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Simple Summary: The present study investigated the anticancer effects and molecular mechanisms
of apigenin in cervical cancer in vitro and in vivo. HeLa and C33A cells were treated with apigenin;
the apigenin inhibited cell viability, induced cell cycle arrest, and inhibited migration and epithelial-
to-mesenchymal transition (EMT) of cervical cancer cells. In a cervical tumor xenograft mouse model,
apigenin suppressed the growth of C33A xenograft tumors. The apigenin down-regulated FAK
signaling (FAK, paxillin, and integrin β1) and PI3K/AKT signaling (PI3K, AKT, and mTOR), which
inactivated or activated various signaling targets, such as Bcl-2, Bax, p21cip1, CDK1, CDC25c, cyclin
B1, fibronectin, N-cadherin, vimentin, laminin and E-cadherin, leading to mitochondrial-mediated
apoptosis, G2/M-phase arrest, and reduction in cancer cell migration, thereby producing anticancer
effects in cervical cancer. Thus, apigenin may have potential as a chemotherapeutic agent for cervical
cancer treatment.

Abstract: Cervical cancer is the fourth most frequent malignancy in women. Apigenin is a natural
plant-derived flavonoid present in common fruit, vegetables, and herbs, and has been found to
possess antioxidant and anti-inflammatory properties as a health-promoting agent. It also exhibits
important anticancer effects in various cancers, but its effects are not widely accepted by clinical
practitioners. The present study investigated the anticancer effects and molecular mechanisms of
apigenin in cervical cancer in vitro and in vivo. HeLa and C33A cells were treated with different
concentrations of apigenin. The effects of apigenin on cell viability, cell cycle distribution, migration
potential, phosphorylation of PI3K/AKT, the integrin β1-FAK signaling pathway, and epithelial-
to-mesenchymal transition (EMT)-related protein levels were investigated. Mechanisms identified
from the in vitro study were further validated in a cervical tumor xenograft mouse model. Apigenin
effectively inhibited the growth of cervical cancer cells and cervical tumors in xenograft mice. Further-
more, the apigenin down-regulated FAK signaling (FAK, paxillin, and integrin β1) and PI3K/AKT
signaling (PI3K, AKT, and mTOR), inactivated or activated various signaling targets, such as Bcl-2,
Bax, p21cip1, CDK1, CDC25c, cyclin B1, fibronectin, N-cadherin, vimentin, laminin, and E-cadherin,
promoted mitochondrial-mediated apoptosis, induced G2/M-phase cell cycle arrest, and reduced
EMT to inhibit HeLa and C33A cancer cell migration, producing anticancer effects in cervical cancer.
Thus, apigenin may act as a chemotherapeutic agent for cervical cancer treatment.
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1. Introduction

Cervical cancer is the fourth most frequent malignancy in women [1]. Human pa-
pilloma virus (HPV) infection is the main cause of development of cervical cancer [2].
At present, cervical cancer treatment options include surgical resection, radical therapy,
chemotherapy or combination therapy, and immunotherapy. However, the overall 5-year
survival rate is only 68% for advanced cervical cancer patients, demonstrating that the treat-
ment remains unsatisfactory [3]. Chemotherapy has been considered a standard treatment
for advanced or recurrent cervical cancer patients, but the first-line therapeutic drug cis-
platin appears to generate chemoresistance, reducing the therapeutic efficacy [4]. Therefore,
elucidating the mechanisms contributing to the malignant progression of cervical cancer
and developing novel therapy agents are very important.

Apigenin is a natural plant-derived flavonoid (4′,5,7-trihydroxyflavone), which be-
longs to flavone group of glycosides. It is present in common fruit (oranges and grape-
fruit), vegetables (onions and parsley) and herbs (chamomile and basil) [5]. Apigenin
has been reported to act as a free-radical scavenger with antioxidant, anti-inflammatory,
anti-mutagenic, anti-hyperglycemic, and antiviral effects [6–9]. In addition, apigenin has
been shown to increase the activities of intracellular glutathione reductase (GSH) and su-
peroxide dismutase (SOD), enhancing the endogenous defense against oxidative stress [10].
Several studies have demonstrated that apigenin acts as an anticancer agent in various
human cancers, both in vivo and in vitro, such as breast, prostate, ovarian, lung, liver,
pancreatic, and colon cancers [11–17], in addition to cervical cancer [18,19]. Moreover,
apigenin has been demonstrated to mediate anticancer effects via molecular mechanisms
potentially involving caspase-3, -8, Bax, and TNF-α activation; Bcl-2, MMP-2, -9, Snail, and
Slug inactivation; decreased NF-κB, PI3K, AKT, phospho-AKT, p38, MAPK, ERK, and JNK
expressions; and activated proteasomal Her2/neu protein degradation [5,20,21].

