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Background: Only a proportion of patients with bladder cancer may benefit from durable
response to immune checkpoint inhibitor (ICI) therapy. More precise indicators of
response to immunotherapy are warranted. Our study aimed to construct a more
precise classifier for predicting the benefit of immune checkpoint inhibitor therapy.

Methods: This multi-cohort study examined the top 20 frequently mutated genes in five
cohorts of patients with bladder cancer and developed the TP53/PIK3CA/ATM mutation
classifier based on the MSKCC ICI cohort. The classifier was then validated in a validation set
consisting of IMvigor210 cohort and Broad/Dana-Farber cohort. The molecular profile and
immune infiltration characteristics in each subgroup as defined by this classifier were explored.

Results: Among all 881 patients with bladder cancer, the mutation frequency of TP53,
PIK3CA, and ATM ranked in the top 20 mutated genes. The TP53/PIK3CA/ATMmutation
classifier was constructed based on the Memorial Sloan Kettering Cancer Center
(MSKCC) ICI cohort and only showed predictive value for patients with bladder cancer
who received ICI therapy (median overall survival: low-risk group, not reached; moderate-
risk group, 13.0 months; high-risk group, 8.0 months; P<0.0001). Similar results were
found in subgroups of MSKCC ICI cohort defined by tumor mutation burden. Multivariate
Cox analysis revealed that the risk group defined by the classifier served as an
independent prognostic factor for overall survival in patients with bladder cancer.
Efficacy of the classifier was verified in a validation set consisting of IMvigor210 cohort
and Broad/Dana-Farber cohort. Lower expression of PD-1/PD-L1 and less tumor
immune infiltration were observed in the high-risk group than the other two groups of
the TCGA cohort and the IMvigor210 cohort.
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Conclusion: Our study constructed a TP53/PIK3CA/ATM mutation classifier to predict
the benefit of immune checkpoint inhibitor therapy for patients with bladder cancer. This
classifier can potentially complement the tumor mutation burden and guide clinical ICI
treatment decisions according to distinct risk levels.
Keywords: bladder cancer, immune checkpoint inhibitor, mutation profile, immunotherapy, immune cell
infiltration, signature
1http://www.cbioportal.org/study/summary?id=tmb_mskcc_2018
2http://www.cbioportal.org/study/summary?id=msk_impact_2017
3https://portal.gdc.cancer.gov
4http://www.cbioportal.org/study/summary?id=blca_tcga_pub_2017
5http://www.cbioportal.org/study/summary?id=blca_cornell_2016
6http://www.cbioportal.org/study/summary?id=blca_dfarber_mskcc_2014
7http://www.cbioportal.org/study/summary?id=mixed_allen_2018
8http://research-pub.gene.com/IMvigor210CoreBiologies
INTRODUCTION

Recently, an increasing number of researchers focused their
attention on the relationship between tumor progression and
the immune status. Immune checkpoint inhibitors (ICIs) have
become the most promising therapeutic modality for patients
with malignant neoplasms, including bladder cancer (BC).
Antibodies targeting programmed cell death 1 (PD-1) (OMIM
600244)/programmed death-ligand 1 (PD-L1) (OMIM 6005402)
and cytotoxic T-lymphocyte associated protein 4 (CTLA-4)
(OMIM 123890) have shown high therapeutic efficacy. Over
the past few years, five new ICIs have been approved for the
second-line systemic therapy in the locally advanced or
metastatic BC diseases (1). Unfortunately, only a proportion of
unselected BC patients showed obvious improvement (2–5). In a
phase 2 multicenter study, the objective response rate to
atezolizumab (a PD-L1 inhibitor) was 15%, regardless of the
expression of PD-L1 (3). Similar results were observed in the
CheckMate 275. In this phase 2 trial of nivolumab (a PD-1
inhibitor), the objective response was confirmed as 19.6% (4). In
an international phase 3 trial of pembrolizumab (a PD-1
inhibitor), the objective response rate was 21.1% (5).
Therefore, researchers started to focus on finding new
biomarkers for treatment stratification. Encouragingly, recent
studies have identified some positive predictive biomarkers for
ICI therapy, such as tumor mutation burden (TMB) and
microsatellite instability (MSI) (6–8). High levels of TMB and
MSI may be associated with accumulation of neoantigen
and stimulate the immune response, resulting in favorable
response to ICI therapy. Gene mutation signatures have also
been gradually identified as a good complement (9, 10).

