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Identification of Regulatory Modules
That Stratify Lupus Disease Mechanism
through Integrating Multi-Omics Data
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Although recent advances in genetic studies have shed light on
systemic lupus erythematosus (SLE), its detailed mechanisms
remain elusive. In this study, using datasets on SLE transcrip-
tomic profiles, we identified 750 differentially expressed genes
(DEGs) in T and B lymphocytes and peripheral blood cells.
Using transcription factor (TF) binding data derived from
chromatin immunoprecipitation sequencing (ChIP-seq) exper-
iments from the Encyclopedia of DNA Elements (ENCODE)
project, we inferred networks of co-regulated genes (NcRGs)
based on binding profiles of the upregulated DEGs by
significantly enriched TFs. Modularization analysis of NcRGs
identified co-regulatory modules among the DEGs and master
TFs vital for each module. Remarkably, the co-regulatory
modules stratified the common SLE interferon (IFN) signature
and revealed SLE pathogenesis pathways, including the comple-
ment cascade, cell cycle regulation, NETosis, and epigenetic
regulation. By integrative analyses of disease-associated genes
(DAGs), DEGs, and enriched TFs, as well as proteins interact-
ing with them, we identified a hierarchical regulatory cascade
with TFs regulated by DAGs, which in turn regulates gene
expression. Integrative analysis of multi-omics data provided
valuable molecular insights into the molecular mechanisms
of SLE.
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INTRODUCTION
Systemic lupus erythematosus (SLE [MIM 152700]) is a chronic auto-
immune disease with extreme clinical heterogeneity. In recent years,
genome-wide association studies (GWASs) have significantly
advanced our understanding of the genetic architecture of SLE,
revealing more than 80 susceptibility loci.1–3 However, the identified
variants so far only explain approximately 20% of disease heritability
for SLE.4 It is noteworthy that the majority of identified risk variants
are located outside of protein coding regions,5 which highlights their
potential roles in gene expression regulation.

Besides advances in SLE genetics, gene expression as an intermediate
phenotype can provide valuable information for understanding the
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molecular mechanisms of the disease and insights into the effects of
genetic variation.6 So far, the most striking and interesting finding
is the dominant pattern of the interferon (IFN) gene expression signa-
ture from patients with SLE using high-throughput technologies such
as expression microarrays.7 However, the specific contribution of
different IFN families and family members to both the IFN signature
and overall SLE pathogenesis is still poorly understood.8

Despite the achievements in genetics and transcriptomics for SLE, the
existing studies treat them as isolated layers of aberrations that may
lead to disease manifestations with little understanding of
the interplay of these changes. Fortunately, technological advances
have revolutionized the omics field, including a variety of roadmaps
of regulatory elements that were revealed by international collabora-
tive projects, such as the Encyclopedia of DNA Elements (ENCODE)
project9 and the Genotype-Tissue Expression (GTEx) project.10 Thus,
integrative analysis of such advances may help us to better explain the
complicated disease mechanisms of SLE.

In this study, starting from identifying differentially expressed genes
(DEGs) using publicly available data from T cells, B cells, and periph-
eral blood cells (PBCs) from SLE patients and matched healthy
controls, we performed an integrative analysis of various types of
biological data for SLE by adapting both data-driven and knowl-
edge-based approaches (Figure 1). The strategies used may provide
a novel means for interpretation of large-scale datasets, and the find-
ings may expand our understanding of gene expression regulation
and its roles in SLE pathogenesis.
Author(s).
://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Schematic Overview of This Study

First, we identified DEGs usingmeta-analysis of datasets on SLE transcriptomic profiles. In the data-driven approach, important TFs regulating DEGswere identified and then

they were used to stratify DEGs based on TF binding profiles. In the knowledge-based approach, an SLE PPI sub-network was built by incorporating the information of PPIs.