Strouch et al. [22] and Hu et al. [23] revealed that when apigenin is combined with
gemicitabine or 5-FU, it can effectively inhibit cancer cell proliferation and tumor progres-
sion to a greater degree than either agent alone in pancreatic cancer and hepatocellular
carcinoma, respectively. Kim et al. [24] also indicated that apigenin combined with the tar-
geted therapy, PLX4032 (BRAFV600E inhibitor), synergistically inhibits thyroid carcinoma
cell viability; the protein levels of cleaved PARP1 and cleaved caspase-3 were elevated,
and phospho-ERK and phospho-AKT were reduced as compared with therapy with either
agent alone. Furthermore, apigenin has been investigated in several clinical trials involving
Alzheimer’s disease [25], insomnia [26], anxiety disorder [27], knee osteoarthritis [28], and
depression [29], and the results indicated that apigenin could improve brain cognitive
performance, provide modest improvement in daytime functioning, reduce demand for
analgesics, reduce anxiety disorder symptoms, and lower the score on the Hamilton depres-
sion rating scale. Although apigenin is known as a health-promoting and anticancer agent,
its use in chemotherapy in various cancers is not widely accepted by clinical practitioners,
and thus the beneficial anticancer effects of apigenin need identifying, with more precise
mechanisms ascertained via in vitro and in vivo studies.

The evidence has indicated that the epithelial-to-mesenchymal transition (EMT) is
a major process associated with cancer cells, rendering migration and invasion easier,
reducing epithelial cell intercellular adhesion, and increasing cell motility, resulting in
colonization and metastases formation by cancer cells [30–32]. Thiery et al. [33] revealed
that EMT can contribute to cancer stem cell generation of immune suppression, increased
resistance to apoptosis and senescence, and development of therapy resistance in cancer
cells, such as tamoxifen-resistant breast MCF-7 cancer cells [34] and gemcitabine-resistant
pancreatic tumor cells [35]. Previous study has also demonstrated that EMT is implicated
in poor cervical cancer prognoses through inactivation of E-cadherin and activation of
vimentin [36]. Thus, in the present study, we investigated the effects of apigenin against
cervical cancer and studied the underlying mechanisms, using both cervical cancer cells
(HeLa, C33A) and a xenograft mouse model.
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2. Materials and Methods
2.1. Cell Culture

Human cervical cancer (HeLa and C33A) cell lines were purchased from the Biore-
source Collection and Research Centre (BCRC, Hsin-Chu, Taiwan; derived from ATCC
CRM-CCL-2 and ATCC CRM-HTB-31) and cultured in Minimal Essential Medium Alpha
((#12571-063, MEM α, Thermo Fisher Scientific Inc., Waltham, MA, USA), supplemented
with 10% fetal bovine serum (TMS-013-BKR, Sigma-Aldrich, St. Louis, MO, USA) and
penicillin (10 IU/mL)/streptomycin (10 mg/mL) (#15140-122, Thermo Fisher Scientific Inc.)
at 37 ◦C in a humidified incubator with 5% CO2.

2.2. Assay of Cell Viability

Cells were seeded into 96-well plate at a density of 1 × 104 cells per 100 µL culture
medium for 24 h. After cell attachment, culture medium with apigenin at varying concentra-
tions (0, 1, 10, 25, 50, 100 µmol/L) in dimethyl sulphoxide (D26650, DMSO, Sigma-Aldrich)
was used to treat the cells for 24 h. Apigenin (≥99.22% purity by LCMS, Figure S1) was pro-
cured from MedChem Express (#HY-N1201, Monmouth, NJ, USA). At the end of incubation,
the medium was discarded, and the cells were washed with Dulbecco’s phosphate-buffered
saline (#14190-144, DPBS, pH 7.4, Thermo Fisher Scientific Inc.) twice. To each well, 90 µL
fresh culture medium and 10 µL presto/blue (A13262, Thermo Fisher Scientific Inc.) were
added. After 4 h of incubation at 37 ◦C, the absorbance of the samples in the plates was
measured at 570 nm with a reference wavelength set at 600 nm for PrestoBlue, using a
microplate reader (Thermo Fisher Scientific, MA, USA). Cells treated with the vehicle
control (0.1% DMSO in the culture medium) were regarded as 100% viable, and the viability
of the apigenin-treated cells was determined.

