β, TNFα, and EGF signaling (Abdulkareem
et al., 2018). T. forsythia can induce pro-inflammatory cytokines
such as IL-1β and IL-6 by CD4 + T helper cells and TNF-α in
esophageal squamous cell carcinoma (ESCC) (Malinowski et al.,
2019). In conclusion, inflammatory mediators, at least partly,
regulated by periodontal pathogens during PD development
may mediate oral malignant transformation, but the underlying
mechanism still remains unclear.

Metabolic By-Products Contributing to
Carcinogenesis
The microflora existing in the tumor microenvironment may
aid in tumorigenesis for some of its metabolic derivatives
being able to induce damage to the DNA, mutagenesis, and
secondary hyperproliferation of the oral cells. Acetaldehyde,
a metabolite of ethanol, has been proved to be carcinogenic
in both animal models and in vitro studies. It has been
shown that some Neisseria-strains (Muto et al., 2000; Tagaino
et al., 2019) and Streptococcus-strains (Kurkivuori et al., 2007;
Tagaino et al., 2019) (especially viridans group streptococci,
namely, Streptococcus salivarius, S. intermedius, and S. mitis)
metabolize ethanol to carcinogenic acetaldehyde in saliva by
the alcohol dehydrogenase. In addition, Rothia mucilaginosa
and Prevotella histicola also exhibit the ability to produce
acetaldehyde (Moritani et al., 2015). And C. albicans-strains also
have earlier been shown to be massive acetaldehyde producers
(Tillonen et al., 1999).
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FIGURE 1 | Mechanisms of periodontal pathogens impacting oral cancer. Periodontal pathogens can invade oral epithelial cells and directly impact target genes to

cause changes in cell proliferation, apoptosis, survival, and invasiveness. Pathogens also triggers inflammation, which also affects these biological pathways, and

similarly acts on oncogenes and tumor-suppressor genes, as do some cancerogenic substances produced by periodontal pathogens. In addition, inflammation

sequentially induces mucosal injury leading to susceptibility to virus and other carcinogens like alcohol.

Hydrogen sulfide (H2S), a gasotransmitter exerting important
physiological and pathological functions in the entire body,
can be produced by some oral bacteria including periodontal
pathogens T. denticola and P. gingivalis (Persson et al., 1990).
Considering that H2S represents an index of oral hygiene, it
is thought to be associated with oral diseases including PD
and OC (Zhang et al., 2010). Zhang et al. for the first time
demonstrated that H2S promotes OC cell proliferation through
the COX2/AKT/ERK1/2 axis (Zhang et al., 2016). However, the
underlying mechanisms regulating the multiple functions of H2S
in many tissues and organs remain unknown.

Nitrosamine, considered a potential carcinogen, can be
produced by commensal bacteria and Candida spp. (Calmels
et al., 1988). Such a carcinogen can induce point mutations
leading to activating specific oncogenes and initiating the
development of OC (Oliveira et al., 2007). Some Candida spp.
were found to be able to produce the potent carcinogen N-
nitrosobenzylmethylamine (NBMA), and strains with the highest
potential to produce NBMA were isolated from advanced,
potentially malignant, oral mucosal lesions rather than early
lesions or normal oral mucosa (Krogh et al., 1987). The tubular
hyphal structure of C. albicans allows ingress of precursors from
saliva and release of the nitrosamine product to keratinocytes,
potentially initiating OSCC (Dwivedi et al., 2009).

Free fatty acid, production of fatty acid metabolism, may
contribute to oral carcinogenesis. Wu et al., first, demonstrated
that P. gingivalis was involved in fatty acid metabolism of oral

carcinogenesis (Wu et al., 2018). They established a combined
experimental system of 4 nitroquinoline 1-oxide (4NQO)-
induced oral carcinoma model and P. gingivalis-treated chronic
periodontitis model, and it has been found P. gingivalis-treated
mice developed more and larger tumors in the tongue as
compared with the carcinogen-alone group. It showed that the
level of free fatty acid was significantly increased in the tongue
and liver tissues of 4NQO-treatedmice infected with P. gingivalis.
This supports the previous speculation that cancer cells can
utilize circulating free fatty acid from their microenvironment, a
favorable microenvironment for tumorigenesis by fueling cancer
cell survival and proliferation. These results indicate a close
association between P. gingivalis, lipid metabolism, and oral
carcinogenesis, however, the underlying molecular mechanism
between them still remains unclear.

