
sensors

Review

Recent Advances on Diatom-Based Biosensors

Ilaria Rea and Luca De Stefano *

Institute for Microelectronics and Microsystems, National Research Council, Via P. Castellino 111,
80131 Napoli, Italy; ilaria.rea@cnr.it
* Correspondence: luca.destefano@cnr.it

Received: 30 September 2019; Accepted: 20 November 2019; Published: 28 November 2019 ����������
�������

Abstract: Porous materials showing some useful transducing features, i.e., any changes in their
physical or chemical properties as a consequence of molecular interaction, are very attractive in the
realization of sensors and biosensors. Diatom frustules have been gaining support for biosensors
since they are made of nanostructured amorphous silica, but do not require any nano-fabrication step;
their surface can be easily functionalized and customized for specific application; diatom frustules are
photoluminescent, and they can be found in almost every pond of water on the Earth, thus assuring
large and low-cost availability. In this review, the most recent advances in diatom-based biosensors
are reported, and a perspective view on future developments is given.
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1. Introduction

Sometimes the term biosensor is improperly used to describe a molecular system that detects a
physical or chemical interaction between a probe and its target analyte, such as the antibody (the probe)
antigen (the target analyte) couple. A biosensor is instead a working device that must give a numerical
value when used to selectively quantify the amount of the target analyte in a complex mixture, just
like any other commercial sensor used in the industry or everyday life [1]. A biosensor is made of a
transducer element, the true sensitive part of the device, and a receptor that interacts with the target
analyte. The advent of nanostructured materials as high-quality transducer supports has strongly
improved the performance of biosensors, thus increasing the interest of the academic and industrial
world. Among several nanostructured materials engineered in the research laboratories, the porous
ones have been deeply investigated since they offered a specific feature with respect to their bulk or
planar counterparts and, that is, a huge specific surface, available to sense the molecular probe-target
interaction. This is the case, for example, of the porous silicon which is the nanostructured analog
of crystalline silicon [2,3]. The porous silicon not only has a sponge-like morphology with a specific
area that can be of hundreds of m2/g but it could also be photoluminescent. Porous silicon changes its
physical properties on exposure to gases or liquids, whereas the crystalline silicon is almost inert and
it cannot emit light [4]. Even if the nanostructured porous transducers show superior performances
in sensing applications, they require specialized fabrication processes that could be expensive and
complex. These are the main reasons why researchers considered some naturally-derived or biomimetic
alternatives to man-made materials. Diatoms are microalgae diffused in marine and freshwater all
over the planet, largely studied in biology concerning oxygen production and, also, as markers of
environmental pollution [5]. Diatoms are constituted by a single cell enclosed in a nanostructured
skeleton, called frustule, made of hydrogenated amorphous silica, which has dimensions ranging from
few microns up to a millimeter. The frustule consists of two valves joined by girdle bands. The valves
are pierced from side to side, as it shown in Figure 1 where images of the diatom Coscinodiscus wailesii
by scanning electron microscope are reported. A very detailed description on diatom structure can be
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found in a paper of Losic et al. [6], where scanning electron microscopy and atomic force microscopy
results are presented. From the biologic point of view, the frustule provides mechanical protection of
the living cell, molecular sieving of nutrients, and light managing.
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Figure 1. Scanning electron microscope images of the Coscinodiscus wailesii diatom valves at different
magnifications (Images courtesy of Prof. M. De Stefano, University of Campania “Vanvitelli”, Italy).

Frustules show a hierarchical distribution of pores from tenths to hundreds of nanometers in
size [7]. Frustules size, pore arrangement, and dimensions are species-specific as can be seen in
Figure 2. From the material point of view, once the organic part is removed with acid or basic wet
treatments, the diatom frustules are very similar to man-made porous silica, except for the fact that
they can be found in nature and do not require any complex fabrication process. Moreover, just like
the porous silicon, the diatom frustules have remarkable optical properties that change on exposure
to chemical substances [8–16]; their surface can be functionalized [17], and in conclusion, the diatom
frustules have been considered as bio-derived transducers for biosensing applications [18]. In the
last years, due to their unique characteristics, an increasing enthusiasm about the use of diatoms in
nanotechnology has been registered in many important fields, from nanomedicine to environment
monitoring [19–31]. Two books have been recently published in the area of diatoms, fixing the state
of art in emerging applications [32,33]. Moreover, a recent review summarized the results on the
use of diatoms in biosensing until 2015 [34]. In this paper, the new significant papers published in
peer-reviewed scientific journals in the last four years will be commented, and some future perspectives
about the evolution of diatom-based biosensors will be given.
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Figure 2. Different shapes, sizes, and morphologies of diatom frustules in an optical image
(125×magnification). Frustule dimensions could range from few microns up to a millimeter (Copyright
to http://golubcollection.berkeley.edu/diatoms/modern.html).