2.3. Assay of Cell Cycle Progression

Cells were treated with 50 µM apigenin or vehicle control for 24 h, then harvested
with trypsin, washed twice with DPBS, and fixed in ice-cold 70% ethanol overnight at 4 ◦C.
The cells were then washed with ice-cold DPBS twice and incubated with 25 µL propidium
iodide (20 µg/mL, #1056-1, BioVision, Inc., Waltham, MA, USA) and 10 µL DNase-free
RNase A (10 mg/mL, RA02, GeneMark, Taipei, Taiwan) for 30 min at 37 ◦C in the dark.
Lastly, the stained cells were analyzed using FC500 flow cytometry (Beckman Coulter,
Brea, CA, USA). The percentages of cells in different cell cycle stages (Sub G1, G0/G1,
S, and G2/M phases) were calculated using CXP software (ver. 2.3, Beckman Coulter,
Brea, CA, USA).

2.4. Wound-Healing Migration Assay

HeLa and C33A cancer cells were seeded onto 6-well plates and grown to 70–80%
confluence. Straight wounds were made by using a 200 µL sterile tip to create a scratch in
the center of the monolayer cells. After washing with medium to remove non-adherent
cells, the wounded monolayers were treated with or without 50 µM apigenin, and images
of the wound gaps were obtained under an Olympus BX61 microscope (Tokyo, Japan) at
0, 24, and 48 h. The wound areas were quantitatively evaluated using ImageJ software
(http://rsb.info.nih.gov/ij/, accessed on 1 December 2020, NIH, Bethesda, MD, USA). To
reduce variability in the results, multiple views of each well were documented, and each
group experiment was repeated at least three times.

2.5. Western Blot Analysis

The protein concentrations of subcellular extracts were quantitated by BCA assay
(#23225, Thermo Fisher Scientific Inc.); 25 µg of protein were loaded and separated by
8–12% (w/v) sodium dodecyl sulfate-polyacrylamide gel electrophoresis, then transferred
onto a 0.2-µm polyvinylidene difluoride (PVDF, EA162-0177, Bio-Rad, Irvine, CA, USA)
membrane. The membranes were then blocked with 0.5% bovine serum albumin (BSA,
A3294, Sigma-Aldrich) in PBS/0.5% Tween 20 (#9005-64-5, Sigma-Aldrich) for 1 h, followed

http://rsb.info.nih.gov/ij/
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by incubation with primary antibodies (1/800-1/1000; diluted in blocking buffer) overnight
at 4 ◦C: CDK1 (E-AB-64159), CDC25c (E-AB-63512), cyclin B1 (E-AB-70114), p21cip1 (E-AB-
65412), Bcl-2 (E-AB-15522), and Bax (E-AB-30629e) purchased from Elabscience Technology
(Houston, TX, USA); phospho-AKT (#4060S), AKT (#9272S), phospho-mTOR (#2971S),
and mTOR (#2972S) (Cell Signaling Technology; Danvers, MA, USA); phospho-FAK
(GTX129840), FAK (GTX100764), paxillin (GTX129840), and integrin β1 (GTX128839)
(GeneTexT Biotechnology; Hsinchu city, Taiwan); PI3K(p85) (ARG55392), fibronectin
(ARG66162), N-cadherin (ARG22587), vimentin (ARG66199), laminin (ARG59198), and
E-cadherin (ARG66195) (Arigo Biolaboratories Biotechnology; Hsinchu city, Taiwan);
phospho-PI3K(p85) (AB182651; Abcam Technology; Cambridge, UK) and GAPDH (MA5-
15738; Thermo Fisher Scientific Inc.). After washing, the membranes were incubated with
HRP-conjugated secondary antibodies (1/10,000 diluted in blocking buffer; Mouse#115-
035-003; Rabbit#111-035-003; Jackson ImmunoResearch, Laboratories, Inc. West Grove, PA,
USA) for 1 h at room temperature. Signals were detected by an enhanced chemilumines-
cence reagent (K-12045-D50, ECL, Advansta Inc., San Jose, CA, USA) and visualized using
the Fusion FX7 image system (Vilber Lourmat, Marne-la-Vallée Cedex, France). Bands were
quantified using ImageJTM software (NIH) and normalized to GAPDH.

2.6. Human Cervical Tumor Xenograft Mouse Model

Twelve female BALB/c mice, aged 7 weeks, were purchased from the National Lab-
oratory Animal Center (Taipei, Taiwan) and randomly assigned into two groups (n = 6
in each group). All animals were bred in a specific pathogen-free conditional house and
12:12 h light/dark cycle at 22 ◦C. The animal experiment protocols were approved by the
Institutional Animal Care and Use Committee (IACUC) of the Changhua Christian Hospi-
tal, Taiwan (approval no: CCH-AE-108-013). Human cervical cancer C33A cells (1 × 107)
and Matrigel reagent (#354248, Corning Inc., Tewksbury, MA, USA) were mixed (cells:
Matrigel = 2:1) and injected subcutaneously into the right flank of each mouse. Once the
tumor volume reached ~200 mm3 (Day 9), the mice were treated with apigenin [50 mg/kg,
dissolved in 10% DMSO, 40% Cremophor/ethanol (3:1; #C5135, Sigma-Aldrich), and 50%
PBS] or vehicle [10% DMSO, 40% Cremophor/ethanol (3:1) and 50% PBS] by intraperitoneal
injection every day for 16 days (Day 25). Tumor size (measured using an electronic caliper)
and mouse body weight were recorded every two days, and tumor volumes were calculated
using the following standard formula: length × width2/2. At the end of the experiment,
the tumors were collected and extracted for tissue analysis. The cancer cell implantation
was conducted using 2–3% isoflurane (Panion & BF Biotech Inc., Taipei, Taiwan) inhalation,
and the mice sacrifice used a CO2 chamber.

