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Abstract

Background: The rapid annotation of genes on a genome-wide scale is now possible for several
organisms using high-throughput RNA interference assays to knock down the expression of a
specific gene. To date, dozens of RNA interference phenotypes have been recorded for the
nematode Caenorhabditis elegans. Although previous studies have demonstrated the merit of using
knock-down phenotypes to predict gene function, it is unclear how the data can be used most
effectively. An open question is how to optimally make use of phenotypic observations, possibly in
combination with other functional genomics datasets, to identify genes that share a common role.

Results: We compared several methods for detecting gene-gene functional similarity from
phenotypic knock-down profiles. We found that information-based measures, which explicitly
incorporate a phenotype's genomic frequency when calculating gene-gene similarity, outperform
non-information-based methods. We report the presence of newly predicted modules identified
from an integrated functional network containing phenotypic congruency links derived from an
information-based measure. One such module is a set of genes predicted to play a role in regulating
body morphology based on their multiply-supported interactions with members of the TGF-4
signaling pathway.

Conclusion: Information-based metrics significantly improve the comparison of phenotypic
knock-down profiles, based upon their ability to enhance gene function prediction and identify
novel functional modules.

Background knocked down large numbers of genes in C. elegans and
The observable downstream effect of perturbing gene  scored the consequences of their disruptions using a con-
expression offers clues about a gene's normal operations  trolled vocabulary of predefined phenotypic descriptors
in the cell. The discovery of RNA interference (RNAi) in  (reviewed in [2,3]). Descriptors record, for example,
Caenorhabditis elegans provides an efficient method for  whether a gene knock-down causes embryonic lethality,
gene knock-down [1]. Multiple efforts have systematically
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results in uncoordinated motor control, produces altered
genital structures, or gives rise to sterile worms.

Genes that participate in a common cellular function
often yield similar phenotypic effects when knocked
down [4-6]. The presence or absence of a set of predefined
phenotypes constitutes the phenotypic signature of a gene, a
vector of binary values that can be used to compare the
observed phenotypes of one gene's knock-down to
another's [7]. Large genetic networks have been con-
structed for both C. elegans [8-10] and Saccharomyces cere-
visiae [11,12] in which genes are connected if they have
highly similar (congruent) phenotypic signatures. Previous
methods have also clustered genes based on the congru-
ency of knock-down phenotypes [7,13]. Genes have been
grouped together based on sharing a single phenotype
[14,15], by visually screening for highly similar pheno-
typic signatures [16], by counting the number of shared
phenotypes [17], by measuring the correlation of pheno-
typic signatures [9], and by constructing consensus phe-
notype profiles [18]. Some of these methods take
advantage of a potential benefit of genome-wide studies:
while experimenters often focus on recording the presence
of specific phenotypes, the absence of phenotypes may
also provide useful information for elucidating co-func-
tional groups of genes. Although previous studies have
used a variety of approaches to measure phenotypic con-
gruency, to our knowledge a detailed evaluation of con-
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gruency metrics has not been performed. The optimal way
to compare the knock-down phenotypes of genes remains
an open question.

To motivate our discussion, consider the four pairs of phe-
notypic signatures collected from the current C. elegans
dataset shown in Figure 1. According to the literature,
gene pairs A and D contain genes that are known to be
functionally related, while B and C contain genes which
are unrelated. RNAi of A's two ribosomal genes produces
identical sets of phenotypic observations, which is
expected for genes encoding subunits of the same protein
complex. Likewise, RNAi silencing of B's unrelated genes
- snr-1, the small nuclear RNA involved in pre-mRNA
splicing and clr-1, a regulator of FGF signaling - produces
dissimilar phenotypes. In these two cases, the similarity
(or dissimilarity) of phenotypic signatures reflects the
similarity (or dissimilarity) of the corresponding genes'
functions.

On the other hand, there are also cases in the C. elegans
dataset where the similarity of two phenotypic signatures
may not correlate with the functions of their genes. For
example, RNAi of C's unrelated genes, his-48, an H2B his-
tone, and sqv-4, a UDP-glucose 6-dehydrogenase, has thus
far resulted solely in 'Embryonic Lethality' (Emb), a com-
mon phenotype observed in roughly half of all knock-
downs. In this case, although the phenotypic signatures of
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Four possible associations between phenotypic congruency and shared gene function. Boxes indicate that a pheno-
type (column) was observed to be either present (dark box) or absent (light box) upon knock-down of a gene (row) using
RNA interference. Genes are grouped into four different pairs: A, B, C, and D. Pairs A and C contain genes with identical sig-
natures; pairs A and D contain genes with related function. Phenotypes are ordered from left to right by decreasing frequency
(indicated as inverted bars in the bar graph), calculated across genes with at least one phenotype.
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the genes are identical, the similarity might be purely
coincidental. Conversely, the phenotypic signatures for
D's two related cuticle collagen-encoding genes are con-
siderably different. However, knock-down of both genes
produces two relatively rare phenotypes, 'Dumpy' (Dpy)
and 'Roller' (Rol), a combined result that is unlikely to
occur by chance.

The above examples illustrate that the incorporation of
phenotype background frequencies can potentially help
interpret gene functional similarity from phenotypic con-
gruency. False-positives (such as pair C) might be reduced
by down-weighting common phenotypes, and true-posi-
tives (such as pair D) might be increased by up-weighting
rare phenotypes.

In this paper, we systematically evaluate 19 standard met-
rics for measuring phenotype congruency. The metrics
include well known vector-based similarity and distance
measures, such as Pearson correlation and Euclidean dis-
tance. We focus on comparing information-based metrics,
those that incorporate phenotypic frequency across the
genome, to non-information-based metrics. We provide
evidence that information-based metrics outperform non
information-based metrics for comparing genes based on
phenotype congruency. The top-scoring information-
based metric rewards genes for shared present phenotypes
(both knock-downs result in the phenotype) and absent
phenotypes (neither knock-down results in the phenotype),
while factoring in the background frequencies of both
types of matches. We use the top-scoring measure to iden-
tify new functional gene modules in an integrated func-
tional network. We conclude that information-based
approaches show promise for integrating genome-wide
phenotype data with other functional genomic data
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sources for both gene annotation and revealing new fron-
tiers of genetic networks.

Results

RNA interference knock-down phenotype data

We collected data from three high-throughput RNA inter-
ference screens [19-21]. Synonymous phenotypes were
merged to unite the data from these different sets (see
Methods). In total, we collected data measuring the pres-
ence or absence of 34 different phenotypes under the
knock-down of each of 2,376 C. elegans genes (Table 1).
This dataset has approximate genome-wide coverage, as
the majority of C. elegans knock-downs (about 16,000
genes) have no discernable phenotype. Thus, it is impor-
tant to note that the results of comparing phenotype met-
rics apply only to the minority of genes that produce at
least one recordable RNAi phenotype. Phenotypic signa-
tures were recorded in a G x V binary matrix (G = 2,376, V
= 34), K, where K,, was set to one if phenotype v was
observed under the knock-down of gene g and was set to
zero otherwise. The full matrix of compiled RNAi pheno-
types is available as Additional Data File 1.