2. Diatom Surface Functionalization

The diatom frustules, i.e., the microshells containing the cells, are mainly made of amorphous
silica with a high level of the hydroxyl group (OH) on the surface since the diatoms self-assemble the
frustules in a water environment and always stay there. The chemistry of silica functionalization is
well known, and diatom frustules can be chemically modified just like the standard glass slide use in
immunoassay. The most used route to surface silanol groups (Si-OH) substitution is the silanization,
which is the covering of the glassy surface with organofunctional alkoxysilane molecules, such as
3-amino-propyl-triethoxysilane (APTES) or 3-amino-propyl-dimethyl-ethoxysilane (APDMES) [35].
The biogenic cell wall of diatoms can be thus transformed in amine-terminated surface (Si-C-Si-
. . . .-NH2) that can be used to covalently bind the molecular probes (antibodies, enzymes, proteins,
DNA strands, and so on). Selvaraj et al. used some amine-passivated frustules of the diatom Nitzschia
sp. to detect nitroaromatic compounds with high sensitivity and specificity [36]. Beyond silanization,
diatom frustules can be modified by metals deposition or polymers infiltration, depending on the
specific design application that could be thought for this particular nanomaterial [37]. Diatoms
are usually handled in aqueous solutions, but frustules can be both suspended in a colloidal-like
solution and deposited on dry, inert support. For example, Leonardo et al. recently reported how
antibody functionalized diatoms have been fixed on metal electrodes via gold electrodeposition [38].
By changing the parameters of electrodeposition (applied potential, time, and gold concentration)
it was possible to control the diatom immobilization orientation and yield. This method worked
with frustules of different sizes and shapes, resulting in nanostructured electrodes with enhanced
performances in electrochemical biosensing. In another very recent proof of concept experiment, the
diatom Phaeodactylum tricornutum surface has been modified by ZrO2 by precipitation in a solution for
methyl parathion electrochemical detection [39]. The hybrid diatom-based electrode outperformed in
the limit of detection (at picomolar level) when compared with many other electrodes (only active at
nanomolar level), even if all modified with other nanostructured materials.

3. Diatoms as SERS Substrates

Surface-enhanced Raman scattering (SERS) has gained increasing attention by research groups for
sensing and identification of substances in trace. By analyzing the vibrational absorption spectrum,
it is possible to label-free detect chemical and biological complexes with very high sensitivity and
specificity. The fabrication of plasmonic active SERS supports requires the top available nanofabrication
techniques, which are not widespread in all research laboratories. The group of Prof. G. Rorrer at
Georgia State University, USA, firstly used metal nanoparticles modified diatoms frustules as highly
performing SERS substrates [40]. The group continued to publish new articles on this topic. The
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authors applied this technology to the detection and identification of explosive molecules in nanoliter
solutions, such as melamine at very low concentration (1 ppm) and also Tetrahydrocannabinol (THC)
in body fluids [41–43]. These works demonstrated that the diatom frustules could be considered
bio-derived, cost-effective, modified nanostructured supports for SERS experiments with significant
potential in applications ranging from healthcare to food testing and environmental monitoring. The
best results have been obtained by diatoms modified by silver (Ag) nanoparticles (NPs) directly growth
on the biosilica surface by electroless deposition, as can be seen in Figure 3. The fabrication method
assured a high density of Ag NPs on the diatom surface, which meant a large amount of plasmonic hot
spots that enhanced the Raman signal. The enhancement factor allowed a detection limit of THC in
methanol down to 10−12 M that should be compared with standard SERS substrate (i.e., Ag NPs on a
glass slide) performance of only 10−7 M.
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Figure 3. Schematic representation of Ag NPs’ growth on a diatom surface (a) FE-SEM top-view
images of diatom (b) and in situ synthesized Ag NPs on diatom surface; (c) i–iii various magnifications
of the NP-populated diatom. Reprinted with permission from [40]. Copyright 2019 American
Chemical Society.