2.7. Histology and Immunohistochemical Analysis

C33A xenograft fresh tumor tissue was fixed with 10% neutral buffered formalin
(#3800600, Leica Biosystems Richmond, Inc., Richmond, IL, USA). embedded in paraffin,
and then cut into 5-µm sections. Briefly, all samples were examined histologically after
hematoxylin and eosin staining (#3801698, Leica Biosystems Richmond, Inc.). The paraffin-
embedded tissues were deparaffinized, rehydrated, and washed in PBS. To block non-
specific binding, sections were incubated with 3% BSA (A3294, Sigma-Aldrich, in PBS) for
1 h. Sections were further incubated with primary antibodies against Ki67 (#12202; 1/400,
Cell Signaling), Bcl-2 (#15071; 1:400, Cell Signaling), cyclin B1 (E-AB-70114; 1:300, Elab-
science), phospho-FAK (GTX129840; 1/200, GeneTex), paxillin (GTX129840; 1/100, Gene-
Tex), integrin β1 (GTX128839; 1/100, GeneTex), fibronectin (ARG66162; 1/200, Arigo Bio-
laboratories), N-cadherin (ARG22587; 1/100, Arigo Biolaboratories), vimentin (ARG66199;
1/500, Arigo Biolaboratories), laminin (ARG59198; 1/500, Arigo Biolaboratories), and
E-cadherin (ARG66195; 1/50, Arigo Biolaboratories) in PBS overnight at 4 ◦C. Sections on
slides were washed with PBS and incubated with OneStep Polymer HRP-conjugated anti-
mouse/rat/rabbit IgG secondary antibody (GTX83398; GeneTex Biotechnology; Hsinchu
city, Taiwan) for 30 min at room temperature. The peroxidase activity was visualized with
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a 3,3′-diaminobenzidine chromogent reagent (DAB; GTX30939; GeneTex) counterstained
with hematoxylin. Images were obtained using an Olympus BX61 microscope (Olympus
Corporation, Shinjuku, Tokyo, Japan), and the results were determined by counting the
numbers of positive cells in four fields of specimens from each group by Image-Pro Plus
4.5 software (Media Cybermetics, Silver Spring, MD, USA).

2.8. Statistical Analysis

Statistical analysis was performed using a Student’s t test (for two-group comparison, Mi-
crosoft Excel 2016, Microsoft, Washington, DC, USA). Data are reported as means ± standard
deviation (SD) and all data represent the results of at least three independent experiments.
p < 0.05 was considered significant.

3. Results
3.1. Apigenin Inhibits Human Cervical Cancer Cell Viability and Induces Cell Cycle Arrest

We assessed the effect of apigenin on the viability of human cervical cancer cells. A
PrestoBlue assay was performed on HeLa and C33A cells, and cells were exposed to varying
concentrations of apigenin (0–100 µM). We observed that apigenin had a cytotoxic effect on
cells and inhibited cell growth (reducing cell viability) in a dose-dependent manner. After
24 h of treatment, 50 µM apigenin inhibited HeLa and C33A cell growth by 52.5–61.6%
and 46.1–58.6%, respectively. Thus, we chose to employ this dose in other experiments.
A higher dose of apigenin (100 µM) resulted in a lower cell viability for HeLa cells, but
the viability of C33A cells did not change significantly. These data demonstrated clearly
that apigenin exerts inhibitive effects on cervical cancer cell growth (Figure 1A,B, p < 0.05).
To understand whether apigenin affects cell cycle progression of cervical cancer cells, the
distribution of cells in the different cell cycle phases was evaluated by flow cytometry. For
HeLa cells, apigenin demonstrated significant inhibitive effects on cell cycle progression
arresting at the G0/G1 and S phases (G0/G1: 69.64% → 53.86%; S: 15.90% → 10.39%),
and the numbers of cells were significantly increased in the sub G1 and G2/M phases
(G2/M: 11.95%→ 17.44%; sub G1: 2.5%→ 18.31%) as compared with the vehicle control
group (Figure 1C, p < 0.05). Regarding C33A cells, apigenin also significantly reduced
the proportion of cells in the S phase and increased the ratio of cells in the sub G1 and
G2/M phases (Figure 1D), but the change was less obvious than for HeLa cells. These
results demonstrated that apigenin-induced cervical cancer cell death is mediated by cell
cycle arrest.