When a random walk with restart algorithm was applied for this network, a hierarchical regulatory process was suggested.
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RESULTS
Meta-analysis to Identify DEGs in SLE

The selected gene expression datasets comprised 60 (32 cases and 28
controls), 65 (38 cases and 27 controls), and 132 (65 cases and 67
controls) samples for T cells, B cells, and PBCs, respectively. Meta-
analysis was performed in order to combine the summary statistics
from different studies to increase power and to minimize potential
problems caused by inter-study variation. Comparison between SLE
cases and controls identified 215 DEGs (154 upregulated and 61
downregulated) for T cells, 265 DEGs (155 upregulated and 110
downregulated) for B cells, and 378 DEGs (218 upregulated and
160 downregulated) in PBCs. Significant overlap of the upregulated
DEGs between the three types of cells was observed, but to a much
lesser extent for the downregulated DEGs (Figure 2).

Enriched Gene Ontology (GO) terms represented by the DEGs are
shown in Figure S1. Upregulated DEGs were mostly involved in
functions such as “response to virus,” “type I interferon signaling
pathway,” and “response to interferon-gamma.” Remarkably, besides
type I and type II IFN, upregulated DEGs in PBCs were also involved
in “neutrophil degranulation,” “positive regulation of inflammatory
response,” and “innate immune response,” whereas functions such
as “translational initiation” and “ribonucleoprotein complex assem-
bly” were significantly enriched for the downregulated DEGs in
PBCs. The functions of “neutrophil degranulation” and “regulation
of inflammatory response” are consistent with the involvement of
NETosis11 and inflammatory pathways in SLE. Intriguingly, house-
keeping genes are enriched in the downregulated DEGs compared
to non-housekeeping genes (chi-square test p value = 7.66 � 10�4),
consistent with suppression of basic cellular functions such as protein
synthesization as a defensive mechanism under viral infection or
inflammation.

Identification of the Transcription Factors Mediating Differential

Gene Expression in SLE

As a key component in gene expression regulation, transcription
factors (TFs) play a central role in immune function regulation. Based
on ENCODE chromatin immunoprecipitation sequencing (ChIP-
seq) datasets, through analysis of TF binding peaks in the transcrip-
tion start site (TSS) regions of the DEGs in comparison to those from
the same number of randomly chosen genes, we identified a number
of TFs significantly enriched in regulating the upregulated DEGs
Molecular Therapy: Nucleic Acids Vol. 19 March 2020 319
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Figure 2. Overlapping of DEGs from T Cells, B Cells, and PBCs
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(Figure 3), suggesting key roles of these TFs in initiating and/or main-
taining the transcription characteristics of dysregulated gene expres-
sion in SLE.

Interestingly, 18 TFs were found significantly enriched for all three
types of cells. In addition, the degree of sharing for TFs among
the cells is much higher than that for DEGs themselves (26.5% for
TFs versus 4.3% for DEGs) (Figure 3), suggesting signal coalescence
in gene expression regulation. The most prominent TFs among
them are those particularly important for IFN-I signaling, such as
STAT1 and STAT2, two essential components of the IFN-stimulated
gene (ISG) factor 3 (ISGF3) complex that binds to IFN-stimulated
response element (ISRE) in the promoters of ISGs. IKZF1 and
IKZF2, two SLE susceptibility genes2,12 that play a critical role in
the pathogenesis of SLE,13 are also found enriched for all three types
of cells in regulating the upregulated genes. Furthermore, the suscep-
tibility variant in IKZF1 (rs4917014) is found to be a trans-expression
quantitative trait locus (eQTL), associated with expression of C1QB
and five ISGs,14 while four of the five ISGs were also found upregu-
lated in SLE samples in our study. Although no cis-eQTL information
was available for this SNP, it is very likely that IKZF1 is responsible
for the trans-effect of rs4917014, considering the role of IKZF1 in
regulating gene expressions as a TF.