Nevertheless, few verified biomarkers of the response to ICI
therapy in BCs have been reported. In the Checkmate 275 study,
higher values of the 25-gene interferon-g (IFN-g) signature were
associated with higher PD-L1 expression and improved response
rate to nivolumab (4). Min et al. elucidated an association
between the alterations in DNA damage response and repair
(DDR) genes and response to ICI in advanced urothelial
carcinomas (UC), whereas ATM was the most commonly
altered genes among the DDR-related genes (11). Thiago et al.
also found that, in muscle invasive bladder cancers, mutations of
DDR genes were associated with the expression of tumor
immune regulatory gene expression (12). Besides, Sangeeta
et al. reported ARID1A mutation plus CXCL13 expression as
composite biomarkers to predict responses to ICI therapy in
metastatic UC (13). Composite somatic mutations seem to be
potential biomarkers in advanced or metastatic BCs. However,
org 2
these observations still need to be validated in a larger cohort for
future development.

Herein, we aimed to screen the most commonly mutated
genes in BC patients and constructed a novel gene mutation
classifier to predict the benefit of immune checkpoint
inhibitor therapy more precisely. The mutation classifier was
validated in an independent validation set. Comprehensive
bioinformatics analyses were carried out to understand the
underlying mechanisms and potential prognostic value of
the classifier.
MATERIALS AND METHODS

Patients and Samples
Somatic mutation data and clinical data of patients with BC from
the Memorial Sloan Kettering Cancer Center (MSKCC) ICI
cohort (n=215) (6)1, MSKCC non-ICI cohort (n=172) (14)2,
The Cancer Genome Atlas (TCGA) cohort (n=412) (15)3, 4,
Weill Cornell Medicine/University of Trento (Cornell/Trento)
cohort (n=32) (16)5, Dana-Farber Cancer Institute/MSKCC
(DFCI/MSKCC) cohort (n=50) (17)6, and Broad/Dana-Farber
cohort(n=26) (18)7 were downloaded from the cBioPortal and
the TCGA data portal (19). Patients from the MSKCC center
were distinguished by patient ID, history of drug use, and other
clinical characteristics for fear of overlapping cases. Gene
expression data in fragments per kilobase of transcripts per
million mapped reads (FPKM) for 408 samples in the TCGA
database were also obtained from the cBioPortal. Somatic
mutation data, RNA-seq data, and matched clinical data of BC
patients from IMvigor210 cohort (n=237) were obtained from
IMvigor210CoreBiologies, a fully documented R package (20)8.
215 patients from the MSKCC ICI cohort were assigned to the
training set. 263 patients from the IMvigor210 cohort and Broad/
Dana-Farber cohort were assigned to the validation set. All the
patients from the MSKCC ICI cohort, IMvigor210 cohort, and
Broad/Dana-Farber cohort received at least one dose of ICI
therapy. Patients from the training set and the validation set
August 2021 | Volume 12 | Article 643282
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with incomplete survival information, mutation data, and TMB
data were excluded. The study was conducted according to the
Strengthening the Reporting of Observational Studies in
Epidemiology (STROBE) reporting guideline.
Construction of the Mutation Classifier
First, univariate Cox regression analysis was conducted in the top
20 most commonly mutated genes of 881 BC patients from five
cohorts. Then, genes with a P value less than 0.05, which was
determined by univariate Cox regression, were screened to
perform a multivariate cox regression analysis. The risk score
was calculated with the formula below:

Risk score = (beta1× mutation status of Gene1) + (beta2×
mutation status of Gene2) +… + (betan×mutation status of Genen).

A mutated gene was coded as 1, and a wild type gene was
coded as 0. Beta was the regression coefficient generated in the
multivariate Cox regression analysis.
Division of Risk Scores With the
X-Tile Software
X-tile software version 3.6.1 (Camp/Rimm, Yale University)
described the substantial tumor subpopulations via dividing a
population into three risk score levels (low-, moderate-, and
high-level) (21). X-tile plot was shown in a right triangular grid,
where each pixel represented a different cutoff point. Each
division had a Chi-Sq (c2) value, which was shown with a
color code on the grid. The X-tile software could automatically
select the optimal division through c2 value. A P value calculated
by standard Monte Carlo simulations was used to assess
statistical significance.
Assessment of TMB
All non-synonymous mutations, including missense, frame-shift,
nonsense, nonstop, splice site, and translation start site changes
of TP53/PIK3CA/ATM, were considered. TMB was defined as
the total number of somatic non-synonymous mutations
normalized to the total number of megabases sequenced.