There are several sources of noise in the data, and we
expect the false-negative rate to be high, mostly due to the
inherent limitations of RNAi. For example, many neuro-
nal genes are known to be refractory to RNAI. A false-neg-
ative may also occur when one phenotype excludes the
observation of a second phenotype. For example, embry-
onic lethality could preclude observing adult phenotypes
such as uncoordinated motor control. As another exam-
ple, a false-positive may occur when a knock-down pro-
duces an off-target effect. To compare across congruency
metrics, a complete data matrix was constructed by replac-
ing missing values with zeros. We expect this preprocess-

Table I: The 34 phenotypes collected from high-throughput RNA interference screens.

Full Name Short Name Freq.  Full Name Short Name Freq.
Embryonic lethal EMB 0.52 Paralyzed PRL 0.037
Slow post-embryonic growth GRO 043 Patchy appearance PCH 0.035
Larval arrest LVA 0.37 Sluggish appearance SLU 0.030
Uncoordinated UNC 0.33 Long LON 0.026
Sterile STE 0.26 Adult lethal ADL 0.025
Protruding vulva PVL 0.18 Molting defect MLT 0.016
Lethal LET 0.17 Blistering of cuticle BLI 0.016
Sterile progeny STP 0.14 Pale PALE 0.0093
Reduced brood size RBS 0.13 High incidence of males HIM 0.0072
Body morphological defects BMD 0.10 Oocytes O0C 0.0072
Sick SCK 0.093  Roller ROL 0.0063
Ruptured RUP 0.080  Multivulva MUV 0.0059
Dumpy DPY 0.077  Kinker KNK 0.0013
Clear CLR 0.074 Unique phenotype UNIQ 0.0013
Egg-laying defect EGL 0.056  Vulvaless VUL 0.0013
Thin THIN 0.040 Hyperactive HYA 0.0008
Small SMA 0.037  Social SOC 0.0004
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ing step to introduce a negligible amount of additional
noise to the data, as the false-negative rate is likely to be
much greater than the false-positive rate.

The prevalence of a phenotype, or the frequency that it is
recorded for knock-downs of genes in the genome, may
provide important clues for predicting gene function. Dif-
ferences in phenotype prevalence may reflect technical
differences (some phenotypes may be more readily detect-
able), biological differences (some phenotypes may result
from the inhibition of several different pathways), or a
combination of both. Some phenotypes are observed for
hundreds of knock-downs, while others are recorded for
only a few (Table 1, Additional Data File 2). Other factors,
such as the mutual correlations of phenotypes with one
another, might also have influence on their use in predict-
ing gene function. As each phenotype congruency metric
will incorporate (or ignore) these sources of information
to varying degrees, it is not obvious which metric is opti-
mal for comparing genes based on their phenotypic pro-
files.

Evaluation of phenotype congruency metrics

A good congruency metric should assign high values to
functionally-related gene pairs, while assigning low values
to gene pairs which are not likely to have similar function.

http://www.biomedcentral.com/1471-2105/9/463

We calculated the phenotypic congruency between all
gene pairs using 19 different metrics (Table 2), yielding a
total of 2,821,500 pairwise congruency scores for each
metric. We evaluated each metric based on its ability to
capture associations between genes belonging to the same
functional group. We used a collection of functional cate-
gories as an estimate of gene functional groups (see Meth-
ods). Category assignments created from mutant
phenotype data were excluded to avoid circularity in our
evaluation. We evaluated the functional coherence of each
metric at the level of individual gene-gene links and at the
level of gene neighborhoods.

Functional coherence of metric links

We first evaluated each metric by measuring how often
two genes with congruent phenotypic signatures were
functionally related. For a given metric, we linked two
genes if their congruency score was above a threshold. We
then calculated the precision of each metric for each
threshold (see Methods). Overall, most metrics per-
formed better than what would be obtained by sampling
gene pairs randomly (dashed line labeled "Background"
in Figure 2a). However, methods which give equal or
greater weight to shared absent phenotypes (compared to
shared present phenotypes) performed worse than ran-
dom guessing at more stringent thresholds. For example,

Table 2: 19 metrics evaluated for their ability to identify functionally-related genes from knock-down phenotypes. See methods for

mathematical definitions of each metric.

Counts the number of matching present phenotypes.
Counts the number of matching absent phenotypes.
Counts the number of matching present and absent phenotypes.

Same as PCC, with vector means set to 0. Used for network construction in [9].

Same as UPC, restricting to gene pairs sharing two or more phenotypes.

Measures the degree to which knowledge about one gene's phenotypes reduces the entropy
The number of matching present phenotypes divided by the number of phenotypes present in
Scales the number of matching present phenotypes by the frequency of each phenotype.
Same as FDP, but normalized by the lengths of the phenotypic signature vectors.

Same as FDP, scaled by a score obtained by drawing random phenotypes from a Poisson

Same as FDP, but rewards for matching absent phenotypes as well as matching present

Ranking system used by PhenoBlast (Gunsalus et al. 2004). First ranks gene pairs by

MatchPresent, then by MatchAbsent, then by a metric similar to FDP.

Scales the number of matching present and absent phenotypes by their frequencies across all

C
F, C Weights by present phenotype background pairwise co-occurences.
F,

Metric Type? Description
MatchPresent P
MatchAbsent A
Match P, A
Pearson Correlation Coefficient (PCC) P, A Vector correlation coefficient.
Uncentered Pearson Correlation (UPC) P, A
UPC 2+ P, A
Mutual Information (M) P, A
of another's.
Euclidean Distance P, A The "straight line" distance between two vectors.
Jaccard Index P, A
either gene.
Frequency Dot Product (FDP) P, F
Normalized FDP (nFDP) P, F
Residual FDP (rFDP) P, F
distribution.
Symmetric FDP (sFDP) P, A F
phenotypes.
The PhenoBlast Metric P,AF
Agreement Score (AGREE) P,AF
genes [8].
Weighted MatchPresent (wMatchPresent) P, Same as MatchPresent, but incorporates weights.
Pairwise FDP (pFDP) P,
Weighted FDP (wFDP) P,F,C Same as FDP, but incorporates weights.
Weighted AGREE (WAGREE) P, A, F, C Same as AGREE, but incorporates weights.

a: The metric type indicates whether the metric rewards for shared present phenotypes (P), rewards for shared absent phenotypes (A), factors in
frequencies of phenotypes across all genes (F), and/or factors in pairwise co-occurrence of phenotypes across all genes (C).
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Evaluation of metrics A. Gene network precision. The precision of the top-scoring gene pairs is shown for each evalu-
ated metric (see Methods). A. Gene pair precision (y-axis) is plotted against the number of top-scoring gene pairs for the given
metric (x-axis). Metrics discussed in the text are displayed as bold lines. The dashed line indicates the background precision of
all gene pairs in the dataset. B. Gene neighborhood functional coherence. The 25 most similar genes to each query gene were
identified using each evaluated metric. The precision of these 25 gene pairs was calculated using the evaluation set. Shown is
the number of query genes with high precisions (> 0.25) for information-based (black bars) and non information-based metrics
(gray bars).
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MatchAbsent (which rewards solely for shared absent phe-
notypes), Match (which rewards for shared present and
absent phenotypes), PCC (Pearson Correlation), and UPC
(Uncentered Pearson Correlation) all perform worse than
random for networks containing 30,000 or fewer links.
These results indicate that, although some information
might be conveyed, shared absent phenotypes are likely to
be less informative than shared present phenotypes.