Gold (Au) NPs modified diatom biosilica has been used by Kaminska et al. as ultrasensitive SERS
substrates for the detection of interleukins in blood plasma [44]. The use of diatom frustules enhanced
the sensitivity of the technique down to picograms per mL of interleukin 8, whereas other substrates
allowed the detection of only nanograms per mL.

Wang et al. used the frustules obtained by diatomite, which is fossilized remains of ancient
diatoms as geological deposits, currently used in industry as water filters, adsorbents, and also in
toothpaste and food integrators [45,46]. The diatomite frustules, integrated into a proper microfluidic
circuit, could quantify illicit drugs, such as pyrene and cocaine, at ppb level in the human plasma.

4. Diatom-Based Biosensors

The photoluminescence features of diatom frustules are still under discussion [47]. Three main
emission contributions are classified. The first one is related to the excitation and emission in the
ultraviolet region between 250 and 300 nm. This activity is normally attributed to the organic fraction
entrapped in the biosilica structure. The second type is associated with the emission in the blue region
of the visible spectrum, and the third type of photoluminescence activity is characterized by strong
emission in the green at wavelength 523 nm. The origin of visible emission in the blue and green
regions is due to the different defect states, such as oxygen defect centers as non-bridging oxygen
hole centers or neutral oxygen vacancy and self-trapped excitons. By using the photoluminescence
modulation in antibody functionalized diatom frustules of Amphora sp., Viji et al. detected BSA protein
at mM level, while Selvaraj et al., using the same species, selectively detected Salmonella typhi with a
detection limit of 10 pg [48,49].
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The hierarchical, quasi ordered disposition of porous nanostructures in diatom frustules has been
exploited by the Rorrer group for demonstrating a photonic crystal enhanced fluorescence imaging
immunoassay able to detect target analytes for cardiovascular disease and IgG molecules [50,51].
The pores of the diatom Pinnularia sp. frustules used were under 100 nm in size, arranged in such
a way that the optical fields were enhanced by the Purcell effect. As can be noted in Figure 4, the
functionalized frustules could be simply imaged by fluorescence microscopy and the image rapidly
analyzed to get quantitative information. The coupling between the fluorophore emission and the
optical field form the diatom surface allowed a limit of detection of the mouse IgG down to 10−16 M
(14 fg/mL) and of a few pg/mL of the hormone N-terminal pro-B-type natriuretic peptide. These results
were 100× and 2× better than others in the literature, respectively.Sensors 2019, 18, x FOR PEER REVIEW  5 of 8 
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Figure 4. Schematic of quantification of the signal from imaged diatom frustules. Reprinted with
permission from [52]. Copyright 2019 Elsevier.

Lim et al. used fluorescence molecularly imprinted polymer based on Navicula sp. frustules for
lysozyme sensing. The authors demonstrated a limit of detection equal to 1.5 µg/mL [52].

5. Conclusions and Perspectives

Diatoms are present in marine and freshwater all over the world; moreover, diatoms can be easily
cultivated on a very large scale in simple reactors and mild conditions. These characteristics assure a
good availability at a low cost of this potentially technological material. Scientists and technicians
working on the transducers for biosensing applications often face the compromise between their costs
and performances. This is particularly true in the case of nanostructured materials that could require
sophisticated fabrication processes. In the last few years, biomimetic, i.e., the emulation of nature for
inspiring new solutions to technological problems, is an alternative approach to innovation. Diatoms
are natural models of complex architectures with unbelievable consequences in optics and also in
mechanics and biomedicine not yet fully explored by the scientific community [53]. The diatom-based
biosensors recently reported in literature exploit the photoluminescent emission of the frustules or the
porous ordered morphology of their surface to obtain extremely good SERS substrates. Other research
groups are investigating the optical transmission features of diatom frustules that, beside the relevant
biological implications, could be used in the next future for biosensing purposes [54–56]. The quality
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of the works recently published is the best pointer for a new route toward an exciting field of scientific
and technological exploration. Material scientists and all the people involved in specific applications
of multifunctional supports will strongly benefit from the wonderful world of diatoms.
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