Promotion of Cell Proliferation
Some genes that control normal cellular growth and proliferation
are altered by exposure to exogenous or endogenous mutagens,
subsequently causing clonal growth of the resulting precancerous
or cancerous cells. Periodontal pathogens can perturb diverse
pathways that constrain the proliferative response in normal cells
in most cancers.

FimA, the fimbrial protein of P. gingivalis, can accelerate the
progression of primary GECs through the S-phase of the cell cycle
by manipulation of cyclin/cyclin-dependent kinases (CDKs)
activity, reducing the level and the activity of the p53 tumor

Frontiers in Microbiology | www.frontiersin.org 4 June 2022 | Volume 13 | Article 919633

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Li et al. Review of Pathogens in OSCC

TABLE 2 | List of some cytokines secreting by periodontal pathogens stimulation, the role of which in periodontitis and oral cancer and the signaling pathways involved in

oral cancer.

Type of cytokine Pathogens Signaling pathway in oral cancer

IL-6 P. gingivalis, T. forsythia, A. actinomycetemcomitans

(Yee et al., 2014; Cheng et al., 2016; Geng et al.,

2019)

JAK-STAT3-SNAIL, MMP-1, MMP-9,TGF-β1, DNA

hypomethylation, aberrant promoter hypermethylation

(Sundelin et al., 2005; Gasche et al., 2011; Yadav et al., 2011)

IL-8 P. gingivalis, F. nucleatum (Yee et al., 2014;

Casasanta et al., 2020)

MMP-1, MMP-2, MMP-10, IL-8/CXCL1 (Khurram et al.,

2014; Ha et al., 2015, 2016)

IL-1β P. gingivalis, F. nucleatum, T. forsythia, A.

actinomycetemcomitans (Cheng et al., 2016)

IL-6, IL-8, CXCL1, NF-κB, EGFR (Lee et al., 2015a,b)

IL-17 P. gingivalis, A. actinomycetemcomitans (Cheng

et al., 2016)

IL-23/IL-17, IL-8, IL-1β, TNF-αMCP-1, GRO-α, TGF-β,

G-CSF, GM-CSF, IL-6/STAT3 (Xu and Cao, 2010; Gu et al.,

2011)

IL-23 P. gingivalis, A. actinomycetemcomitans (Cheng

et al., 2016)

IL-23/IL-17, IL-6, TNF-α, NF-κB (Caughron et al., 2018)

TNF-α P. gingivalis, F. nucleatum, A.

actinomycetemcomitans (Cheng et al., 2016;

Abdulkareem et al., 2018)

MMP-1, MMP-9, MiR-21, miR-450a (Sundelin et al., 2005;

Qiu et al., 2018; Hsing et al., 2019)

TGF-β1 P. gingivalis, F. nucleatum (Abdulkareem et al., 2018) VEGF, HIF-1α, MMP-9, IL-6 (Chen et al., 2012)

EGF P. gingivalis, F. nucleatum (Abdulkareem et al., 2018) Warburg effect, EGFR/PI3K/HIF-1α, CD206, miR-31, IMP-3,

PI3K/AKT/WNT7A/β-catenin/MMP9 (Lu et al., 2014; Zhang

and Jung, 2016; Xu et al., 2017; Haque et al., 2019; Xie et al.,

2020)

CXCL1/ GRO-α F. nucleatum (Yu et al., 2017) IL-8/CXCL1, EGFR (Zhang et al., 2010; Zeng et al., 2013)

suppressor and increasing levels of phosphoinositide 3-kinase
(PI3K) and phosphoinositide-dependent protein-serine kinase 1
(PDK1) (Kuboniwa et al., 2008). In OSCC cells, P. gingivalis
regulates cyclin D1 expression through themiR-21/PDCD4/AP-1
negative feedback signaling pathway to increase cell proliferation
(Chang et al., 2019b). The exposure of oral epithelial cells to P.
gingivalis and F. nucleatum triggers Toll-like receptors, pivotal
biomolecules in the immune system (Behzadi et al., 2021). It
may result in IL-6 production that activates STAT3 which in turn
induces cyclin D1 driving OSCC growth. P. gingivalis infection
diminishes both the level and the activity of p53, consistent
with an increased proliferation rate of infected GECs (Kuboniwa
et al., 2008). P. gingivalis infection increases levels of PI3K and
PDK1 (a key molecule that couples PI3K to cell proliferation and
survival signals) (Kuboniwa et al., 2008). Consistent with this,
phosphatase and tensin homolog (PTEN), a lipid phosphatase
negatively regulating the PI3K pathway, was downregulated
and inactivated by phosphorylation after P. gingivalis infection
(Yilmaz et al., 2004; Kuboniwa et al., 2008).