3.2. Apigenin Causes G2/M Phase Arrest by Modulating Cyclin B1/CDK1 and p21cip1 as Well as
Activating Mitochondrial-Mediated Apoptosis

To further clarify the underlying mechanism responsible for how apigenin affects cell
growth in cervical cancer cells, the expression levels of related proteins were examined by
Western blotting after treatment with 50 µM apigenin for 24 h. With regards to cell cycle-
regulating proteins, including CDK1, CDC25c, cyclin B1 and p21cip1, not only HeLa, but
also C33A cells were regulated by apigenin. As expected, apigenin significantly inhibited
the protein levels of CDK1, CDC25c, and cyclin B1 in HeLa and C33A cells. Relatively,
the cell cycle inhibitory protein p21cip1 was significantly up-regulated in apigenin-treated
HeLa and C33A cells. To further demonstrate that the anti-proliferative effect of apigenin
is also due to the initiation of apoptosis, we examined apoptosis-related proteins Bcl-2
and Bax by Western blotting, which demonstrated that apigenin significantly reduced the
amount of Bcl-2 and significantly elevated Bax in both HeLa and C33A cells (Figure 2 and
Figure S2, p < 0.05). These results demonstrated that apigenin caused G2/M phase arrest
and apoptosis of HeLa and C33A cells through cyclin B1/CDK1 and p21cip1, and activated
the mitochondrial-mediated pathway.
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Figure 1. Apigenin inhibits human cervical cancer cell viability and induces cell cycle arrest. HeLa
(A) and C33A (B) cells were treated with increasing doses of apigenin for 24 h. Cell viability was
determined using PrestoBlue™ cell viability reagent. HeLa (C) and C33A (D) cells were treated with
or without 50 µM of apigenin for 24 h, and an estimation of the cell cycle phase distribution (G0/G1,
S, and G2/M) was determined by PI staining via flow cytometry, followed by quantification. Data
are presented as the mean ± SD of at least three independent experiments. * p < 0.05 indicates a
significant difference as compared with the corresponding control. CON, 0.1% DMSO; API (50 µM),
50 µM apigenin.
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Figure 2. Proposed mechanism and signaling pathways of the apoptosis and cell cycle arrest induced
by apigenin in cervical cancer cells. Cell cycle G2/M phase-related proteins CDK1, CDC25C, cyclin
B1, and p21, and apoptosis-related proteins, Bcl-2 and Bax, were detected in HeLa (A) and C33A
(B) cells with or without 50 µM apigenin treatment for 24 h via Western blotting and quantified.
Data are presented as the mean ± SD of at least three independent experiments. * p < 0.05 indicates
a significant difference as compared with the corresponding control. CON, 0.1% DMSO; Api 50,
50 µM apigenin.

3.3. Apigenin Induces Cytotoxicity and Apoptosis via the PI3K/AKT/mTOR Pathway

In order to understand the molecular mechanism of apigenin-induced cytotoxicity and
apoptosis in HeLa and C33A cells, we examined phosphorylation of the PI3K/AKT/mTOR
pathway by Western blotting. As compared with the control group, apigenin significantly
inhibited the phosphorylation levels of PI3K (−0.2 fold), AKT (−0.3 fold), and mTOR
(−0.3 fold) in HeLa cells (Figure 3A, p < 0.05), whereas apigenin elevated the p-AKT
(+0.6 fold) and p-mTOR (+0.5 fold) expression levels in C33A cells but PI3K did not to
significantly change (Figure 3B and Figure S3). Thus, these results demonstrated that
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the PI3K/AKT/mTOR pathway might be involved in apigenin-induced cytotoxicity and
apoptosis in human cervical cancer.

Figure 3. Effects of apigenin on the PI3K/AKT/mTOR signaling pathway in cervical cancer cells.
Proteins p-PI3K (p85), PI3K (p85), p-AKT, AKT, p-mTOR, and mTOR were detected in HeLa (A) and
C33A (B) cells with or without 50 µM apigenin treatment for 24 h via Western blotting and quantified.
Data are presented as the mean ± SD of at least three independent experiments. * p < 0.05 indicates
a significant difference as compared with the corresponding control. CON, 0.1% DMSO; Api 50,
50 µM apigenin.