We collected TMB data of patients from the MSKCC ICI
cohort, which generated from the Memorial Sloan Kettering-
Integrated Mutation Profiling of Actionable Cancer Targets
(MSK-IMPACT). A total of 215 patients with BC, whose
tumors were profiled by next-generation sequencing. Genomic
alterations of patients from the IMvigor210 cohort were assessed
by FMOne panel (Foundation Medicine, Inc.). TMB data of
patients from the Broad/Dana-Farber cohort were determined as
the total number of mutations per sample, normalized by whole-
exome sequencing (WES) coverage.
9https://string-db.org
10http://cibersort.stanford.edu
11http://timer.cistrome.org
Oncoplot of the Mutated Genes
Mutation Annotation Format (MAF) files of BC patients were
downloaded from the cBioPortal.

The oncoplot and summarized information were then
graphed through the Maftools package in the R version
4.0.4 (22).
Frontiers in Immunology | www.frontiersin.org 3
Construction of the Protein–Protein
Interaction (PPI) Network
The PPI network functional enrichment analysis was conducted
on the STRING website9 and reconstructed using the Cytoscape
software version 3.8.0 (23).

Gene Set Enrichment Analysis (GSEA)
The GSEA software version 4.1.0 (Broad Institute, Cambridge,
MA, USA) was used to identify the notably altered gene sets
between the pre-defined low-risk group and high-risk group in the
TCGA cohort. Hallmark gene sets(hallmark gene sets as Gene
Symbols), C2: curated gene sets (KEGG gene sets as Gene Symbols)
and C7: immunologic signatures(ImmuneSigDB gene sets as Gene
Symbols), which represented cell states and perturbations within
the immune system, were applied to investigate the alteration in
immune-related pathways. Gene expression profiles of the TCGA
cohort with grouping information were prepared for GSEA. A
P value < 0.05 and a false discovery rate (FDR) <0.25 were
considered statistically significant.

Assessment of Immune Infiltration
The ESTIMATE algorithm was applied to calculate the stromal
scores, immune score, estimate scores, and tumor purity, which
depicted the fraction of stromal and immune cells in tumor
samples using expression signatures (24).

The CIBERSORT algorithm was applied to characterize the
immune cell composition of complex tissues via an LM22 gene
signature matrix (25). The matrix contains 547 genes that
distinguish 22 human hematopoietic cell phenotypes. The
standardized processed gene expression profiles from TCGA
database and IMvigor210CoreBiologies R package were
uploaded to the CIBERSORT website10 as mixture files. The
LM22 signature matrix file was used to run CIBERSORTx, with
1000 permutations. Quantile normalization was disabled on
RNA-seq data. The results of CIBERSORT included subsets of
seven T cell types, naive and memory B cells, plasma cells,
natural killer cells, and myeloid subsets. CIBERSORT
conducted deconvolution with Monte Carlo sampling and
derived an empirical P value. All 408 TCGA samples with gene
expression data had P values < 0.05. In IMvigor210 cohort, 153
samples had P values < 0.05, and 84 samples had P values ≥ 0.05.
Only samples with a P value less than 0.05 were included for the
following analyses.

The TIMER algorithm was applied to estimate immune
infiltrations (26, 27). The standardized processed gene
expression profiles were uploaded to the TIMER2.0 website11.
The results contained subsets of B cells, CD4+ T cells, CD8+ T
cells, neutrophils, macrophages, and myeloid dendritic cells.

Statistical Analysis
Overall survival (OS) was measured from the date of ICI therapy
initiation to the time of death or latest follow-up. For survival
analysis, Kaplan–Meier survival curves were generated and
August 2021 | Volume 12 | Article 643282
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compared using the log-rank test. Cox regression analysis was
used to establish a multi-gene mutation classifier. Overall
survival and overall patient survival status were used as the
dependent variables in the univariate and multivariate cox
regression analyses. X-tile plots were used to automatically
select the optimal division of the classifier by selecting the
highest c2 value. The cutoff point of TMB was defined by the
quintile (top 20%). The two-tailed unpaired t-test and Kruskal–
Wallis test were used to determine the differences between
different groups with or without normal distribution,
respectively. The Pearson c2 test was applied to estimate the
correlations among various immune cell subsets. The
SPSS software version 25.0 (IBM Corp., Armonk, NY, USA)
and GraphPad Prism version 8.3.0 (GraphPad Software Inc., San
Diego, CA, USA) were used to carry out the statistical analysis.
All the statistical outcomes were two-sided, with P values < 0.05
denoting statistically significant differences. Data were collected
and analyzed from March 14, 2020 to June 21, 2021.
RESULTS