For some of the TF ChIP-seq data, stimulated cell lines were used,
which provided us an opportunity to investigate same TFs under
different treatments. Remarkably, treatment of IFNs significantly
enhanced binding of these enriched TFs to the upregulated DEGs.
Upon IFNa treatment for 6 h, signal transducer and activator of
transcription 1 (STAT1) and STAT2 were 14-fold more likely to
bind to the TSS regions of the upregulated DEGs in SLE than for
randomly chosen genes in both B cells and T cells (Figure 3). This
320 Molecular Therapy: Nucleic Acids Vol. 19 March 2020
observation was in agreement with the chronicity of IFNa production
in SLE patients as the most prominent molecular manifestation.
Meanwhile, the difference in fold changes for STAT2 between IFNa
0.5-h and 6-h treatments is much bigger than that for STAT1, indi-
cating that the STAT1 effect can reach steady-state sooner than
STAT2 upon INFa treatment. This observation also suggested that
compared with STAT1, STAT2 may be more sensitive and constitu-
tive for IFN-I-stimulated transcriptional responses.15

The difference in fold changes for STAT1/2 and IFN regulatory
factor 1 (IRF1) binding to DEGs was observed across all three types
of cells (Figure 3). Taking STAT1 as an example, although the
fold change for STAT1 with IFNa treatment is higher than that
with IFNg treatment (Figure 3B), a prominent IFNg response indi-
cated that type II IFN (IFNg) also plays an important role in SLE
pathogenesis,16 which was consistent with our GO enrichment results
for the upregulated genes (Figure S1).

In the K562 cell line, STAT1 or STAT2 binds to a number of ISGs
(OAS3, ISG15, HERC5, and IFI6) only upon IFNa treatment for 6 h
but not after a 30-min treatment (Figure 4), which suggests that
sustained IFNa treatment may be required for inducing some of
the long-term responses in SLE. Of note, the STAT1 binding profile
of the upregulated DEGs showed that the response genes for 6-h
IFNa and IFNg treatment are almost mutually exclusive (Figure 4),
which suggests that IFN-I and IFN-II signaling pathways may
contribute differently to SLE pathogenicity. Interestingly, it was
observed that early response genes of STAT2 upon IFNa treatment
were enriched in cell cycle regulation, and late response genes of
STAT1 upon IFNg treatment were enriched in apoptosis (Figure 4),
suggesting the important role of these two biological processes in
SLE etiology and the different roles of the IFN-I and IFN-II pathways.



Figure 3. TFs Enriched in the Upregulated DEGs

(A) Comparing the TFs enriched in the TSS regions of the upregulated DEGs in T cells, B cells, and PBCs. (B–D) TFs enriched in the TSS regions of the upregulated DEGs in B

cells (B), T cells (C), and PBCs (D). TFs with high fold change or small p values were highlighted. Table S3 showed details of enriched TFs in upregulated DEGs
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Identification of NcRTF and NcRG by a Data-Driven Approach

Regulation of transcription in eukaryotes is a complicated process
and involves coordination of multiple TFs and cofactors. Using
upregulated DEGs and the TFs important in regulating their expres-
sion (Figure 3), we tried to infer a network of co-regulated genes
(NcRG) and a network of co-regulating TFs (NcRTFs) for SLE.
The SLE NcRTF (Figure S2) was composed of 74 TFs with 255 inter-
actions, inferring close interactions and coordination of TFs in regu-
lating gene expression in SLE. TFs that tend to regulate a similar set of
genes may act cooperatively. This assumption was exemplified by the
module on the right in the NcRTFs, which includes STAT1 and
STAT2 that are known to form an ISGF3 complex to induce ISGs,
and STAT3, which is known to bind histone acetyltransferase
EP300 to promote interleukin-10 signaling.17

The SLE NcRG (Figure 5) was composed of 358 genes with 6,349
interactions. To evaluate this inferred network, we compared it
with 1,000 power law-preserving randomized networks18 based on
protein-protein interactions (PPI) data or gene co-expression data.
Interestingly, NcRG tends to be more similar to networks using
protein interaction (empirical p value = 0.001) rather than co-expres-
sion (empirical p value = 0.163), suggesting that these co-regulatory
relationships inferred by TF binding reflect more on the shared func-
tionality at the protein level rather than the expression level.
Molecular Therapy: Nucleic Acids Vol. 19 March 2020 321
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Figure 4. Upregulated DEGs Stratified by STAT1/2 Binding Profiling

(A) Upregulated DEGs only bound by STAT2 with IFNa treatment for 30 min. (B) Upregulated DEGs only bound by STAT2 with IFNa treatment for 6 h. (C) Upregulated DEGs

only bound by STAT1 with IFNg treatment for 6 h.
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Modularization of NcRG

The cellular function of a gene cannot be fully understood without
understanding its interplay with other genes, and grouping these
genes into functional modules may help us better understand the
implications of the genes in disease pathogenesis. Within the SLE
NcRG, six functional modules (Figure 5) were identified using a com-
munity-finding algorithm by maximizing network modularity.19,20

The modularity score was 0.339, an indication of a moderate commu-
nity structure in comparison to a random structure for which the
modularity score would be equal to 0.