3.4. Apigenin Inhibits Cancer Cell Migration and Epithelial-to-Mesenchymal Transition (EMT) of
Human Cervical Cancer

To determine whether apigenin treatment affects cancer cell migration and metastasis,
we performed in vitro wound-healing and modulation of EMT-related protein assays in
HeLa and C33A cells. Our results demonstrated that cells in the vehicle control group had
a higher cell migration ability, as their wound closure speed was faster than that of cells
treated with 50–100 µM apigenin. Apigenin effectively inhibited cell migration of HeLa and
C33A cells as compared with the control group at 24 and 48 h (Figure 4A,B, p < 0.05). Due
to early studies revealing that FAK acts as strong contributor to the cancer hallmarks in var-
ious human cancers, it was activated by integrins; interaction with paxillin resulted in focal
adhesion formation and cytoskeleton remodeling promoted tumor invasion and metas-
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tasis [37–39]. Thus, the integrin/FAK/paxillin signaling was investigated to determine
whether the apigenin-inhibited cancer cell migration inactivated the integrin/FAK/paxillin
signaling pathway. In the present study, apigenin significantly decreased the phospho-FAK
(−0.3 fold), paxillin (−0.8 fold), and integrin β1 (−0.3 fold) protein expression levels in
HeLa cells at 48 h, while for C33A cells, the expressions of phospho-FAK, paxillin, and inte-
grin β1 were reduced (−0.3, −0.3, and −0.2 fold, respectively, Figure 4C,D and Figure S4,
p < 0.05). The expressions of EMT markers in HeLa and C33A cells were altered by api-
genin treatment at 50 µM. Apigenin significantly decreased the expressions of fibronectin,
N-cadherin, and vimentin (−0.5, −0.4, and −0.8 fold, respectively), while up-regulating
the expressions of laminin and E-cadherin (+0.6 and +0.1 fold, respectively) in HeLa cells at
48 h. Similarly, apigenin significantly inhibited the expressions of fibronectin, N-cadherin,
and vimentin (−0.2, −0.4, and −0.4 fold, respectively) and significantly enhanced the
E-cadherin expression (+0.4 fold), while no change in the expression of laminin was ob-
served, as compared with the non-treated control cells in C33A cells (Figure 5 and Figure S5,
p < 0.05). Taken together, these results clearly indicated that apigenin plays an important
role in terms of disrupting cell migration and cell metastasis, because the integrin β1-FAK
signaling pathway and EMT were decreased in human cervical cancer.

Figure 4. Cont.
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Figure 4. Apigenin inhibits cancer cell migration and inactivates the integrin β1-FAK signaling
pathway. Wound-healing assays were performed with or without 50–100 µM apigenin in HeLa
(A) and C33A (B) cells for 0, 24, and 48 h. Left: representative images of scratches and recovery of
wounded areas on cell monolayers at 0, 24, and 48 h after wounding. Right: semi-quantitative analysis
of relative cell migration was performed according to the cells moving towards the scratched area at a
certain time. Cell migration-related proteins p-FAK, paxillin, and integrin β1 were detected in HeLa
(C) and C33A (D) cells with or without 50 µM apigenin treatment for 24 and 48 h via Western blotting
and quantified. Data are presented as the mean ± SD of at least three independent experiments.
* and † p < 0.05 indicate significant differences as compared with the corresponding control or Api
50-treated groups. CON, 0.1% DMSO; Api 50, 50 µM apigenin; Api 100, 100 µM apigenin; Api50 24 h,
50 µM apigenin at 24 h; Api50 48 h, 50 µM apigenin at 48 h.
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Figure 5. Apigenin disrupts cancer cell metastasis and inhibits epithelial-to-mesenchymal transition.
Proteins fibronectin, N-cadherin, vimentin, laminin, and E-cadherin were detected in HeLa (A) and
C33A (B) cells with or without 50 µM apigenin treatment for 24 and 48 h via Western blotting and
quantified. Data are presented as the mean ± SD of at least three independent experiments. * and
† p < 0.05 indicate significant differences as compared with the corresponding control or Api 50-
treated groups. CON, 0.1% DMSO; Api50 24 h, 50 µM apigenin at 24 h; Api50 48 h, 50 µM apigenin
at 48 h.