Besides, pathogens can impact β-catenin signaling, a major
pathway contributing to the control of cell proliferation
and tumorigenesis. Gingipain, a cell surface proteinase of P.
gingivalis, plays a key role in the β-catenin process. P. gingivalis
induces the activation of β-catenin and the disassociation of
the β-catenin destruction complex by the gingipain-dependent
proteolytic process (Zhou et al., 2015). Processed β-catenin can
be translocated to the nucleus, where it binds the TCF/LEF
promoter element, and finally stimulates the expression of Myc
and cyclin D1 (Zhou et al., 2015). Adhesin FadA, a virulence
factor identified from F. nucleatum, is thought to play a major
role in colorectal cancer (CRC) by binding to E-cadherin on CRC

cells to activate β-catenin signaling (Rubinstein et al., 2013). The
FadA-E-cadherin axis also upregulates annexin A1, a modulator
of Wnt/β-catenin-based proliferative signaling in CRC cells
(Rubinstein et al., 2019). And in OSCC, the research found
that F. nucleatum infection promotes the proliferation ability of
tongue squamous cell carcinoma cells by causing DNA damage
via the Ku70/p53 pathway (Geng et al., 2020). Ku70 and p53 are
both major proteins involved in regulating nonhomologous end-
joining (NHEJ) repair, which is the most common DNA double-
strand break (DSB) repair pathway inmammalian cells to prevent
malignant transformation (Mari et al., 2006).

In addition, P. gingivalis can increase the gene expression of α-
defensins, which have been found to exert multiplying effects on
OC cell proliferation via direct epidermal growth factor receptor
(EGFR) in dermal keratinocytes activation (Hoppe et al., 2016).
However,A. actinomycetemcomitans is able to enhance cell death,
which performed an opposite effect on cancer cell proliferation
behavior (Hoppe et al., 2016).

Up to now, the impact of P. gingivalis infection on host cell
proliferation remains controversial. Althoughmost studies found
that P. gingivalis infection promotes cancer cell proliferation
and further contributes to carcinogenicity, some investigators
observed that P. gingivalis inhibits cancer cell proliferation via
inducing their apoptosis (Cho et al., 2014). The researchers
demonstrated that P. gingivalis suppresses cell proliferation
through G1 arrest in OC cells by inducing autophagy activated
by the formation of reactive oxygen species (Cho et al., 2014).
This may be caused by various complicated factors in the
experiment, so more normalized studies and more solid evidence
are necessary for elucidating the roles of pathogenic bacteria in
cancer cell proliferation.
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Inhibition of Cell Apoptosis
Apoptosis is a distinct mode of cell death that is responsible for
the deletion of cells in normal tissues. It can destroy the disrupted
cell and prevent it from developing into a malignant tumor
(Lowe and Lin, 2000; Behzadi and Behzadi, 2006). Thus, any
agent capable of impeding apoptosis would promote the atypical
build-up of cancerous cells. There have been several evidence of
oral pathogens suppressing apoptosis and potentially promoting
carcinogenesis. P. gingivalis activates the Jak1/Akt/Stat3 signaling
to control intrinsic mitochondrial apoptosis pathways (Yilmaz
et al., 2004; Yao et al., 2010). At the mitochondrial membrane,
the activity of proapoptotic effectors such as Bad is inhibited, and
the ratio of antiapoptotic factor Bcl2 to proapoptotic factors Bax
is enhanced as well, which consequently curtails the discharge of
the apoptosis effector cytochrome C (Yao et al., 2010).

A P. gingivalis homolog of nucleoside diphosphate kinase
(NDK), a bacterial effector, is secreted extracellularly and serves
a variety of cellular housekeeping functions such as DNA
cleavage/repair, transcriptional regulation, cell proliferation, and
apoptosis (Yu et al., 2017). P. gingivalis can inhibit GEC
apoptosis induced by ATP ligation of purinergic receptor
P2X7, and this effect is mediated by NDK (Yilmaz et al.,
2008). Another antiapoptotic function of P. gingivalis-NDK is
phosphorylating heat-shock protein 27 (HSP27) in GECs, which
curtails cytochrome C release and caspase 9 activation (Lee et al.,
2018).