Distribution and Clinical Significance of
BC Gene Mutation Profile Landscape
Our study firstly collected somatic mutation data of 881 patients
with BC, including 215 patients from the MSKCC ICI therapy
cohort (mean [SD] age, 67.6 [9.9] years; 164 [76.3%] men), 172
patients from the MSKCC non-ICI therapy cohort (123 [71.5%]
men), 412 patients from the TCGA cohort (mean [SD] age, 68.1
[10.6] years; 412 [73.5%] men), 32 patients from the Cornell/
Frontiers in Immunology | www.frontiersin.org 4
Trento cohort (mean [SD] age, 68.3 [9.4] years; 24 [75.0%] men),
and 50 patients from the DFCI/MSKCC cohort (mean [SD] age,
62.5 [8.9] years; 37 [74%] men) (Supplementary Figure 1). The
vast majority of variant classifications consisted of missense and
nonsense mutations. Single nucleotide polymorphism is the most
common variant type in BC (Supplementary Figure 2). The
oncoplot showed the top 20 frequently mutated genes in these
five BC patient cohorts (Figure 1). To better understand the
interplay between frequently mutated genes, we constructed PPI
networks of the top 20 mutated genes via the STRING database
and subsequently conducted an analysis using Cytoscape
(Supplementary Figure 3). Tumor protein p53 (TP53)
(OMIM 191170), phosphatidylinositol-4,5-Bisphosphate
3-Kinase Catalytic Subunit Alpha (PIK3CA) (OMIM 171834),
AT-Rich Interaction Domain 1A (ARID1A) (OMIM 603024),
ataxia-telangiectasia mutated (ATM) (OMIM 607585), and
Lysine Methyltransferase 2D (KMT2D) (OMIM 602113) were
identified to possess higher stress and more edgecounts than
other genes, which implied their central position and
complex interactions in the PPI network of BC.

Predictive Value of the TP53/PIK3CA/ATM
Mutation Classifier in Patients With BC
Receiving ICI Therapy
To investigate the gene signatures of patients sensitive to ICI
therapy, we selected the MSKCC ICI therapy cohort as the
training set, where each patient underwent PD-1/PD-L1
inhibitor therapy or combination treatment with a CTLA-4
inhibitor. Somatic TMB, measured using the MSK-IMPACT,
was provided in the clinical patient information. We firstly
FIGURE 1 | Assessment of the Frequency of Mutated Genes and Mutation Patterns in Patients with BC from Five Cohorts. Oncoplot for the mutated genes of 881
patients with BC from five cohorts. The top 20 genes are listed by mutation frequencies. BC, bladder cancer.
August 2021 | Volume 12 | Article 643282
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utilized univariate cox regression analyses to examine the top 20
mutated genes. TP53, PIK3CA, ATM, and CREBBP showed
statistical significance (Supplementary Table 1). After
multivariate adjustment to 4 potential prognostic factors, only
TP53, PIK3CA, and ATM showing independent predictive value
(P<0.05) were selected as prognostic candidates (Supplementary
Table 2). CREBBP had a P value > 0.05 and was excluded.
Finally, TP53, PIK3CA, and ATM were included in the
multivariate survival analysis, and we could generate a risk
score for each patient with the cox regression coefficients in
the model (Supplementary Table 3):

Risk Score = ( − 0:492*TP53)

+ (0:562*PIK3CA)� (1:454*ATM)

The risk scores of the 215 patients in the training set ranged
from –1.946 to 0.562.
Frontiers in Immunology | www.frontiersin.org 5
We evaluated the distribution of the risk score for the TP53/
PIK3CA/ATM mutation classifier and survival status in patients
who received ICI therapy. Patients with lower risk scores generally
showed better response to ICI therapy than those with higher risk
scores (Figure 2A). We next used the X-tile plots to determine the
optimal cutoff point (Supplementary Figure 4). Patients with a
score >0.07 or <0 were allocated to the high- and low-risk group,
respectively. The remaining patients were allocated to themoderate-
risk group (Figure 2B). Compared with patients in the moderate-
and high-risk groups, those in the low-risk group exhibited better
therapeutic response and OS (median OS, low-risk group: not
reached; moderate-risk group: 13.0 months; high-risk group: 8.0
months; P<0.0001) (Figure 2C). According to the forest plot, we
could confidently conclude that the risk group was a strong
indicator of favorable OS among patients with BC (hazard ratio:
1.79; 95% CI: 1.37–2.34; P<0.0001) (Figure 2D). After multivariable
adjustment, the risk group remained an independent predictive
A