Information-theoretic metrics, led by the Agreement Score
(AGREE, see Methods), consistently outperformed the
other metrics at most levels of network size, where net-
work size was measured either as the number of links (Fig-
ure 2a) or as the number of genes (Additional Data File
3a). For example, when considering the top 10,000 scor-
ing gene pairs of each metric, AGREE resulted in gene pairs
with a precision of 0.16, which is significantly higher than
previously published methods such as The PhenoBlast Met-
ric (0.14, P < 103, proportions test) and UPC (0.07, P <
10-5). An evaluation of the same metrics in Saccharomyces
cerevisae using genome-wide phenotype data downloaded
from the Saccharomyces Genome Database [22] pro-
duced similar results (see Additional Data File 3b). As in
worm, the information-based metrics connect yeast genes
more likely to share functional relatedness compared to
correlation, Euclidean distance, and counting based met-
rics.

The metric with the second-best performance was The Phe-
noBlast Metric [17], which first ranks genes around a query
gene using the MatchPresent metric, then ranks ties using
the MatchAbsent metric, and any remaining ties by an
information-based metric similar to the Frequency Dot
Product (FDP). 1t is likely that The PhenoBlast Metric's abil-
ity to improve upon the MatchPresent metric is due to its
incorporation of phenotype background frequencies into
the tiebreaking step of its scoring scheme. Conversely, the
UPC metric [9] performed poorly. As indicated by the
location of the peak of the UPC line, the highest UPC pre-
cision was not obtained at the highest UPC value. This
might be due to UPC linking perfectly correlated genes
that share only a single frequent phenotype.

Functional coherence of metric neighborhoods

The functional coherence of gene pairs may be influenced
by noise in the phenotype data. In order to obtain
another, possibly more robust estimate of coherence than
what is obtained from individual links, the functional
coherence of gene neighborhoods was also assessed. Gene
neighborhoods were induced for each metric by using
each gene in the dataset as a query and identifying the 25
most similar genes. For each metric, we then plotted the
number of gene neighborhoods with high precision (>
0.25, Figure 2b). Most metrics resulted in a similar
number of high-precision neighborhoods. The AGREE

http://www.biomedcentral.com/1471-2105/9/463

metric resulted in the second highest number (317 neigh-
borhoods), which is eight fewer than the similar Weighted
AGREE metric. Similar results were obtained when using
neighborhoods of different sizes, and when comparing
the mean precision across query genes instead of the
number of high precision genes (Additional Data File 3c).
AGREE performed substantially better than The PhenoBlast
Metric (278 neighborhoods), which is implemented in an
online utility for the identification of gene neighborhoods
with phenotypic signatures similar to a query gene [17].
Bootstrap estimates indicate that AGREE significantly out-
performed The PhenoBlast Metric (P < 0.05, see Methods),
suggesting that PhenoBlast's ranking algorithm might be
improved by using the AGREE metric instead of its current
approach.

Investigation of the advantages of information-based metrics
Information-based metrics reward gene pairs for sharing
both present and absent phenotypes while factoring in
their background frequencies. To understand why these
metrics produced higher functional coherence, we identi-
fied example gene pairs where the information-based
measures produced high similarity while the correlation-
based approach produced low similarity, and vice versa.

Gene pairs illustrating each case are shown in Figure 1.
Consider again the functionally-unrelated gene pair his-48
and squ-4 (Figure 1c), which share only the frequently-
occurring 'Embryonic lethal' phenotype. This pair receives
a poor AGREE score (rank 517,524 out of 2,821,500 total
gene pairs), while it receives the best possible UPC score.
This illustrates that the incorporation of background fre-
quencies may help to reduce false positive gene pair asso-
ciations. Conversely, the phenotypic signatures of sqt-3
and dpy-17, two related collagen-associated genes, have
several mismatches (Figure 1d). Nevertheless, the AGREE
metric ranks the pair in the 99t percentile (4,336 out of
2,701,650 total pairs), because the genes share two rela-
tively rare phenotypes: 'Dumpy' (Dpy) and 'Roller' (Rol).
In contrast, this gene pair is assigned a poor rank by UPC
(831,561). This second example demonstrates that the
incorporation of phenotype background frequencies can
help in the identification of true-positives. Thus, the com-
bination of reducing false-positives by down-weighting
frequent phenotype coincidence and reducing false-nega-
tives by up-weighting shared rarely occurring phenotypes
may contribute to the ability of information-based meth-
ods to identify functionally similar gene pairs.

The differences in performance of the various metrics may
be due to their use of properties of the phenotypes which
vary in their ability to predict shared gene function. Differ-
ent metrics may make either explicit or implicit use of
such properties in their ability to connect functionally-
related genes. To gain insights into what makes one metric

Page 6 of 21

(page number not for citation purposes)



BMC Bioinformatics 2008, 9:463

better than another, we considered three properties and
found that the frequency of shared function between two
genes 1) increases with increasing number of shared
present phenotypes; 2) increases with increasing number
of shared rare present phenotypes; and 3) is unaffected by
correlations between phenotypes (see Additional Data
File 4).

Network topology comparison

Based on its high performance relative to the other infor-
mation-based metrics, we chose the AGREE metric to help
provide novel insights into the systems biology of C. ele-
gans. We compared a phenotype congruency network con-
structed using the AGREE metric (ANET) to a network
constructed with a previously published method. In a
recent study, Gunsalus and colleagues demonstrated the
utility of combining phenotype congruency with other
high-throughput data for the identification of 'molecular
machines' [9]. The authors constructed a UPC-induced
phenotype congruency network (UNET) by linking gene
pairs with UPC values of 0.50 or higher. Due to our larger
dataset, a UPC threshold of 0.50 results in a network in
which a quarter of all possible gene pairs are connected,
which is not specific enough for practical use. Therefore,
we constructed the UNET by linking genes with UPC
scores exceeding 0.866, which corresponds to a UPC sig-
nificance of P < 0.01 (see Methods). We chose an AGREE
threshold such that the same number of gene pairs
(32,530) was included in the ANET. The resulting net-
works have precisions of 0.13 (ANET) and 0.07 (UNET).

We first compared general topological features of the net-
works. We found that the ANET and UNET exhibit differ-
ent connectivity. On average, genes in the ANET are linked
to 53 other genes (+/- 47), while genes in the UNET are
linked to 34 other genes (+/- 49). The ANET is comprised
of one large connected component containing 1,202
genes, and six smaller connected components containing
the remaining seventeen genes. In contrast, the UNET is
comprised of a large connected component, containing
601 genes (25% of the original gene set), and 159 smaller
components, all but eight of which are fully connected. 17
of the fully-connected UNET components (11%) consist
of gene pairs with identical phenotypic signatures that
contain only a single knock-down phenotype, which
results in a perfect UPC score. For example, the largest
connected components include a component of 173
genes whose knock-downs result solely in an 'Embryonic
lethal' (Emb) phenotype, a component of 99 genes with
only a 'Slow post-embryonic growth' (Gro) phenotype,
and a component of 50 genes with only an 'Uncoordi-
nated' (Unc) phenotype. These gene pairs which share
only a single frequently-occurring phenotype are unlikely
to be co-functional, as evidenced by the precisions of
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these connected components (0.07, 0.04, and 0.08,
respectively).