Forkhead box-O (FOXO)1, one of the forkhead transcription
factors, controls oxidative stress responses, inflammatory
cytokine production, and cell survival. P. gingivalis induces the
dephosphorylation and activation of FOXO1, while FOXO1
knockdown can impede P. gingivalis-induced antiapoptosis gene
transcription (Wang et al., 2015). P. gingivalis-FimA, targeting
chemokine receptor type 4 (CXCR4), plays a primary role in
promoting OSCC tumor growth through the phospho-Akt1
(pAKT1)-pFOXO1-dependent pathway (Arjunan et al., 2018).
Intriguingly, this apoptosis-resistant pathway also involves
immunosuppression through the induction of myeloid-derived
dendritic suppressor cells (MDDSCs), predominantly dependent
on the dendritic cell-specific intercellular adhesion molecule-
3-grabbing nonintegrin (DC-SIGN) targeting Mfa1 fimbriae
of P. gingivalis (Arjunan et al., 2018). It suggests that Mfa1,
high expression in chronic periodontitis samples (Arjunan
et al., 2018), may be involved in immunosuppression in the
pathogenesis of periodontitis through the pAKT1-pFOXO1
pathway. Phosphorylated FOXO1 also regulates FOXP3
expression through its feedback regulatory loop mechanism as
per the consistent and continuous stimulation of P. gingivalis
strains in MDDSCs, to promote apoptosis resistance and
immunosuppression (Arjunan et al., 2018).

Upregulated expression of miR-203 induced by P. gingivalis
inhibits the suppressor of cytokine signaling 3 signaling and
increases Stat3 activation, and then inhibits apoptosis and
accelerates cell cycle progression in GECs (Moffatt and Lamont,
2011).

As previously mentioned, oral pathogens like P. gingivalis
exhibit both proapoptotic and antiapoptotic phenotypes, which
may be depending on contextual and temporal cues (Byrne

and Ojcius, 2004). For instance, apoptosis can be induced
in some cell types by P. gingivalis components such as
proteases, whereas other cellular constituents such as fimbriae
and lipopolysaccharide can either suppress or induce apoptosis
depending on the host cell type. Also, the invasion of
metabolically active P. gingivalis can favor host cell survival,
in contrast to the apoptotic effects induced by heat-killed
noninvasive P. gingivalis.

Promotion of Cell Survival
Periodontal pathogens may enhance the survival of tumor
cells through some approaches of intracellular or extracellular
mechanisms apart from inhibiting apoptosis.

Autophagy, an intracellular catabolic process, serves to
capture and degrade intracellular components for homeostasis.
Patients with periodontitis presented a higher level of autophagy
activity compared with patients in a healthy periodontal state
(Wei et al., 2018). It has been suggested that autophagy protects
periodontal cells from apoptosis, promotes angiogenesis, and
facilitates oral bacteria like P. gingivalis to escape from the
host’s responses (Wei et al., 2018). Similarly, in cancer including
OC, the autophagy process is also upregulated and promotes
cancer cell survival (Mathew et al., 2007) (Figure 2). Recent
studies demonstrated that OC cells promote autophagy as an
adaptive mechanism against the invasion of bacteria bys limiting
the toxicity and helping cancer cells to survive (Huang and
Brumell, 2014). New et al. found that autophagy-dependent
secretion of tumor-promoting factors, notably IL6 and IL8,
secreted by HNSCC-associated cancer-associated fibroblasts
(CAFs) contributes to the malignant development of HNSCC
(New et al., 2017). And Chen et al. showed that autophagy
activation may contribute to the elevated IL-6 production in
P. gingivalis-infected ESCC cells, which promotes esophageal
cancer development and progression (Chen et al., 2021).
Besides, F. nucleatum promotes metastasis in CRC by activating
autophagy signaling via the upregulation of CARD3 expression
(Chen et al., 2020). However, some studies found the role
of autophagy in promoting cancer is controversial, which
requires further studies to elaborate on the relationship between
autophagy and periodontal pathogens in OC (Levy et al., 2017).