Four of the six modules in the network, with the exception of modules
3 and 6, have enrichment on type I IFN signaling pathway, suggesting
functional partitioning of the type I IFN signature. ISGs are also strat-
ified within the network. Module 2 and module 5 had a higher
proportion of ISGs, 46% and 19%, respectively (chi-square test p
value < 2.2 � 10�16), whereas the remaining modules contain fewer
than five ISGs each. Several ISGs that belong to the same gene family
also appeared in distinct modules. For example, the positive regula-
tors of oligoadenylate synthetase (OAS), OAS1 and OAS2, are group-
ed in module 5, whereas OAS3 is partitioned to module 2, indicating
322 Molecular Therapy: Nucleic Acids Vol. 19 March 2020
that although they have the same functional domains21 and similar
functions, they may be regulated differently.

Module 3 is the only module involved in the complement cascade,
which is known to play an important role in SLE pathogenesis.
Two related genes, C4BPB and ELANE, were found in this module.
C4A/B and C1Q were known contributors for lupus risk, which are
involved in immune complex processing and phagocytosis22,23.

For module 6 (Figure 6), functional enrichment was on cell cycle
progression, epigenetic regulation of gene expression, and DNA
conformational changes. The major contributing TFs identified for
this module included MNT, MYC, E2F4, E2F5, ETV1, PML,
CHD2, and SIN3A. The function of these TFs for this module was
consistent with that of the genes, even though they themselves are
not members of the module. Most of these TFs are regulators of
cell cycle, such as E2F4 and E2F5, two essential components of the
DREAM (dimerization partner [DP], retinoblastoma [RB]-like,
E2F. and multi-vulval class B [MuvB]) complex,24 and MNT and
MYC, which can form a TF network controlling cell cycle progres-
sion.25 It was observed that the vast majority of the genes in this



Figure 5. The Modular Repertoire of SLE NcRG

Six modules labeled by different colors were identified using the Louvain algorithm by maximizing network modularity. ISGs are highlighted in red.
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module, including two known ISGs, ADAR and UBE2L6, are regu-
lated by E2F5. Meanwhile, we also found that ETV1, a TF of the
ETS family, binds widely to the genes in this module. Remarkably,
35 of the 91 genes in this module were bound by both E2F5 and
ETV1, suggesting that E2F5 and ETV1 are upstream regulators of
module 6 and play a vital role in dysregulation of cell cycle control
and epigenetic regulation in SLE. It is noteworthy that a prominent
and upregulated histone cluster was also observed in this module. Up-
regulation of histone genes may be involved in gene expression dys-
regulation in SLE and high prevalence of anti-histone antibodies in
SLE patients.26

Module 2 (Figure 7) had the highest proportion of ISGs (11/24),
suggesting that IFN signaling was the major function of this module.
STAT1/2/3 were identified as major contributing TFs for the module.
ISG15, one of the most highly induced ISGs and the main actor
of ISGylation,27 as well as its ligase HERC5, a positive regulator of
innate antiviral response, belonged to this module, and both genes
were bound and likely induced by STAT1 and STAT2 upon 6 h of
IFNa treatment. Remarkably, genes in a small cluster, composed of
MVB12A, BST2, TMEM140, and CNIH4, were all bound by STAT1
upon 30 min of IFNg treatments, indicating IFNg involvement in
their expression. However, STAT1 upon 6 h of IFNg treatment is
not identified as a major contributing TF in this module, which might
suggest that DEGs bound by this TF may contribute to IFN-II
signaling pathways in other modules.