We next sought to compare the number of shared present
phenotypes between genes linked in the ANET and UNET.
To quantify this, we define the complexity of a link to be
the total number of present phenotypes co-induced by a
pair of genes. We refer to a link with a complexity of two
or more as a complex link, and otherwise a simple link. We
found that the ANET connects genes exhibiting a higher
number of phenotypes than genes connected in the UNET
(Figure 3a). Most of the links in the ANET are complex
(median complexity of four), while most links in the
UNET are simple (median complexity of one). The ANET
contains a total of 330 simple links (1% of the network),
where each simple link connects genes sharing one rare
phenotype (phenotype frequency < 4%). Conversely,
there are 23,375 simple links (72% of the network) in the
UNET. Almost two-thirds (14,878) of these links connect
genes sharing the 'Embryonic lethal' phenotype (Emb).
We also measured the complexity of the UNET after
removing simple links from consideration. The resulting
UNET still contained links with lower complexity than the
ANET (black bars, Figure 3a). Additionally, for each level
of complexity, the ANET contains gene pairs with higher
precision than the UNET (Figure 3b). These results indi-
cate that AGREE not only identifies links of higher com-
plexity, but also links of greater biological relevance.

The networks induced by AGREE and UPC are orthogonal,
having little overlap in their gene pairs (only 1,909 links,
or 5.8% of the networks). These shared links have a preci-
sion of 0.158. The links unique to the ANET have a preci-
sion of 0.134, whereas links unique to the UNET have a
precision of 0.075, which is significantly less than the pre-
cision of the shared links (P < 10-38, proportions test).
Taken together, these results indicate that the AGREE met-
ric not only identifies many gene associations that are
missed by the UPC metric, but also finds associations that
are of an overall higher quality.

While the set of gene pairs in the ANET and UNET are dif-
ferent, it was still possible that the metrics brought genes
into proximity from the same pathways, albeit through
different gene pairs. However, we found that pathways
containing high-scoring AGREE gene pairs are largely not
the same as the pathways containing high-scoring UPC
gene pairs. We created a non-redundant set of functional
categories from our evaluation set, and calculated the sig-
nificance of the pairwise scores of its gene members for
each category using the AGREE and UPC metrics (see
Methods). This calculation assigns high scores to catego-
ries whose gene members have significantly similar phe-
notypic signatures according to the metric. Figure 4 plots
the highest significance achieved for each non-redundant
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enriched for more phenotypes. The number of over-represented phenotypes present in the genes of each subnetwork (subnet-
work complexity) was determined using the hypergeometric distribution (see Methods). The x-axis indicates subnetwork com-
plexity. The y-axis indicates the frequency of the given subnetwork complexity in the ANET and UNET. D. A greater number
of AGREE links are supported by other data types. The x-axis indicates the data type. The y-axis indicates the number of links in
the ANET and UNET which are supported by that data type. Error bars indicate one standard deviation, assuming a binomial
distribution.
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Figure 4

Comparison of AGREE and UPC scores within functional categories. Each point represents one functional category,
and indicates the negative log significance of the pairwise scores of all genes within that functional category using the AGREE (x-
axis) and UPC metrics (y-axis). Dashed lines indicate significances of P < 0.01 or better. Categories were taken from the evalu-
ation set, and were filtered to ensure that no two categories overlap by greater than half of their gene members (see Meth-
ods). * 'Embryonic development' is short for 'Embryonic development ending in birth or egg hatching.'
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category using each metric. Overall, three housekeeping-
related categories were enriched for high scores using both
metrics:'Ribosome', 'TRNA metabolic process', and 'pro-
tein-RNA complex assembly.' 20 classes were exclusively
enriched for AGREE, and 16 were enriched only for UPC
(Additional Data File 5). Overall, the AGREE metric cap-
tured several categories involved in development and cell
structure, while the UPC metric identified categories
involved in translation and other protein expression-
related activities. Thus, the genes that are brought into
proximity by the two metrics largely belong to comple-
mentary biological processes.

Comparison of subnetworks

Decomposing large interaction networks into their con-
stituent subnetworks has proven useful for the elucidation
of genetic pathways [23]. As the majority of links in the
ANET and UNET connect different pairs of genes, we
investigated how the different link content of the net-
works could influence subnetwork identification, which
in turn could influence the prediction of functional mod-
ules. To detect subnetworks, we used the MODES algo-
rithm [24] (see Methods), and identified a total of 37
ANET subnetworks and 107 UNET subnetworks. ANET
subnetworks contained 33 genes on average (+/- 20),
while UNET subnetworks were smaller, containing 14 (+/
- 21) genes. For each UNET subnetwork, we determined if
its genes had a significant number of links in the ANET.
The density of the links within a subnetwork was assessed
using a connectivity score calculated as the fraction of
links connecting the genes of the subnetwork out of the
total possible number of such links. The significance of
the score was estimated for each subnetwork size using a
random sampling procedure (see Methods).

As expected, the ANET and UNET share many small (7 +/
- 6 genes), low-complexity (2.6 +/- 1.3) subnetworks in
which the genes share one or two rare phenotypes. Even
though the number of shared subnetworks amounts to
half (51 out of 107) of the subnetworks identified in the
UNET, the total fraction of network links included in
these subnetworks is small (approximately 5%). The sub-
networks unique to the UNET are much larger (21 +/- 27
genes) and lower in complexity (2.1 +/- 1.1), whereas the
majority of ANET subnetworks are enriched for five or
more phenotypes (Figure 3c). The overall difference in
complexities is significant based on bootstrap resampling
(P < 1012, see Methods). Thus, both the ANET and UNET
produce a similar number of small subnetworks of genes
sharing a single rare phenotype. However, the majority of
genes and links in the UNET reside in large subnetworks
that are not well-connected in the ANET.

http://www.biomedcentral.com/1471-2105/9/463

Integration into a C. elegans genetic network

Previous studies have demonstrated the utility of combin-
ing phenotype congruency data with other data types in
order to identify functional relationships [8,9,13,25]. We
investigated how the ANET integrates with other data
types, including interactions based on coexpression, pro-
tein-protein interactions, and a compendium of low-
throughput genetic interactions (see Methods). To this
end, we took the union of all of these interactions with the
ANET links to create a superimposed AGREE network
(available as Additional Data File 6). In an identical man-
ner, a superimposed UPC network was constructed using
UNET links.

We first investigated AGREE's ability to identify gene asso-
ciations supported by other data sources and found that
significantly more ANET links were multiply-supported
links (present in multiple data sources) compared to
UNET links (23% increase, see Figure 3d and Additional
Data File 6). Furthermore, the ANET performs compara-
bly to, or better than, the UNET for each data type consid-
ered separately (Figure 3d). In a manner similar to the
approach by Gunsalus et al. [9], we restricted our analysis
to multiply-supported links. This revealed that only 81 of
412 (20%) multiply-supported ANET links were also sup-
ported by UNET links. The 412 multiply-supported ANET
links have a precision of 0.607, while the 336 multiply-
supported UNET links have a precision of 0.485. Thus, the
multiply-supported ANET contains gene interactions that
are different from, but of higher quality than, the multi-
ply-supported UNET.

We next searched for gene modules composed of multiple
data types that are undetectable using the UPC metric. We
first identified multiply-supported subnetworks (MSSNs)
using previously published methods [8] (see Methods). A
total of 29 AGREE and 50 UPC MSSNs were identified
with phenotype congruency links as one of the enriched
link types (provided in Additional Data File 7). Many of
these MSSNs represent functionally coherent gene groups,
as 27 (93.1%) AGREE MSSNs and 47 (94.0%) UPC
MSSNs are enriched for at least one category in our valida-
tion set (see Methods). 14 of the AGREE MSSN’s represent
novel gene combinations with respect to the UPC metric
(see Methods and Additional Data File 7). All of these
unique subnetworks are enriched for at least one func-
tional category, indicative of their potential in the discov-
ery of novel gene modules.