Immune evasion is another approach for pathogens to
promote cancer cell survival. In squamous carcinoma cells, P.
gingivalis can induce the expression of programmed death-
ligand 1 (PD-L1, B7-H1) and B7-DC receptors functioning
anergy and apoptosis of activated T cells, which enable tumor
cells to overcome host response (Groeger et al., 2011). F.
nucleatum can also protect tumors from immune cell attack, by
activating the Fap2 (an adhesion of F. nucleatum)-dependent
inhibitory immunoreceptor T cell immunoglobulin, ITIM
domain (TIGIT), and carcinoembryonic antigen cell adhesion
molecule 1 (CEACAM1) to suppress the activities of T and
natural killer cells (Gur et al., 2015, 2019).

Periodontal pathogens also assist resistance of cancer cells
to chemotherapeutic reagents of oral squamous cell carcinoma.
Tumor xenografts composed of P. gingivalis-infected OSCC cells
exhibited higher resistance to Taxol through Notch intracellular
domain 1 activation (Woo et al., 2017), and a higher serum
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FIGURE 2 | Bacteria and autophagy interplay in cancer cells. The bacterium (such as P. gingivalis) resides in a bacterium-containing vacuole (or phagosome) after

invasion of host cells. Phagophore is assembled and starts to elongate to enclose cytoplasmic components on the stimulation of autophagy to form autophagosome.

And autophagosome serves as a replicative niche in which they are not eliminated. In addition, some bacterium toxicity is degraded in the autolysosome generated by

fusing autophagosome and lysosome. In NHSCC, autophagy regulates the secretion of IL6 and IL8 from CAFs, facilitating HNSCC migration. And paracrine secretion

of IL6, IL8, and basic fibroblast growth factors promotes CAF autophagy, which is further maintained through IL6 and IL8 autocrine feedback.

level of IL-6 was detected compared with uninfected mice (Song
et al., 2019). It suggested that P. gingivalis might play a role in
the development of chemoresistance toward OSCC. Intriguingly,
researchers discovered that targeting Notch signaling pathways
and prophylactic use of anti-inflammatory drugs (such as
ibuprofen) may be used to overcome drug resistance to cancer
therapy (Wang et al., 2010; Woo et al., 2017; Song et al., 2019).

Promotion of Cell Invasion
Epithelial-to-mesenchymal transition (EMT) is one of the
vital processes of cancer malignancy through the loss of its
morphology from epithelial cell types to the morphology of
mesenchymal cell types. The process is executed by so-called
EMT-activating transcription factors, mainly of the SNAIL,
TWIST, and ZEB families. P. gingivalis initiates EMT through
FimA-driven ZEB1 expression in GECs, which provides a
mechanistic basis for the P. gingivalis contribution to OSCC,
and P. gingivalis retained the capacity to upregulate ZEB1 when
co-infected with either species like S. gordonii or F. nucleatum
(Sztukowska et al., 2016). Recently, Qi et al. found that P.
gingivalis promotes EMT and stemness features of ESCC via
TGFβ-dependent Drosophila mothers against decapentaplegic
homologs (Smads)/yes-associated protein (YAP)/transcriptional

coactivator with PDZ-binding motif (TAZ) signaling (Qi et al.,
2020). Prolonged and repetitive exposure to P. gingivalis infection
induced acquisition of stemness that was indicated by increased
expressions of both CD44 and CD133 and tumor sphere-forming
ability (Ha et al., 2015). And P. gingivalis infection promotes
cell migration, which was slightly enhanced by co-infection with
F. nucleatum (Lee et al., 2017b). F. nucleatum can induce an
EMT program in OSCC cells by activation of Snail via TGF-
β, tumor necrosis factor-α (TNF-α), and EGFR signaling, with
upregulation of MMP-2, MMP-3, and MMP-9 (Abdulkareem
et al., 2018).