B

D E

C

FIGURE 2 | Establishment of the TP53/PIK3CA/ATM Mutation Classifier in BC Patients Treated with Immune Checkpoint Inhibitors. (A) OS status in the MSKCC ICI
cohort. “Living” and “Deceased” patients were marked green and red, respectively. (B) Schematic diagram of the divisions based on risk scores. (C) Kaplan–Meier
curves of overall survival in the MSKCC ICI cohort based on the TP53/PIK3CA/ATM mutation classifier. The median overall survival was 8.0 months (95% CI:
13.1–20.9 months) in the high-risk group, 13.0 months (95% CI: 7.8–18.2 months) in the moderate-risk group, and not reached in the low-risk group. (D) Forest plot
for 215 patients who received ICI therapy. The vertical line represents the hazard ratio (HR) of 1.0. (E) Time-dependent ROC curves and AUCs at 3 years were used
to assess the predictive accuracy of the classifier compared with TMB. AUC, area under the curve; BC, bladder cancer; CI, confidence interval; ICI, immune
checkpoint inhibitors; MSKCC, Memorial Sloan Kettering Cancer Center; OS, overall survival; ROC, receiver operating characteristic; TMB, tumor mutation burden.
August 2021 | Volume 12 | Article 643282
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factor (hazard ratio: 1.78; 95% CI: 1.35–2.36; P<0.0001)
(Supplementary Table 4). When assessing the predictive accuracy
of the classifier, the area under the curve (AUC) of the classifier and
TMB at 3 years was 0.78 (95% CI: 0.69–0.88) and 0.73 (95% CI:
0.56–0.89), respectively (Figure 2E). Pearson correlation analysis
showed a negative correlation between the risk score and TMB
(r=−0.25; P=0.0002) (Supplementary Figure 5).

Subgroup Analysis of the TP53/PIK3CA/
ATM Mutation Classifier in the MSKCC ICI
Cohort by TMB
The median and range of TMB varied across tumor types (28). For
this reason, we selected the higher TMB quintile (top 20%) as the
cutoff point. According to the TMB cutoff (17.6), we divided
patients into the high- and low-TMB groups. Patients in the low-
TMB group showed notably poorer response and survival (median
OS: low-TMB group, 15.0 months; high-TMB group, not reached;
hazard ratio: 1.62; 95% CI: 1.00–2.60; P=0.047) (Figure 3A). When
stratified by the TMB status, our TP53/PIK3CA/ATM mutation
classifier became a more precise model for identifying patients
sensitive to ICI therapy. In the high-TMB group, we observed that
patients in the high-risk group showed the worst response to ICI
therapy (median OS, low-risk group: not reached; moderate-risk
group: not reached; high-risk group: 11.5 months; P=0.0025)
(Figure 3B). Correspondingly, in the low-TMB group, patients in
the low-risk group showed the best response to ICI therapy (median
OS, low-risk group: 27.0 months; moderate-risk group: 11.0
months; high-risk group: 8.0 months; P=0.0027) (Figure 3C).

After adjusting for sex, age, and ICI treatment through multivariate
Cox regression analysis, the classifier remained an independent
prognostic factor in both subsets (Supplementary Table 5).

Validation of the TP53/PIK3CA/ATM
Mutation Classifier
To estimate the efficacy of the TP53/PIK3CA/ATM mutation
classifier, we tested the classifier in a 263-cases validation set. The
validation set consisted of 237 BC patients from the IMvigor210
cohort (191 [80.6%] men) and 26 BC patients from the Broad/
Frontiers in Immunology | www.frontiersin.org 6
Dana-Farber cohort (18 [69.2%] men). All the patients in the
validation set underwent ICI therapy. We once again evaluated
the distribution of the risk score for the TP53/PIK3CA/ATM
mutation classifier and survival status in the validation set.
Patients with lower risk scores benefited more from the ICI
therapy (Figure 4A), in accordance with the results of the
training set. Patients in lower risk group showed better
therapeutic response and OS (median OS, low-risk group: 16.5
months; moderate-risk group: 10.9 months; high-risk group: 8.1
months; P =0.039) (Figure 4B). A negative correlation between
risk scores and TMB was also found in the validation set
(Figure 4C). Univariate and multivariate cox regression
analyses of BC patients in the validation set confirmed the
results as well (Supplementary Table 6).

TP53/PIK3CA/ATM Mutation Classifier in
Patients From the Non-ICI Therapy Cohort
When extended to patients with BC from the MSKCC non-ICI
cohort, the TP53/PIK3CA/ATM mutation classifier did not show
significant differences between the three groups (median OS, low-
risk group: not reached; moderate-risk group: 30.5 months; high-
risk group: not reached; P= 0.27) (Supplementary Figure 6A).
Similar results were noted in patients with BC from the TCGA
cohort (median OS, low-risk group: 26.9 months; moderate-risk
group: 41.7 months; high-risk group: 22.1 months; P=0.55)
(Supplementary Figure 6B). These findings demonstrated the
specificity of the predictive value of the TP53/PIK3CA/ATM
mutation classifier in patients with BC responding to ICI therapy.