Interestingly, genes bound by STATs in this module seem to be sen-
sitive to a different time course in treatment and different interactions
among the STATs. For example, upon 6 h of IFNa treatment, STAT1
was found bound to OAS3, HERC5, ISG15, IFI6, DDX58, TAP1,
and PSMB9, whereas STAT2 was only bound to OAS3, ISG15,
and HERC5. Meanwhile, CNIH4 was bound by STAT1 and STAT3,
and MT2A was bound by STAT2 and STAT3, whereas TMEM140
was bound by all three STATs. Further studies are needed to under-
stand the intricate regulation of gene expression in SLE, as hinted
by the processes demonstrated by these modules.

Module 5 (Figure S3) is the biggest module in the SLE NcRG and
was quite diverse functionally. It includes IFN signaling, regulation
Molecular Therapy: Nucleic Acids Vol. 19 March 2020 323
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Figure 6. The Regulatory Module 6

This regulatory module is mainly involved in cell cycle

progression, epigenetic regulation of gene expression,

and DNA conformational changes. E2F4, E2F5, and

ETV1 are major contributing TFs.
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of cytokine production, Toll-like receptor signaling, and necroptosis
pathways. Positive regulators of IFN signaling such as IRF7, IRF9,
and STAT1 and antiviral effector ISGs such as MX1/2, TRIM21/
22/38, and IFITM2/21 were observed in this module, supporting
the role of IFN in SLE pathogenesis. Interestingly, this module
also showed functional enrichment. For instance, neutrophil
degranulation, regulation of kidney development, and negative
regulation of striated muscle cell differentiation were found enriched
in this module, which was in agreement with neutrophil, renal,
and heart involvement in SLE pathogenesis and symptoms.11,28,29

Therefore, this module may represent various phenotypic effects
not only for the immune system, but also at the tissue level. The
detailed results of GO biological process and pathway enrichment
on all the regulatory modules are shown in Tables S1 and S2,
respectively.

Identification of a Hierarchical Regulatory System by a

Knowledge-Based Approach

A SLE PPI sub-network was constructed, which was composed of
a total of 646 DAGs, DEGs, and enriched TFs, with a total of 4,539
interactions based on InWeb_IM. Since DAGs serve as the genetic
architecture of SLE pathogenesis, we asked the question of how
other genes are ranked as far as their relationships with the DAGs
are concerned. To this end, the random walk with restart (RWR)
algorithm was used to analyze the proximity of genes to DAGs
in the SLE PPI sub-network. Interestingly, the RWR scores of en-
riched TFs in this study were significantly higher than those of the
DEGs (Welch two-sample t test p value = 8.365 � 10�5), suggesting
that these enriched TFs are much closer functionally to DAGs than
324 Molecular Therapy: Nucleic Acids Vol. 19 March 2020
to DEGs. The DEGs and enriched TFs can be
categorized into different layers according to
the RWR scores, thus forming a hierarchical
regulatory process (Figure 8A).

This layered regulatory model was well
exemplified in the pathways involving JAK2
(Figure 8B) and CDKN1B (Figure 8C),
respectively. CDKN1B is a cyclin-dependent
kinase (CDK) inhibitor and a susceptibility
gene reported in one of our previous studies
on Asian populations.3 It plays a critical
role in inhibition of cell-cycle progression.30

Regulators of cell cycle, E2F4 and E2F5
in the DREAM complex, and MYC and
MNT in Myc/Max/Mad network are all
interacting proteins of CDKN1B. These TFs
regulate DEGs in immunity-relevant protein
complexes (Figure 8C), such as immunoproteasome, BASC com-
plex (BRCA1-associated genome surveillance complex), and a clus-
ter of different histone proteins. Therefore, it is suggested that
CDKN1B, together with other susceptibility genes to be identified,
might contribute to cell cycle regulation, DNA repair, and
apoptosis in SLE via TFs in the DREAM complex and Myc/Max/
Mad network, leading to gene expression aberration.