Module MSSN278 (Figure 5a) contains ten genes, seven of
which are annotated as being involved in ribosomal bio-
genesis. Many of the genes in this module are components
of the core translational machinery. Other genes in the
module are predicted to be necessary for ribosome synthe-
sis, including byn-1 [26], KO7C5.4 [27], and eif-3.F [27].
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Multiply-supported
Network

AGREE MM6 -

Integration with other data sources. Link colors indicate interaction type: Green, AGREE phenotype congruency; Blue,
UPC phenotype congruency; Purple, protein-protein; Red, co-expression; Orange, genetic. A. Superimposed network. Superim-
posed network created from multiple data sources. Shown below is a multiply-supported subnetwork identified in the super-
imposed network. B. Multiply-supported network. Network created from restricting to links supported by multiple data
sources. Shown below the network is one 'molecular machine', identified as a subnetwork in the multiply-supported network.

Furthermore, two of the three genes that are not anno-
tated with ribosomal function or biogenesis are predicted
to be involved in translation. hrs-1 is a predicted histidyl-
tRNA synthetase, and cct-6 (Chaperonin Containing TCP-
1) is a cytosolic chaperonin involved in folding of nascent
proteins [27,28]. Since many developmental pathways are
regulated by translation, it is not surprising that disrup-
tion of the genes in this module results in multiple severe
phenotypes such as 'Sterile', 'Embryonic lethal’, 'Larval

arrest', 'Slow growth', and 'Sick'. Thus, the AGREE metric
correctly identifies components of the translational
machinery which the UPC metric is unable to identify,
due to the multiple phenotypes of the genes in this mod-
ule being present in slightly differing combinations.

We also identified modules of densely connected genes in
the multiply-supported superimposed network using a
module discovery method similar to the method used by
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Gunsalus and colleagues to detect 'molecular machines'
[9]- We identified a total of 112 molecular machines, and
labeled them with the prefix 'MM' (Additional Data File
7). Module MM6 (Figure 5b) contains seven body mor-
phology-related genes with similar phenotypic signatures
supported by multiple functional sources. Three of the
genes in the module, sma-3 (Smad) [29], sma-6 (type I
TGE-f receptor) [30], and sma-4 (Smad) [29] are TGF-f
pathway components that play a role in body size and
male tail development. Both gei-17(GEX Interacting pro-
tein) and pdi-3 (Protein Disulfide Isomerase), are thought
to regulate tissue morphology [31]. The presence of the
'Small' phenotype and, importantly, the lack of other
common phenotypes, enables AGREE to connect genes
that regulate different aspects of morphology which are
missed by UPC. UPC fails to connect most of the sma
genes because some of them are also annotated with the
'Dumpy' phenotype, and others are not.

Finally, we estimated the predictive influence of adding
phenotype congruency links to the integrated C. elegans
network of Lee et al. (2008) [32]. We found that the log-
likelihood scores (LLS) placed significantly more weight
on the AGREE-derived links, as compared to the UPC-
derived links (see Additional Data File 8 for the regression
of each metric onto the LLS score). 388 AGREE links were
above the LLS cutoff of 1.5, and would therefore be
included into the Lee et al. network. In contrast, none of
the UPC links have sufficiently high LLS scores on their
own to merit inclusion. Nearly all of the AGREE links
(384 out of 388) represent new connections into the Lee
et al. integrated network. Thus, the phenotypes provide a
small, but appreciable set of new connections not eluci-
dated by the combination of the other data sources.

Discussion

We compared the ability of several metrics to connect
functionally related genes using high-throughput RNAi
knock-down phenotype data. We found that the Agree-
ment Score (AGREE) performed better than 18 other met-
rics in this regard. Additionally, with respect to the
previously published UPC metric, the phenotype congru-
ency network induced by the AGREE metric connects
genes with more shared phenotypes, and contains more
links that are supported by additional data sources.

While the AGREE metric outperforms the metrics tested in
this study, the results provide information about how it
could be improved upon. For example, although the fre-
quency of a phenotype does carry some information, plac-
ing too much weight on rare phenotypes may lead to
erroneous functional predictions. This may explain why
AGREE outperformed the similar information-based met-
ric Symmetric Frequency Dot Product (sFDP). To illustrate,
let IDF, be the inverse document frequency of phenotype

http://www.biomedcentral.com/1471-2105/9/463

v. The component of the AGREE metric that rewards for
shared present phenotypes is a sum over the set {IDF,},
while sFDP is a sum over {IDF,2}. Our results indicate that
squaring the inverse frequencies may over-emphasize rare
phenotypes. Thus, the exponent in the summation could
be parameterized to give the generalized sum over the set
{IDEp}. For example, using this notation, Match corre-
sponds to p = 0. The observation that Match outperformed
sFDP indicates that one might find an improvement over
the AGREE metric by optimizing p between 0 and 1. Like-
wise, a corresponding parameter could be optimized for
the component of AGREE which rewards for shared
absent phenotypes.

Recently, approaches inspired by natural language
processing (NLP) have been applied to a range of biolog-
ical problems (reviewed in [33]). In this study, the task of
finding related genes based on common phenotypic con-
sequences can be likened to the task of identifying similar
documents based on the presence and absence of particu-
lar words. Other studies have proposed NLP-based meth-
ods for protein interaction prediction (reviewed in [34]),
protein subcellular localization prediction [35], predic-
tion of gene function (reviewed in [36]), GO-based pro-
tein semantic similarity calculation [37], and the
identification of candidate genes for complex traits [38].

For this study, we focused on the analysis of high-
throughput RNAi phenotype data in C. elegans. Such data
is currently also being generated for other species, most
notably in S. cerevisiae (e.g. the morphological traits exam-
ined in [39]) and D. melanogaster (reviewed in [40]). Our
results on S. cerevisiae (see Additional Data File 3b) sug-
gest that metrics such as the ones evaluated in this paper
may be useful for analyzing data from other species.

Finally, all of the metrics evaluated in this study are lim-
ited in the sense that they treat phenotypes as vectors,
ignoring any known or latent relationships that may exist
among the phenotypes. Rather than use binary presence/
absence calls, comparisons could make use of quantitative
values representing "strengths" if replicates of gene-phe-
notype observations are available either within or across
studies. Additionally, the introduction of more formal
knowledge representations for C. elegans that describe is-a
or part-of relations among phenotypes, such as the Mam-
malian Phenotype Ontology [41], may allow compari-
sons that incorporate semantic structure such as the work
by Pesquita et al. (2008) [37].

Conclusion

With the maturation of RNAIi technology, it is now possi-
ble to knock down genes in a high-throughput manner.
We found that an information-based measure, which we
call the AGREE metric, outperforms other tested metrics
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and that its use in the construction of a superimposed net-
work containing data from several sources results in high
quality predictions, many of which go undetected using
other methods. Other measures of phenotype congruency
that we did not test may outperform those tested in this
study. Our results indicate that metrics borrowed from the
field of natural language processing may prove useful in
this domain. We suggest that metrics which incorporate
the frequency of shared phenotypes, such as the AGREE
metric, should be used in place of unweighted correla-
tions for functional genomics analyses involving RNAi
knock-down data.