Gene Signatures and Pathway Enrichment
Analysis by the TP53/PIK3CA/ATM
Mutation Classifier
To further investigate the gene signatures of the TP53/PIK3CA/
ATM mutation classifier based on RNA-seq data, we utilized the
TCGA cohort and IMvigor210 cohort. Lower expression of PD-1
(FPKM: 27.7 vs. 57.6, respectively; P<0.001) and PD-L1 (FPKM:
35.0 vs. 79.8, respectively; P=0.001) were observed in the high-risk
group than the other two groups (Figures 5A, B) in the TCGA
A B C

FIGURE 3 | Subgroup Analysis of Overall Survival in the MSKCC ICI cohort stratified by TMB. (A) Kaplan–Meier curves of overall survival in patients with BC by
TMB. The median overall survival was 15.0 months (95% CI: 10.6–19.4 months) in the low-TMB group and not reached in the high-TMB group. (B) Kaplan–Meier
curves of overall survival in patients from the high-TMB group. The median overall survival was 11.5 months (95% CI: 1.4–20.6 months) and not reached in the other
two groups. (C) Kaplan–Meier curves of overall survival in patients from the low-TMB group. The median overall survival was 27.0 months (95% CI: not available) in
the low-risk group, 11.0 months (95% CI: 7.5–14.5 months) in the moderate-risk group, and 7.0 months (95% CI: 10.6–19.4 months) in the high-risk group. BC,
bladder cancer; CI, confidence interval; TMB, tumor mutation burden.
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cohort. Similar results were found in the IMvigor210 cohort
(Figures 5C–E). The GSEA was performed between the low-risk
group and high-risk group in the TCGA cohort to appraise the
hallmark gene sets, C2: KEGG gene sets and C7: immunologic
signature gene sets (Supplementary Figure 7). Intriguingly, we
found that cell cycle-related pathways, such as the E2F targets
(FDR=0.06) and G2M checkpoint (FDR=0.11), were enriched in
hallmark gene sets. Altered pathways from the C2 subset in the low-
risk group, including homologous recombination (FDR=0.03),
Frontiers in Immunology | www.frontiersin.org 7
pyrimidine metabolism (FDR=0.06), purine metabolism
(FDR=0.08), and DNA replication (FDR=0.07), were related to
the genomic stability status. Variation in these pathways may lead to
higher TMB and MSI. In the C7 immunologic sets, 114 gene sets
were significantly enriched in the low-risk group (FDR<0.25),
indicating an intense immune activation status. Correspondingly,
there was no set found in the high-risk group. In general, the GSEA
uncovered enriched pathways in cell cycle, DNA repair, and
immune infiltration.
A B

D EC

FIGURE 5 | Gene Expressions of Patients in the TCGA Cohort and IMvigor210 cohort stratified by the TP53/PIK3CA/ATM Mutation Classifier (A) Comparison of the
expression of PD-1 between the low- and moderate-risk group and the high-risk group. (B) Comparison of the expression of PD-L1 between the low and moderate
-risk group and the high-risk group. (C) Comparison of the expression of PD-1 among three risk groups in IMvigor210 cohort. (D) Comparison of the expression of
PD-L1 among three risk groups in IMvigor210 cohort. (E) Comparison of the expression of CTLA-4 among three risk groups in IMvigor210 cohort.
A B C