The hierarchical regulatory system we are proposing in this study
was also supported by eQTL data. We surveyed the known SLE sus-
ceptibility loci considering the public eQTL data and the upregulated
DEGs. Four susceptibility loci (MIR146A, IRF7, IKZF1, and SH2B3)
were found to be associated with expression changes of DEGs.
SH2B3 (rs10774625) was recently identified as a susceptibility gene
for SLE in European populations,2 and it was associated with expres-
sion of three other genes, STAT1, GBP2, and UBE2L6, all of which
were found to be upregulated DEGs in this study (Figure S4). These
observations suggest potential link between susceptibility genes and
DEGs, likely mediated by TFs.

DISCUSSION
Recently, integrative analyses of multi-omics data began to draw
attention from the scientific community, aiming to decipher
the complexity of disease pathogenesis and molecular mecha-
nisms.31 In this study, we applied both a data-driven approach
and a knowledge-based approach for integrating findings on
genetics and transcriptomics, with information on TF binding
and PPI, to provide unique insights into the molecular mecha-
nisms of SLE.



Figure 7. The Regulatory Module 2

This regulatory module is mainly involved in IFN signaling,

and STAT1/2/3 are major contributing TFs.
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In the data-driven approach, we have made good use of the TF
binding profiles to infer a NcRG for SLE. This method provided
a novel perspective for understanding gene regulation underlying
the disease. Most importantly, upon applying modularization anal-
ysis of this inferential network, for the first time the IFN gene
expression signature was being stratified, potentially shedding light
on IFN signaling in SLE through detailed dissection. Meanwhile,
multiple co-regulatory modules and their corresponding upstream
regulators (TFs) were identified as well, and they might help us to
better understand the functional roles of the DEGs and the regula-
tory mechanisms involved in SLE. For example, module 2 was the
major contributor of IFN signature in SLE pathogenesis. A few TFs
were identified as the major regulators in this module, including
STAT1 and STAT2, two essential subunits of the ISGF3 complex
responsible for the induction of ISGs. They are interacting proteins
of a number of susceptibility genes as well, including JAK2 and
SOCS1.32 Therefore, this piece of information suggested that these
susceptibility genes may contribute to the IFN signature in SLE via
the ISGF3 complex, leading to gene expression aberration shown in
module 2.

Additionally, in the data-driven approach, a SLE NcRTF was inferred
as well. Besides showing known TF interaction pairs such as STAT1-
STAT2 and STAT3-EP300, the NcRTF may also uncover unknown
synergistic relationships between the TFs. For example, the key
component of the polycomb repressive complex 2 (PRC2), EED,
was observed to interact with IKZF1/2 (Figure S2), which are both
SLE susceptibility genes, indicating that IKZF1/2 might be involved
in the function of EED, leading to epigenetically mediated hypersen-
sitivity and upregulation of ISGs in SLE. It was also observed that EED
preferentially binds to ISGs (chi-square test p value = 0.014), consis-
tent with the finding that significant hypomethylation events tend to
occur in IFN-related genes.33
Molecular Th
In the knowledge-based approach, by incorpo-
rating the information of PPI, an SLE PPI
sub-network was built. It revealed a hierarchical
regulatory process consisting of DAGs on the
top layer, TFs in the middle layer, and upregu-
lated DEGs in the bottom layer. This regulatory
process was also supported by our analysis
based on eQTLs data in blood cells. Addition-
ally, Figures 8B and 8C provided two examples
illustrating the potential information flow from
DAGs to TFs, and then to DEGs. The hierarchi-
cal regulatory cascade could be useful in the
translation from GWAS findings to clinical util-
ity in the future. Our previous study showed
that DAGs tend to interact with SLE drug tar-
gets.34 Thus, based on the regulatory relationship between DAGs
and enriched TFs (Table S3), these TFs or genes interacting with
them could be promising pharmaceutical targets, providing a new
clue to repurposing existing drugs for SLE therapy.

Conclusions

We presented an integrative analysis of DEGs in SLE from T cells,
B cells, and PBCs incorporating multi-layer omics data, our results
provided a novel way to interpret transcriptomics and also a
framework to bridge GWAS findings and gene expression aberra-
tions, and it may provide valuable molecular insights for SLE
pathogenesis.