Methods

RNA Interference-Induced Phenotype Data

An RNA Interference (RNAi)-induced phenotype com-
pendium was assembled by compiling the results of three
genome-wide RNAi studies: 30 phenotypes scored for
1,470 genes from [19]; 27 phenotypes scored for 1,778
genes from [21]; and 26 phenotypes scored for 1,066
genes from [20]. Several phenotype annotations in the
datasets were converted to provide a uniform language
which allowed the three datasets to be integrated. These
conversions included labeling brood counts scored as "1-
5" and "6-10" as "Ste"; re-labeling "Ppz" as "P1l"; re-labe-
ling "Lvl" as "Let"; labeling any embryonic lethal percent-
ages over 10% as "Emb"; and re-labeling "SIm" and "Thn"
as "Thin". In total, 34 phenotypes scored across 2,376
unique genes were collected from the three studies and
recorded in a 2,376-by-34 RNAi phenotype matrix, K.
Each entry in the matrix, Kj,, was set to 1 if RNAI against
gene i produced phenotype v in at least one of the three
studies and was set to 0 otherwise. We refer to each row in
the matrix, K;, as a phenotypic signature.

Calculation of congruency metrics

We calculated the similarity of phenotypic signatures
using a variety of congruency metrics. For binary vectors
such as those used in this study, several metrics are equiv-
alent, including (Euclidean Distance and Canberra Dis-
tance) and (Match, Hamming Distance, and Rand Index). In
such cases, the results of only one metric from each group
are presented. Additionally, several metrics are conceptu-
ally and mathematically similar. In such cases, the metric
with the highest precision curve (as shown in Figure 2a)
was chosen for presentation. To simplify discussion, we
group the metrics into four categories: match-based met-
rics, unweighted metrics, metrics weighted by phenotype
frequencies, and metrics incorporating phenotype correla-
tions.

To facilitate direct comparison, each pairwise similarity
between genes i and j, s(i, j) was re-scaled to reside
between zero and one:
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s(i, j)-min( s(i,j) )
max( s(i,§) )—min( s(i,5) ) '

where min(s(i, j)) and max(s(i, j)) are the minimum and
maximum unnormalized score computed across all gene
pairs, respectively. All metrics tested were similarity meas-
ures, in which a higher score for a gene pair indicated a
higher degree of relatedness.

Re-scaled(s(i, j)) =

Match-based metrics

One way to compare two phenotypic signatures is to
count the number of matching phenotypes. We evaluated
three such match-based metrics.

MatchPresent counts the number of matching present phe-
notypes between a gene pair:

34
MatchPresent(i, j) = ZKiVK]-v.
v=1
MatchAbsent counts the number of matching absent phe-
notypes between a gene pair:

34
MatchAbsent(i, j) = 2(1 ~Ky,)(1-K,)
v=1
Match counts the number of matching present and absent
phenotypes between a gene pair:

34
Match(i, j) = Z KKy +(1-K;)(1-K,)
v=1

Unweighted metrics

We categorize metrics as unweighted if they operate on
the input binary vectors without incorporating additional
statistics on phenotype background frequencies or pheno-
type correlations. The following five unweighted metrics
were tested.

Pearson Correlation Coefficient (PCC)

The Pearson Correlation Coefficient (PCC) measures the
departure of two variables from independence. In our
notation, the PCC definition is:

34 _ _
X (Ki=Ki )(Kjp=Kj)
Pect. j) = 341’:1 — 234 _ 2
JE (ki) 3 (15
v=1 v=1

where K; is the mean across the phenotypic signature of
gene i. A positive value for a gene pair (i, j) indicates that
the phenotypes present in gene i also tend to be present in
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gene j, and phenotypes absent in gene i also tend to be
absent in gene j.

Uncentered Pearson Correlation (UPC)

The Uncentered Pearson Correlation (UPC) was used as a
phenotype congruency metric for network construction in
(Gunsalus et al. 2005). The UPC is the same as PCC, but
does not center the vectors around their means. In our
notation, the UPC definition is:

34
) Kiijv
UPC(i, j) = = v=1 — ;
Jz (Ki-Ki)™ % (Kju-Kj)
v=1 v=1

Mutual Information

Mutual Information (MI) is an information theoretic quan-
tity that expresses the mutual dependence between two
random variables. It measures the degree to which knowl-
edge about one random variable reduces the entropy of
another random variable. In our notation, the mutual
information is:

11
34N
MI( ;jzzNuab 1082 N ﬁab
a=0 b=0 ia™ jb
where N, is the number of times genes i and j took on

values a and b together, and N, is the number of times
gene i took on value a. For example, N, is the number of
present phenotypes of gene 1, and N, is the number of
times gene 1 and gene 2 together had absent phenotypes.

Euclidean Distance

In our notation, the Euclidean Distance (Euclidean)
between two phenotypic signatures in V-dimensional
space, where V = 34, is:

34
Euclidean(i, j) = | Y (K, - K, ).

v=1

We converted this metric to a similarity metric by using 1
- Re-scaled(Euclidean(i, j)).

Jaccard Index

The Jaccard Index (Jaccard) is commonly used in clustering
applications. It compares the number of shared present
phenotypes to the number of phenotypes present in either
gene:
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34
by Kiijv
v=1

Jaccard(i, j) = 32

2 (Kiv+Kjv_Kiijv)
v=1

Information-based metrics

In this paper, information-based metrics are defined to be
metrics that factor in the background frequency of match-
ing present and absent phenotypes. To illustrate their util-
ity, consider the scenario of scoring two pairs of genes: (A,
B) and (B, C), where each pair of genes shares two present
phenotypes and two absent phenotypes. Using a non-
information based metric, each pair of genes will receive
an equivalent score, as each has an equal number of
matches. Using an information-based metric, (A, B) will
receive a poor score, as this pair shares present and absent
phenotypes which occur more frequently (Figure 6a).
Conversely, (C, D) will receive a high information-theo-
retic score, as the genes in the pair share less frequent
present and absent phenotypes (Figure 6b).

For the following definitions, let f, denote the frequency
of phenotype v across all genes in the knock-down matrix
K.

Agreement Score (AGREE)

The Agreement Score (AGREE) measures the bits of infor-
mation that are encoded in the phenotypes shared by two
genes, and is defined as:

34
AGREE (i, j) = Zsp(i, Jov)+ 8,0 jv),
v=1
where

. 1
Sp(lfjlv) = Kiijv 1082[ ]
fu

Kﬁ,)logz[l_lfv).

S,and S, reward a gene pair for shared present and absent

and

S.(i,j,v)=(1

-Ky)(1

phenotypes, respectively. AGREE was used in the con-
struction of a C. elegans phenotype network, and called
Loss-of-Function Agreement Score in|8]. If RNAi produces
phenotype v in two genes, the AGREE score will increase

by logz(f ) bits. The logz(fi) term is known as the

Inverse Document Frequency (IDF), which is often used in
natural language processing applications [42].
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lllustration of frequency-weighted phenotype congruency. The distance between points reflects the relative number of
genes that share (or lack) the corresponding phenotype. Phenotypic signatures for a single gene are represented as a line; phe-
notypes correspond to individual vertical bars. The length of the gray area in a phenotype's bar is proportional to its frequency.
The presence of a phenotype for a gene is indicated by drawing a point at the extremes of the shaded area for the phenotype.
The total distance between the lines reflects the relative dissimilarity of the gene pair. A. Two genes which share frequently
occurring present and absent phenotypes, and so would receive a poor information-based score. B. Two genes which share
rare present and absent phenotypes, and so would receive a good information-based score.