Matrix metalloproteinases (MMPs), a family of zinc-
dependent proteolytic enzymes, promote carcinoma cell
migration and invasion and also play a major role in periodontal
tissue destruction. P. gingivalis has been reported to upregulate
the production of several MMPs, namely, MMP-1, MMP-2,
MMP-7, MMP-9, and MMP-10, from primary and transformed
oral epithelial cells (Inaba et al., 2014; Ha et al., 2015, 2016;
Sztukowska et al., 2016; Lee et al., 2017b). These MMP
productions are proved influenced by P. gingivalis-induced
IL-8 (Ha et al., 2015, 2016). In the OSCC cellular invasion
mechanism, P. gingivalis induces MMP-9 proenzyme expression
through ERK1/2-Ets1, p38/HSP27, and PAR2/NF-kB pathways,
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FIGURE 3 | The synergistic and antagonistic effects among oral bacteria in oral cancer. P. gingivalis and F. nucleatum triggers TLR signaling, resulting in IL-6

production that activates STAT3 which in turn induces oral cancer growth and invasiveness. P. gingivalis can localize FOXO1 in nuclear to promote oral cancer, while

the presence of S. gordonii can activate the TAK1-NLK1 pathway, which supersedes the effect of P. gingivalis and translocates FOXO1 to the cytoplasm, where it is

inactive. L. plantarum can inhibit oral cancer through upregulation of PTEN and downregulation of MAPK pathways, and its bacteriocin PLNC8 αβ can suppress P.

gingivalis growth and subsequent pathogenicity.

after which the proenzyme is activated by gingipains (Inaba
et al., 2014). F. nucleatum can increase the section of MMP-9
and MMP-13 through the activation of mitogen-activated
protein kinase p38 and promote cellular migration possibly via
stimulation of Etk/BMX, S6 kinase p70, and RhoA kinase (Uitto
et al., 2005). Dentilisin, a chymotrypsin-like proteinase of T.
denticola was found to convert pro-MMP-8 and−9 into their
active forms and was able to degrade the proteinase inhibitors
TIMP-1, TIMP-2, α-1-antichymotrypsin, and complement C1q,
which contributes to an overall more proteolytic environment
favoring invasion of epithelial cells (Nieminen et al., 2018).

Oral Microbial Community Perturbations
As with PD, it is likely that the communities rather than
individual species serve the pathogenic role in OC. Interactions
among bacterial components of the community can be
synergistic and antagonistic. The promotion of OC progression
by P. gingivalis can be slightly enhanced by co-infection with F.
nucleatum (Lee et al., 2017b). However, P. gingivalis-induced cell
migration is antagonized by Streptococcus gordonii (S. gordonii)
through the TAK1-NLK negative regulatory pathway (Ohshima
et al., 2019). Similarly, numerous antagonistic cases have

been reported among oral bacteria. For instance, Lactobacillus
plantarum (L. plantarum), a part of the normal flora of humans,
can inhibit P. gingivalis growth (Pudgar et al., 2021). L. plantarum
can also inhibit OC development by inducing apoptosis in OC
cells by upregulation of PTEN and downregulation of mitogen-
activated protein kinases (Asoudeh-Fard et al., 2017) (Figure 3).
The complex and diverse interactions within the polymicrobial
communities perturb host homeostasis, which leads to diseases
like PD or OC. Furthermore, Yost et al. performed a pilot
metatranscriptomic analysis of the oral microbiome associated
with human OSCC sites, and they found clear changes in
microbial metabolic activities in OSCC, regardless of the
community composition. These metabolic activities include iron
acquisition, response to oxidative stress, and peptidase activity
(Yost et al., 2018). It illustrates that metabolic activities are better
correlated with disease than community microbial composition.
Similarly, Perera et al. further revealed that more consistent
informative results would be obtained with functional rather than
compositional analysis (Perera et al., 2018). Available extent of
the involvement of the oral microbiome in cancer represents only
the tip of the iceberg, and the function of whether an individual
bacterium or microbial community requires further disclosure.
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CONCLUSION

Since many epidemiological studies reveal a link between PD
and OC, the involvement of periodontal pathogens is well
recognized as a keystone. Available data suggest that periodontal
pathogens may contribute to cancer progression (including cell
survival, proliferation, apoptosis, and invasion) by both the
direct bacterial effect and the indirect inflammatory response
and metabolic carcinogen. It found that early undetected cancer
or precancerous lesions facilitate the colonization and growth
of oral bacteria to promote tumor progression further, which
suggests that the dentist should consider the patient with PD as
a high risk for malignancy. However, there have been some other
data showing some pathogens also suppress tumor growth, so
how to balance and leveraging the role of different bacteria in
cancer will be conducive to better prevention and management
of cancer. And the theory that it is a microbial community, not
individual species, that is reasonable for cancer development and
procession is gradually accepted, but the mechanisms behind this
organized and precise community still need further study.
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