3.5. Apigenin Suppresses the Growth of C33A Xenograft Tumors

To further confirm the in vitro findings, we investigated the effects of apigenin in a
C33A xenograft tumor model using BALB/c nude mice. As per the schematic timeline
of this study, as shown in Figure 6A, our data demonstrated that apigenin significantly
inhibited the tumor growth of C33A xenografts. After treatment for 16 days, the average
tumor volume of the C33A xenograft tumors was 666.0± 171.4 and 271.0± 138.9 mm3 in the
control group and apigenin-treated group, respectively. There was no significant difference
in body weight between the control and apigenin-treated animals and the final sample size
(n = 6/group) was a 100% survival rate, suggesting that apigenin did not induce a high host
toxicity at a therapeutic dose (Figure 6B, p < 0.05). Moreover, the apigenin-treated group
demonstrated a significant induced sparse tumor cellularity and apoptosis to tumor tissues
as compared with the control (Figure 6C). Furthermore, the immunohistochemistry study
demonstrated significantly decreased expressions of ki67 (−5.6 fold), Bcl-2 (−3.6 fold),
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and cyclin B1 (−1.6 fold) in the apigenin-treated tumors. Consistently, in vitro Western
blotting, the analysis demonstrated decreased accumulation of p-FAK (−4.0 fold), paxillin
(−2.0 fold), integrin β1 (−0.8 fold), fibronectin (−3.5 fold), N-cadherin (−2.5 fold), and
vimentin (−1.5 fold) proteins and a trend of increased laminin (+1.3 fold) and E-cadherin
(+0.5 fold) protein expressions in tumors treated with apigenin (Figure 6D,E, p < 0.05).
These results further indicated that apigenin acted as an anti-proliferative, anti-migratory,
and anti-metastatic agent in vivo.

Figure 6. Cont.
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Figure 6. Cont.
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Figure 6. Apigenin suppresses the growth of C33A xenograft tumors in vivo. C33A human cervical
cancer cells (1 × 107 cells) were implanted into the right flank of BALB/c nude mice. When the
subcutaneous tumor volume reached ~200 mm3, mice were treated with the solvent control (10%
DMSO) or apigenin (IP, 50 mg/kg/day) for 16 days. (A) Schematic representation of the experiment.
(B) Representative image of a tumor, and average tumor volume and body weight. Tumor tissue
samples were analyzed by hematoxylin, eosin staining (C), and immunohistochemistry (D,E) to
examine the histopathology and expression levels of ki67, Bcl-2, cyclin B1, phospho-FAK, paxillin,
integrin β1, fibronectin, N-cadherin, vimentin, laminin, and E-cadherin (shown as brown staining)
(H&E, 400×, bar = 20 µm; IHC, 400×, bar = 20 µm). Values represent the mean± SD (n = 6); * p < 0.01,
*** p < 0.001 indicate significant differences as compared with the corresponding control. CON,
control; API, apigenin.

4. Discussion

This study revealed the effects of apigenin on cervical cancer cells, including inhibiting
cervical cancer cell viability, inducing cell cycle arrest at the G2/M phase by modulating
cyclin B1/CDK1 and p21cip1, activating mitochondrial-mediated apoptosis, and inhibiting
migration and EMT of cervical cancer cells. In a C33A xenograft tumor model, apigenin
suppressed the growth of C33A cells.

Our study demonstrated the human cervical cancer cell HeLa, C33A viability, which
was consistent with previous studies demonstrating that apigenin caused the cell cycle
arrest in the G2/M of head and neck cancer SCC25 [40], colon cancer HCT116 [41], prostate
cancer 22Rv1 and PC-3 [42], and breast cancer MDA-MB231 [43], by upregulating the
expression of p21cip1 and reducing cyclin A/B in MDA-MB231; in addition, apigenin
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inactivates CDK1 in SCC25 cells, leading to the G0/G1 arrest [44] and further inhibits
the apoptosis of SCC25 and MDA-MB231 via the Bcl-2-mediated caspase-dependent cell
death pathway.

The PI3K/AKT/mTOR pathway is vital for normal basic cellular function to coordi-
nate cell activities such as proliferation and growth [45,46]. It is one of the most frequently
activated signaling pathways, and is aberrantly dysregulated in human cancers; therefore,
this pathway is an important pathway for targeted cancer therapy using small molecule
inhibitors [45]. In our study, the apigenin induced cytotoxicity and apoptosis via the
PI3K/AKT/mTOR pathway. Consistent with the previous reports that demonstrated
apigenin’s anti-cancer and chemopreventive effects at cellular and molecular levels, partic-
ularly inhibition of the PI3K/AKT/mTOR signaling pathways, the report demonstrated
targeting of the PI3K/AKT/mTOR axis by apigenin for cancer prevention [46].

Epithelial-mesenchymal transition (EMT) is a cellular program, remolding cell–cell
and cell–extracellular matrix interactions. In the process of EMT, epithelial cells detach from
each other and the underlying basement membrane [47]. Furthermore, EMT is involved in
cancer progression, as well as initiation [48]. Therapeutic control of EMT may contribute to
the prevention of cancer metastasis [49]. Several studies have demonstrated that EMT plays
a key role in tumor progression in various cancer types, such as pancreatic cancer [50], lung
cancer [51], hepatocellular carcinoma [52], and bladder cancer [53].