Frequency Dot Product (FDP)

The dot product is frequently used to measure the similar- 34
ity between two IDF vectors [42], and is here referred to as FDP(i,j)= Z Sp(i Ji v)?,
the Frequency Dot Product (FDP). FDP weights each present v=1

phenotype shared between two genes by the frequency of ~ where S, is defined as above for AGREE.
occurrence of that phenotype across all genes. We define
the FDP as:
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Symmetric FDP

We also define the Symmetric FDP (sFDP) to reward shared
absent phenotypes in the same way as shared present phe-
notypes. In our notation this measure is defined to be:

34
SFDP(i,j) = Zsp(i, )2+, j,v)?,
v=1

where S, and S, are defined as above for AGREE.

Normalized FDP

The Normalized FDP (nFDP) is equivalent to FDP, except
that the measure is normalized by the lengths of the two
vectors:

nFDP(, j) = LPPUA)
[Kil4 K]

nFDP is the cosine similarity measure computed on IDF-
weighted vectors. Normalizing the dot product by the
lengths of the vectors penalizes gene pairs which cause
many knock-down phenotypes.

Residual FDP

The Residual FDP (rFDP) is frequently used for the identi-
fication of relevant terms in Natural Language Processing
[42]. The rFDP is defined to be the difference between the
FDP score of a gene pair and its expected FDP score as
given by a Poisson distribution. In our notation, the rFDP
between two phenotypic signatures is:

34

TFDP( i ]) = Z ( Sp(i/ j/ ]/) - Spenalty(v) )

v=1

where S, is defined as above for AGREE, and

2
’

1
S v)=K;K; lo — |
penalty( ) v ju gz[l—e_fv )

The PhenoBlast Metric

The PhenoBlast Metric is used to rank genes based on the
similarity of their phenotypic signatures to the profile of a
query gene. This method first ranks genes by the MatchP-
resent metric, then by the MatchAbsent metric, and finally
by a metric similar to the FDP metric, as defined in [17].

Metrics factoring in phenotype correlations

Pairwise FDP

The Pairwise FDP (pFDP) rewards gene pairs that share
rarely co-occuring present phenotypes. pFDP thus incor-
porates a correction based on phenotype correlation. For
example, it gives a higher score to genes sharing rarely co-
occuring pairs of phenotypes like 'Long' and 'Ruptured'
compared to a pair sharing commonly co-ocurring pheno-
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types like 'Embryonic lethal' and 'Lethal' phenotypes. We
define pFDP as:

34 34
PEDPG )= D Y [ Seorplis o) = 20 ]

u=1 v=u+1
where

.. 1
Sco—p(l/ jou,v) = KiquuKiijv log, (f ]
uv

and

34
b 1) = Y S,(isj,v)
v=1
S, is defined as above for AGREE, and f,, is the background
co-occurrence of phenotypes u and v. The second term in
the pFDP equation corrects phenotype pairings by the
background frequency of each present phenotype. We
used a value for S equivalent to half the number of shared
present phenotypes between genes i and j.

Weighted FDP

The Weighted FDP (wFDP) is similar to FDP, but each
matching present phenotype is inversely weighted to its
co-occurrence with other matching present phenotypes
across all genes. We calculated the wFDP of a gene pair as

34
wFDP (i,j) = Z
v=1

where S, is defined as above for AGREE.

wijvsp(i'jl V)zf

The weights w;;, are pre-computed across all genes as:

ijv

34
1
Wijy = z KK KKy —
o fow
where f,, is the background co-occurrence of phenotypes
vand w.

Weighted MatchPresent

The Weighted MatchPresent metric (wMatchPresent) counts
the number of matching present phenotypes between a
gene pair, weighting each shared present phenotype by
the degree to which it does not co-occur with other shared
present phenotypes across all genes:

34
wMatchPresent(i, j) = Zwif”K Ky

v=1
The weights w;;, are pre-computed across all genes as

described above for Weighted FDP.
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Weighted AGREE

The Weighted AGREE metric (wWAGREE) weights each phe-
notype by the degree to which it does not co-occur with
other matching phenotypes across all genes:

34
WAGREE (i, j ) = 2 w38, (i j,v) + 24,8400 j,v),
v=1

where S, and S, are defined as above for AGREE.

The weights wy;, are pre-computed as described above for
Weighted FDP. The weights z;;, are calculated in the same
way as the weights w;,, but for matching absent pheno-
types instead of matching present phenotypes (i.e. count-
ing matching zeroes in each phenotypic signature instead
of ones).

Evaluation set

We evaluated each congruency metric by assessing its abil-
ity to link gene pairs known to share a similar function.
We created positive and negative evaluation sets from bio-
logical process annotation databases. The positive set con-
sisted of the union of the set of all gene pairs that share a
common category in any of the three following sets: 1) C.
elegans Gene Ontology (GO) [43] process categories con-
taining 200 or fewer genes, restricting to gene associations
not created from C. elegans knock-down phenotype data
(i.e. removing all gene/category associations with the
"inferred from mutant phenotype" (IMP) evidence code);
2) GO process categories of size 200 or smaller mapped
from H. sapiens, M. musculus, D. melanogaster, and S. cere-
visiae. Orthology mappings were created from reciprocal-
best BlastP [44] hits; or 3) genes in C. elegans metabolic
pathways, as reported in the Kyoto Encyclopedia of Genes
and Genomes [45]. Because more than 26,000 C. elegans
GO associations based on mutant phenotypes were
removed to reduce circularity in the evaluations, we
included GO annotations predicted from other species in
order to increase the size of the effective positive set.
While the inclusion of GO annotations from other species
is likely to result in an increase in false positives, we do
not expect them to be introduced in such a manner that
would bias one metric in favor of another.

The negative evaluation set consisted of the union of the
sets of all gene pairs contained in any GO process, Orthol-
ogous GO process, or KEGG category, removing any pairs
that are members of the positive set. Considering only
gene pairs for which each gene has a phenotypic signature,
we obtained a total of 196,122 positives and 2,270,353
negatives. A total of 355,025 gene pairs were not present
in either set, and so were not used for evaluation pur-
poses.

http://www.biomedcentral.com/1471-2105/9/463

Determination of metric link precisions

For a metric, the highest-scoring k gene pairs present in
the union of the genes in the positive and negative sets
were assigned a precision score:

[posg|

precision(k) = ——*“—,
[posg[+neg |

where |pos,| is the number of gene pairs from the positive
evaluation set in the top k gene pairs, |neg,| is the number
of gene pairs from the negative evaluation set in the top %
gene pairs, and k ranges from 2,500 to 100,000, in incre-
ments of 2,500.

Determination of the significance of the difference
between the gene neighborhood functional coherence of
the AGREE and PhenoBlast metrics

Using each gene as a "query gene", we identified the genes
with the top 25 most similar phenotypic signatures using
each metric. We calculated the precision of each query
gene as described above. Query genes with precisions over
0.25 were considered to be "high precision queries."