FIGURE 4 | Validation of the TP53/PIK3CA/ATM Mutation Classifier. (A) OS status in the validation set. “Living” and “Deceased” patients were marked green and
red, respectively. (B) Kaplan–Meier curves of overall survival in the validation set based on the TP53/PIK3CA/ATM mutation classifier. The median overall survival was
8.1 months (95% CI: 5.8–10.4 months) in the high-risk group, 10.9 months (95% CI: 8.2–13.6 months) in the moderate-risk group, and 16.5 months (95% CI: 10.1–
22.8 months) in the low-risk group. (C) Correlation between the risk score and TMB in the validation set.
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Immune Infiltration Analysis by the TP53/
PIK3CA/ATM Mutation Classifier
We ran the ESTIMATE algorithm to predict the tumor purity
and infer the fractions of stromal cells and immune cells in the
TCGA cohort and IMvigor210 cohort. There were conspicuous
statistical differences in immune scores, estimate scores, and
tumor purity among three risk groups in the TCGA cohort
(Figure 6A). The low-risk group was infiltrated by more immune
cells and consisted of fewer tumor cells than the high-risk group,
in accordance with the better response to ICI therapy. Among
the 22 immune cell subsets of the CIBERSORT algorithm in the
TCGA cohort, M2 macrophages, M0 macrophages, helper T
cells, resting memory CD4+ T cells, and CD8+ T cells were the
five most abundant immune cell components, which accounted
for >57.4% of immune cells (Figure 6B). The correlation
between different fractions of immune cell subsets ranged from
−0.38 to 0.38 (Figure 6C). The proportion of 22 immune
cell subsets by the CIBERSORT algorithm and immune
correlation heatmap in the IMvigor210 cohort were shown in
Supplementary Figures 8A, B. The fractions of resting memory
CD4+ T cells and monocytes were higher in the high-risk
group of the TCGA cohort (Figures 7A, B). In contrast, the
fraction of activated memory CD4+ T cells was higher in the
low-risk group (Figure 7C). Higher expression of activated
NK cells, M1 Macrophages, and gamma delta T cells were
also observed in low-risk group of the IMvigor210 cohort
Frontiers in Immunology | www.frontiersin.org 8
(Supplementary Figures 8C–E). In addition, we utilized the
TIMER algorithm and noticed a higher B cell fraction in the low-
risk group of the TCGA cohort and a higher neutrophil fraction
in the low-risk group of IMvigor210 cohort (Figure 7D;
Supplementary Figure 8F). The heatmap of immune cells by
the TIMER and CIBERSORT algorithms in the TCGA cohort
also revealed more immune infiltration in the low-risk group
(Supplementary Figure 9). Importantly, the low-risk group
showed a more active immune response status compared with
the high-risk group in both two cohorts.
DISCUSSION

Over the past few decades, platinum‐based chemotherapy has
become the standard option for the systemic management of
muscle‐invasive and advanced BC (29). However, with the rapid
development in genomic sequencing technology in recent years, ICI
therapy has shown great potential in advanced BC patients with
high TMB. A subset of patients could benefit from durable response
to ICI therapy. Then overcoming innate and adaptive resistance to
therapy has been a top priority for investigators. Therefore, the
discovery of novel biomarkers for predicting the therapeutic
response to ICI therapy is urgently warranted. Gene expression
signatures, MSI and TMB, have been proven to be effective (6, 8, 30,
31). Other indicators under evaluation include tumor-infiltrated
A

B C

FIGURE 6 | Immune Infiltration of Tumor Cells by the TP53/PIK3CA/ATM Mutation Classifier. (A) Immune scores, estimate scores, and tumor purity distribution by
the ESTIMATE algorithm. (B) Proportion of 22 immune cell subsets by the CIBERSORT algorithm. (C) Correlation heatmap of 22 immune cell subsets by the
CIBERSORT algorithm. The blue color represents negative correlation, while the red color represents positive correlation. Correlations with a P value ≥ 0.05 were
marked with a cross.
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lymphocytes, neoantigen burden, and gastrointestinal microbiome
(32–35). In this study, we identified the top 20 frequently mutated
genes in five BC cohorts, and established a TP53/PIK3CA/ATM
mutation classifier according to the MSKCC ICI cohort. We
subsequently confirmed the efficacy of the classifier in the
validation set, and investigated its molecular profile and immune
infiltration in the TCGA cohort and IMvigor 210 cohort. It could be
concluded that BC patients with lower risk scores had a longer
survival. Importantly, it seemed to only work on BC patients treated
with ICIs. Moreover, BC patients with high-risk scores appeared to
have a poorer immune infiltration than those with low- or
moderate-risk scores.

Genome instability and mutation is a brand-new hallmark of
cancers (36, 37). According to a study of the mutational
landscape across 12 major types of cancer from TCGA
program, TP53 (41%) and PIK3CA (20%) are the top two most
commonly mutated genes (38). The inclusion of these two genes
improves the universality of the classifier. M. Choi et al. found
that PIK3CA mutations were related to remarkably reduced
peritumoral PD-1 and tumoral PD-L1 in lung squamous cell
carcinoma (LUSC) (39). Tao et al. also reported that PIK3CA
mutations were connected with significantly lower infiltration of
macrophage in LUSC (40). Generally speaking, PIK3CA
mutations led to the activation of PI3K-AKT-mTOR signaling
pathway. Activated PI3K-AKT-mTOR pathway increased
Frontiers in Immunology | www.frontiersin.org 9
production of free fatty acids, which were more effectively
consumed by regulatory T cells and decreased effector T cell
infiltration (41). Moreover, Borcoman et al. reported that PI3K
inhibitors could increase the immune infiltration of BC with
PIK3CA mutations, thus restoring the sensitivity to ICIs (42).
These findings may partially interpret the attenuated response to
ICI therapy in patients with PIK3CA mutations. ATM plays an
important role in the regulation of the DNA damage response
mechanism. Mutations in this gene are related to ataxia
telangiectasia and tumor response to treatment, such as BC,
prostate cancer, etc. (43). Its crucial role in response to double-
strand breaks (DSB) has been noted, followed by the
phosphorylation of extensive downstream signaling pathways
(44). Phosphorylated p53 is subsequently stabilized and
accumulated in the nucleus, acting as a central transcription
factor for the regulation of DNA repair (45). The repair of DSB
mainly involves homologous recombination and non-
homologous end joining (46). Homologous recombination
deficiency caused by mutation of ATM/TP53 results in a
preference to non-homologous end joining, which is a type of
less accurate DSB repair and associated with higher TMB. Yu
et al. discovered that comutation of TP53 and ATM was
associated with increased responses to ICIs in non–small cell
lung cancer (9), while comutation of TP53 and ATM was also
divided into low-risk group in our classifier.
A B