MATERIALS AND METHODS
DEGs

We mined the National Center for Biotechnology Information
(NCBI) Gene Expression Omnibus (GEO) database to find publicly
available gene expression datasets for SLE. We selected the following
datasets for further analysis: T cells, GEO: GSE4588, GSE10325,35,36

and GSE13887;37 B cells, GEO: GSE4588, GSE10325, and
GSE30153;38 and PBCs, GEO: GSE12374,39 GSE20864,40 and
GSE50635.41 Among them, non-SLE samples and stimulated samples
were excluded in our analysis. These datasets were downloaded from
the NCBI GEO database using GEOquery42 R package, and probes
were annotated to Entrez Gene identifiers for consistency. Genes
with missing values in more than 20% of the samples were excluded
from further analysis. Gene expression values were log transformed if
necessary and normalized by quantile normalization.43

Principal-component analysis (PCA) was employed to overcome
hidden confounding factors that may affect gene expression. We
included principal components (PCs) that fit the following criteria
in our further analysis: (1) they explainedmore variation than average
erapy: Nucleic Acids Vol. 19 March 2020 325
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Figure 8. Diagram of the Hierarchical Regulatory Process among DAGs, TFs, and DEGs

(A) DAGs were classified as the top layer, enriched TFs as the middle layer, and upregulated DEGs as the bottom layer in a hierarchical regulatory process for SLE, supporting

the notion that susceptibility variants may have contributed to gene expression alteration through TFs, which in turn regulate gene expression aberration in SLE. Two Ex-

amples (B (pathway involving JAK2) and C (pathway involving CDKN1B)) showing that DAGs, TFs, and upregulated DEGS are forming regulatory hierarchical networks based

on inferred information from protein interaction.
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when assuming each variable would contribute equally; and (2) they
had no correlation with disease status or other available metadata
such as sex and age. A linear regression model with gene expression
as the dependent variable, and disease status, selected PCs, and avail-
able metadata as independent variables was applied to identify genes
that are differentially expressed between cases and controls. A p value
and fold change for every gene was generated by linear regression
analysis implemented in R.

A weighted Z score approach was applied for meta-analysis across
different studies of the same type of cells. Original p values from
each study were converted to Z scores, taking into account the sign
of the log-transformed fold change as upregulations or downregula-
tions. A weighted sum of Z scores was calculated by weighing each
Z score by the square root of the effective sample size for each study.
Themeta-analysis Z scores were then converted to p values based on a
normal distribution. DEGs were determined after correction for mul-
tiple testing by Benjamini and Hochberg44 false discovery rate (FDR)
to control the error rate at 0.1 for B cells and T cells. For PBCs, a more
stringent cutoff threshold of 1 � 10�3 was used, based on the mixed
326 Molecular Therapy: Nucleic Acids Vol. 19 March 2020
nature of the cells for peripheral blood and potential variation in their
composition.

TF Enrichment Analysis

We collected TF ChIP-seq peak data called using the irreproducible
discovery rate (IDR) framework45 from the ENCODE project9

(version March 15, 2017, https://www.encodeproject.org/), which in-
cludes 1,183 TF-biosample pairs after removing problematic ones
with errors in the experiments or unqualified for the consortium’s
standards. Chromatin accessibility information from DNase peaks
can increase reliability of TF binding peaks identified from ChIP-
seq data.46 Thus, we also overlapped TF ChIP-seq data with DNase
master peak data from ENCODE project phase 2, which include
open chromatin regions from multiple tissues.

To study TFs most relevant in regulating the DEGs, we identified
those ChIP-seq peaks that are located within a certain range of
the DEGs. NCBI Entrez RefSeq GRCh37 dated in December 2013
was used to define genomic locations and TSSs of the transcripts.
The proximal TF binding peaks were assigned to a nearby gene if

https://www.encodeproject.org/
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they overlapped with the TSS region of the gene, which was defined as
the 4-kb region centered on the TSS of the gene. Aminimum overlap-
ping size of 100 bp is required, which is the resolution of ChIP-seq
technology.47 For genes with multiple TSSs, the averaged count of
binding peaks for different transcripts was used.