We defined D, to be the difference between the number
of high precision queries using the AGREE metric and The
PhenoBlast Metric. We defined D,,,; to be the difference
between the number of precisions selected randomly with
replacement from the distributions of AGREE and Pheno-
Blast Metric precisions. The significance of D,,,; was esti-
mated by comparing to the mean (g,,,;) and standard
deviation (o;,,,;) computed across 10,000 D,,,;s, using a
standard Z-score transformation:

7 = Preal=Hrand
Orand

Construction of Networks

We constructed a UPC network (UNET) and an AGREE
network (ANET) of equal size by linking gene pairs
exceeding a threshold for each metric. We chose a UPC
threshold of 0.8663, which corresponded to a significance
level of P < 0.01 for all gene pairs. This significance level
was calculated using the Z-score obtained from the mean
and standard deviation of the UPC metric score across all
gene pairs. A total of 32,530 gene pairs exceeded this
threshold. We chose a corresponding normalized AGREE
threshold (0.3531) such that the same number of gene
pairs were present in its network.

Creation of non-redundant functional categories

To compare the functional categories captured by the
AGREE and UPC metrics, we created a set of non-redun-
dant categories. This set was created by first sorting all cat-
egories present in the positive evaluation set in order of
decreasing size (to capture broader categories). Starting at
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the top of this list, each category was included in the final
non-redundant set only if its gene members did not over-
lap an already-included category by 50% or more.

Comparison of functional categories captured by AGREE
and UPC

For each non-redundant functional category c in our eval-
uation set, we calculated the mean pairwise score of all
gene pairs contained in that category, 4, using both the
AGREE and UPC metrics. For a category containing n,
genes, we assessed the significance of x, by comparing to
the mean and standard deviation of x, calculated across
10,000 random gene sets of size n, and performing a
standard Z-score transformation.

Identification of subnetworks

We identified subnetworks in each network by running
MODES [24] with settings (d = 0.50, s = 80, c = 0.80, g =
4). Settings were chosen such that all subnetworks con-
tained at least four genes, with a minimum connectivity of
50%.

Determination of the significance of the difference
between the number of enriched phenotypes within ANET
and UNET subnetworks

We identified enriched phenotypes within each subnet-
work using the hypergeometric distribution (with a cutoff
of P < 0.01). To assess the significance of the difference in
the distributions of the number of enriched phenotypes in
the ANET and UNET subnetworks, we compared the dif-
ference of their means across all subnetworks. We sam-
pled with replacement 10,000 times from the
distributions of enriched phenotype counts for both the
ANET and UNET subnetworks, calculating their difference
each time. We then calculated the standard deviation of
the 10,000 differences. Finally, we performed a Z-score
transformation by dividing the true difference in the
means by this standard deviation.

Construction of superimposed networks

We constructed superimposed networks from several
large-scale interaction datasets, including a C. elegans pro-
tein-protein interaction network [46], a eukaryotic pro-
tein interaction network that augments the C. elegans
protein interaction network with orthologous interactions
(interologs) mapped from S. cerevisiae, D. melanogaster,
and human protein interactions contained in BioGRID
[47], an mRNA coexpression network constructed from C.
elegans, S. cerevisiae, D. melanogaster, and human expres-
sion data [48,49], and genetic interactions identified from
low-throughput experiments that were collected from the
literature by WormBase [50]. All interactions assembled
from organisms other than C. elegans were mapped to pre-
dicted worm ortholog pairs using BLASTP [44] with a sig-
nificance cutoff of P < 10-30.
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Identification of novel subnetworks

Subnetworks identified in the ANET, UNET, and superim-
posed network were automatically inspected to determine
which types of data significantly link their gene members.
For each subnetwork, the significance of the number of
links of a specific data type t connecting two genes within
the subnetwork was calculated using a connectivity signif-
icance score. The connectivity significance score for data
type t for a subnetwork containing n genes was calculated
as a standard Z-score (I, - u,)/ o, where [, is the observed
number of links in the subnetwork of type ¢, and g, and ¢,
are the mean and standard deviation of the number of
links across 1,000 random collections of n genes taken
from the network constructed from data type t. Subnet-
works were annotated as enriched for a data source if the
connectivity score had an associated P-value of 0.01 or
less. Novel UNET subnetworks were identified as subnet-
works enriched for UNET links, but not enriched for
ANET links. Novel AGREE multiply-supported subnet-
works were identified as subnetworks enriched for ANET
links and at least one other link type, while remaining
unenriched for UNET links.

Determination of enriched subnetwork functional
annotations

We assigned putative functions to subnetworks by deter-
mining their overlaps with categories in our positive vali-
dation set. We assessed the significance of the overlap of
each subnetwork to a category, ¢, using the P-value
obtained from the hypergeometric distribution:

e | ns—¢
& np | N-np
P(X2k)=) - ,
i=k $

where 1, is the number of genes present in both the sub-
network and the category, n, is the size of the subnetwork,
n.is the size of the category, and N is the number of genes
in any category. We estimated hypergeometric P-values
using the approximation implemented in R.

Calculation of the significance of the deviation of observed
phenotype frequencylprecision pairs from expected values
To evaluate the intuition that rarer phenotypes might be
more informative than frequent phenotypes, we calcu-
lated the precision of all pairs of genes displaying each
knock-down phenotype using our validation set. We then
plotted the precision of each phenotype as a function of
its overall background frequency across all genes. To
assess the significance of the trend for rarer phenotypes to
be more informative, we divided this space into four
quadrants based on high/low precision and high/low
background frequency. Note that these quadrants corre-
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spond to those displayed by the dashed lines in Addi-
tional Data File Figure 4b. Any phenotype with a precision
exceeding the mean precision across all phenotypes was
considered to have "high" precision, and "low" otherwise
(likewise for frequencies). We obtained a P-value by com-
paring the observed number of phenotypes in each quad-
rant to the expected number of phenotypes (assuming a
uniform distribution) using a 2 test with three degrees of
freedom.

Evaluation of phenotype correlation dependency

We calculated the correlation between phenotypes as
described above in the definition for the Weighted FDP
metric. We evaluated the intuition that more functional
information is conveyed when genes share less-correlated
phenotypes than when they share more-correlated pheno-
types. To achieve this, we determined the amount of pre-
cision gained when genes share an additional
uncorrelated phenotype, as opposed to sharing an addi-
tional correlated phenotype. We first restricted our analy-
sis to include all gene pairs sharing exactly two
phenotypes. For each phenotype v, we considered all gene
pairs that share exactly that phenotype along with any
other second phenotype w. We measured the baseline pre-
cision P, of all gene pairs sharing a phenotype v using our
evaluation set, as described above. For each phenotype w,
we then considered gene pairs that share phenotypes v
and w, and calculated their precision P,,. We calculated
the significance of the increase in precision obtained by
sharing phenotype w over the baseline precision using the
proportion statistic

Pyw—Pyo

Zyw = 77—,
Pyo(1-Pyo)
Nyw

where 1,,,is the number of gene pairs sharing phenotypes
vand w. Z,, can be interpreted as a standard Z-score, and
quantifies the degree to which the precision of a gene pair
sharing phenotype v increases when adding phenotype w
as opposed to any phenotype in general. For each pheno-
type pair (v, w), we plotted Z,, as a function of the corre-
lation of phenotypes v and w. We restricted analysis to
phenotype pairs shared in at least 10 gene pairs.
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