Focal adhesion kinase (FAK), a tyrosine kinase, can regulate the biological behaviors
of tumor cells, such as adhesion, migration, invasion, proliferation, and survival [54], and
integrin β1 is important in the development of cervical cancer. The increase in the expres-
sion of integrin β1 protein is consistent with the occurrence of lymph node metastasis [55];
the activation of the integrin beta1/FAK signaling pathway is related to cancer metasta-
sis, and the targeting of integrin β1 can attenuate lung cancer metastasis [56]. Apigenin
may prevent melanoma metastasis by inhibiting cell migration and diminishing FAK and
ERK 1/2 activities. The effects of apigenin on A2058 and A375 melanoma cells have been
evaluated [57], consistent with our studies, apigenin effectively inhibited the cell migration
of HeLa and C33A cells via inactivation of the FAK signaling (FAK, paxillin, and integrin
β1) pathways. In our study, apigenin significantly decreased the expressions of fibronectin,
N-cadherin, and vimentin, while increasing the expressions of laminin and E-cadherin in
HeLa cells.

Table 1 presents details of previous studies related to the anticancer effect of apigenin
on various human cancers, such as leukemia, liver, stomach, brain, cervical, colon, breast,
prostate, or oral cancer. These differing molecular mechanisms of the apigenin anticancer
effect in various human cancers may be associated with cell line specificity, animal type,
and individual apigenin bioavailability (dose- or time-stimuli manner).

Table 1. Anticancer effects of apigenin on different human cancers.

Cancer Type Molecular Mechanism and Activity Refs.

Leukemia Apigenin inhibits HL60 cell proliferation via G2/M phase arrest,
but TF1 cell was G0/G1 phase arrest [58]

Liver cancer
Apigenin (5–20 µg/mL) inhibits hepatoma Huh7 cell growth via G2/M phase arrest and

apoptosis; Apigenin (50 µg/day) significantly suppressed the growth of
Huh7 cell-derived xenograft tumor

[59]

Stomach
cancer

Apigenin treatment (30–60 mg/kg body weight/day) significantly anti-gastic cancer and
anti-atrophic progression in Helicobacter pylori-infected Mongolian gerbils [60]

Brain cancer
PC12 cells were pretreated with apigenin for 6 h, and then apigenin could decreased oxygen

and glucose deprivation/reperfusion (OGD/R)-induced neuronal injury through
apigenin-triggered antioxidative and antiapoptotic activity

[61]
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Table 1. Cont.

Cancer Type Molecular Mechanism and Activity Refs.

Cervical
cancer

Apigenin reduced the HeLa cells viability, the IC50 value was 35.89 µM. Arrested at sub-G1,
G1 phase, and the upregulated p21/WAF1, and p53 protein expressions [62]

Colon cancer Apigenin suppresses colorectal cancer migration and metastasis through inhibition of
NEDD9/Src/AKT and Wnt/β-catin signaling pathway [63,64]

Breast cancer Apigenin combined with chrysin synergistically decreased MDA-AM-231 cell viability,
increased apoptosis, and inhibited migration at 72–96 h [65]

Prostate
cancer

Apigenin (15 µM) potentiates the anticancer effect of cisplatin to inhibit CD44+PCa cell
growth and to significantly rescue suppressed phosphorylation of AKT and PI3K,

and increased the cisplatin on the cell migration inhibitory effect
[66]

Oral cancer
Apigenin (40 mM) significantly reduced HN-30 cell viability, and apigenin (2.5 mg/kg body

weight) deregulated cell proliferation, apoptosis expression, and inflammatory markers
in DMBA-induced hamster pouch carcinogenesis

[67,68]

5. Conclusions

This study demonstrated the multiple anticancer effects of apigenin on cervical cancer
cells. The molecular mechanism of apigenin in cervical cancer treatment included down-
regulated FAK signaling (FAK, paxillin, and integrin β1) and PI3K/AKT signaling (PI3K,
AKT, and mTOR), which inactivated or activated various signaling targets, such as Bcl2,
Bax, p21cip1, CDK1, CDC25c, cyclin B1, fibronectin, N-cadherin, vimentin, laminin, and
E-cadherin, leading to mitochondrial-mediated apoptosis and G2/M-phase arrest, and
reduced EMT to result in anticancer effects on cervical cancer (Figure 7). Apigenin may
be a potential anticancer treatment modality, and further studies are needed to enable the
development of clinical treatment strategies using apigenin against cervical cancer.

Figure 7. Schematic representation of the anticancer molecular mechanism of apigenin in cervical
cancer. Apigenin down-regulated FAK signaling (FAK, paxillin, and integrin β1) and PI3K/AKT
signaling (PI3K, AKT, and mTOR), which inactivated or activated various signaling targets, such
as Bcl2, Bax, p21cip1, CDK1, CDC25c, cyclin B1, fibronectin, N-cadherin, vimentin, laminin, and
E-cadherin, leading to mitochondrial-mediated apoptosis, G2/M-phase arrest, and reduced EMT to
induce anticancer effects in cervical cancer.
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