Construction of NcRGs and NcRTFs

The TF binding peak profile for each gene was constructed based on
the TF ChIP-seq data from ENCODE. Each data point stored the
number of binding peaks for a specific TF in the TSS region of the
gene. The numbers of TF binding peaks were normalized to a range
of 0–1 for comparison purpose using minimum (min)-maximum
(max) scaling:

zi =
xi �minðxÞ

maxðxÞ �minðxÞ;

where x = (x1,., xn) is an original value denoting the number of TF
binding peaks in one ChIP-seq dataset, and zi is the normalized num-
ber of TF binding peaks.

On the basis of the TF binding profiles, Pearson’s correlation coeffi-
cient (PCC) was employed to measure the correlation between genes
or TFs. The gene-gene or TF-TF interaction was determined using
PCC on zi values. Student’s t test was used for evaluating the statistical
significance of PCC, adopting corrections for multiple testing (at FDR
at 0.05 threshold). Thus, NcRGs and NcRTFs were built based on
gene and TF interactions, respectively. In this study, based on the
TF binding peak profiles of upregulated DEGs and corresponding
enriched TFs from T cells, B cells, and PBCs, NcRG and NcRTF for
SLE were constructed. In order to illustrate clearer TF co-regulation
relationships, in the NcRTF, a PCC cutoff threshold of 0.4 was
used48 in addition to a FDR cutoff.

We utilized a randomized network method18 to assess the reliability
of the NcRG inferred from TF binding peak profiles. The strategy
of this approach is to compare this inferred network with 1,000 power
law-preserving randomized networks on the basis of external gene
interactions. In this study, PPI data from InWeb_IM49 and gene
co-expression data in whole blood from the GTEx project50 were
used as the external gene interactions. In practice, we counted one
if the number of gene interactions in the randomized network is
bigger than that in the NcRG. The empirical p value was calculated
by the count number divided by 1,000.

Modularization of NcRG

Identification of communities and modules within a network im-
proves our understanding of the organization of the biological
systems.51 In order to identify modules in the NcRG, the Louvain al-
gorithm19,20 was employed to define co-regulatory modules. For every
co-regulatory module, the major contributing TFs were identified
by L1 regularized logistic regression,52 whichminimizes the classifica-
tion error while selecting a small number of TFs that have nonzero
coefficients.
In order to functionally characterize the co-regulatory modules,
GO,53 Reactome,54 and Kyoto Encyclopedia of Genes and Genomes
(KEGG)55 pathway annotations were employed to detect overrepre-
sented functions in each co-regulatory module. For enrichment
analysis, an FDR corrected p value < 0.05 was considered as
significant.
SLE PPI Sub-Network

In order to bridge genetic components and gene expression compo-
nents of SLE pathogenesis, a SLE PPI sub-network was constructed
using SLE DAGs,1,2 enriched TFs, and identified DEGs on the basis
of InWeb_IM,49 which is so far the most comprehensive protein
interaction network stemmed from eight heterogeneous resources.
In practice, the SLE PPI sub-network was built using the SLE
DAGs, enriched TFs, and DEGs when there are edges between
them in the network of InWeb_IM.
Random Walk with Restart to Analyze Relationships among

DAGs, DEGs, and TFs

Random walk iteratively is a process that explores the global structure
of a network, starting at given source nodes to reach random neigh-
bors in order to estimate the proximity among vertices (genes). As
a variant of random walk, the walker may also choose to teleport to
the start nodes with a given restart probability r, which controls
how far the random walker moves away from the start nodes. In
this study, r = 0.5 was used, and thus the probability of moving
forward and moving backward in every step is equal. The equation
for the random walk with restart is defined as:

pt+ 1 = ð1� rÞWpt + rp0;

where r is the restart probability, W is the column-normalized
adjacency matrix of the network graph, and pt is a vector of size equal
to the number of nodes in the graph where the ith element holds
the probability of being at node i at time step t. The initial probability
vector p0 was constructed such that equal probabilities were assigned
to each DAG, while a probability of 0 was given to all other genes
in the network. The final score of a gene in the network was defined
as the steady-state probability that the random walker would stay at
the gene. These final scores can be viewed as the “influential impact”
over the network imposed by the start nodes (DAGs). RWR was
carried out by NetWalker.56

More information is available in Supplemental Materials and
Methods.
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