DC

FIGURE 7 | Differential Distribution of Immune Infiltration Cells by the TP53/PIK3CA/ATM Mutation Classifier. (A–C) The fraction of resting memory CD4+ T cells,
activated memory CD4+ T cells, and monocytes by the CIBERSORT algorithm, respectively. (D) The fraction of B cells by the TIMER algorithm.
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In our study, the low-risk group yielded a higher immune
score than the other two groups, according to the ESTIMATE
algorithm. Immune infiltration analysis revealed higher
expression of B cells and activated memory CD4+ T cells, as
well as lower expression of resting memory CD4+ T cells and
monocytes in the low-risk group. Recent studies have shown that
overexpression of monocytes enhanced the levels of glycolysis in
the peritumoral area, leading to impaired cytotoxic T
lymphocyte responses in tumors (47). Excessive production of
interleukin-10 by monocytes leads to reversible dysfunction of
CD4+ T cells (48). Accordingly, correlation analysis showed a
positive correlation between monocytes and regulatory T cells.
Importantly, the low-risk group exhibited a relatively more
activated immune status than the high-risk group in two
cohorts, indicating a greater benefit from ICI therapy.

The GSEA showed enriched pathways in cell cycle, DNA
repair, and tumor metabolism in the low-risk group. Generally
speaking, deficiencies in DNA damage response increase the
tumor mutation load and the generation of neoantigen burden,
which helps the immune system to recognize the tumor. The
effect of ATM/TP53mutation may be amplified by the pathways,
resulting in an accelerated accumulation of the mutation burden.

Compared with traditional chemotherapy and targeted
therapy, ICI therapy requires a longer period of time to show its
curative effects. In a retrospective study of 262 patients treated
with anti-PD-L1 monotherapy, 48 of 76 responder patients
presented an objective response at 3 months (49). Our approach
can distinguish patients who are sensitive to ICI therapy and
accelerate the benefits of treatment. Meanwhile, we need to pay
closer attention to the management of patients in the high-risk
group. Since an undesirable curative response to ICI therapy is
foreseeable, traditional chemotherapy or combined treatment with
chemotherapy and targeted therapy need to be taken into
consideration at the early stage of management.

Despite these promising findings, the present study had several
limitations. Firstly, we conducted a retrospective study based on
online published data. The findings should be verified in prospective
studies with larger cohorts in the future. Secondly, we conducted
substantial immune infiltration analyses through bioinformatics
algorithms like the ESTIMATE algorithm, the CIBERSORT
algorithm and the TIMER algorithm. The fidelity of reference
profiles is the limitation of the signature gene-based algorithms.
The results may deviate in tumor-induced dysregulation,
phenotypic plasticity, and tumor heterogeneity. Besides, we could
not ignore the different results among algorithms. Modified
algorithms are needed to reconcile differences among the existing
algorithms. Thirdly, the mechanisms underlying the TP53/PIK3CA/
ATM mutations and response to ICI therapy remain unclear.
Further investigation is warranted to understand the full impact
of TP53/PIK3CA/ATM mutations.

In summary, our TP53/PIK3CA/ATM mutation classifier could
predict the therapeutic response of patients with BC to ICI therapy.
Only BC patients treated with ICIs and with lower risk scores had a
longer survival. Stronger immune infiltration was observed in the
low-risk group of the classifier. The present findings have important
implications for clinical treatment strategy.
Frontiers in Immunology | www.frontiersin.org 10
CONCLUSION

We established a TP53/PIK3CA/ATM mutation classifier to
predict the therapeutic response of patients with BC to ICI
therapy. This classifier has the potential to become a useful
complement to TMB and guide the clinical treatment decision
according to the levels of risk.
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