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Abstract: Pyruvate forms the central node of carbon metabolism and promotes growth as an alternative
carbon source during starvation. We recently revealed that LrgAB functions as a stationary phase
pyruvate uptake system in Streptococcus mutans, the primary causative agent of human dental caries,
but its underlying regulatory mechanisms are still not clearly understood. This study was aimed at
further characterizing the regulation of LrgAB from a metabolomic perspective. We utilized a series
of GFP quantification, growth kinetics, and biochemical assays. We disclosed that LrgAB is critical
for pyruvate uptake especially during growth under low-glucose stress. Inactivation of the Pta-Ack
pathway, responsible for the conversion of acetyl-CoA to acetate, completely inhibits stationary phase
lrgAB induction and pyruvate uptake, and renders cells insensitive to external pyruvate as a signal.
Inactivation of Pfl, responsible for the conversion of pyruvate to acetyl-CoA under anaerobic conditions,
also affected stationary phase pyruvate uptake. This study explores the metabolic components of
pyruvate uptake regulation through LrgAB, and highlights its potential as a metabolic stimulator,
contributing to the resuscitation and survival of S. mutans cells during nutritional stress.
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1. Introduction

Streptococcus mutans, a primary contributor to human dental caries, is able to efficiently and rapidly
adjust to carbohydrate limitation, which is essential for its pathogenic lifestyle, forming biofilms [1–4].
To cope with such an adverse environment, subpopulations of cells within the biofilm could enter low
levels of metabolic phase [5–8] or undergo lysis or death [9,10] as strategies to survive and persist at a
community level. In this context, interest in bacterial pyruvate flux and regulation is emerging, due to
the following facts: pyruvate directs the key metabolic fluxes for growth and energy generation [11–13];
it is excreted as an overflow metabolite during growth and is reabsorbed during starvation [14–17];
it can promote growth of metabolically inactive stationary phase cells [18–21]; and it buffers external
sources of oxidative stress, i.e., as an H2O2-scavenger [22–25]. These features of pyruvate have also
been reported in S. mutans [26,27].

We recently revealed that the S. mutans LrgAB system—which is directly and positively regulated
by the LytST two-component system (TCS) [28,29] and hypothesized to induce cell death and lysis with
its partner operon CidAB—functions as a stationary phase pyruvate uptake system, with its activity
modulated in response to glucose and oxygen levels [26]. More recently, we found that LrgAB pyruvate
uptake activity is under the control of two global regulators, CcpA [30] and CodY [31], and is affected
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by the composition (i.e., acetate and potassium ion) of the growth medium [27]. This illustrates the
metabolic complexity of LrgAB activity and pyruvate uptake regulation in S. mutans. However, from a
metabolic standpoint, the regulation of LrgAB and pyruvate uptake is still not clearly understood.

In this study, we further characterize glucose dependence of the LrgAB system and disclose
that pyruvate uptake via LrgAB is critical when S. mutans cells experience nutritionally low glucose
stress. We also reveal that inactivation of the Pta-AckA pathway completely abolishes LrgAB activity,
as well as the capability of the organism to take up environmental pyruvate. We further show that the
Pfl pathway also contributes to S. mutans stationary phase pyruvate uptake. These findings suggest
that LrgAB activity and pyruvate uptake are tightly controlled by pyruvate catabolic pathways and
environmental metabolic conditions. Furthermore, given the capability of pyruvate to promote growth
particularly under nutrient limitation, these data suggest that pyruvate may have the potential to limit
the survival and persistence of the organism by interfering with its transport and metabolic fluxes.

2. Materials and Methods

2.1. Bacterial Strains and Growth Conditions

Strains and plasmids used in this study are listed in Table S1. S. mutans UA159 and its derivative
strains were grown in brain heart infusion (BHI) medium (BD Difco™, Franklin, NJ, USA) as overnight
static cultures at 37 ◦C in a 5% CO2 atmosphere. When necessary, antibiotics were added to cultures as
follows: kanamycin (1 mg/mL) and spectinomycin (1 mg/mL). Overnight cultures were diluted 1:50
into fresh BHI broth, grown to an OD600≈0.4–0.5, and then used as seed cultures for growth kinetic and
microplate reporter assays. The media used for the assays include BHI, chemically defined FMC [32,33]
and TV (tryptone/vitamin) [34]. Except for BHI (already containing 11 mM glucose), FMC and TV
media were supplemented by 11 mM glucose (named FMC11 and TV11, respectively) or different
concentrations of glucose (named FMC2, FMC5, FMC7, TV2, TV3, TV, etc.), when needed. Each growth
medium was supplemented by sodium pyruvate (Na-pyruvate; Fisher Scientific, Waltham, MA, USA),
as indicated for each experiment. Anaerobic conditions were achieved by placing sterile mineral
oil on top of the cultures, unless specified otherwise. Growth patterns over time were monitored by
measuring the optical density at 600 nm (OD600) at 37 ◦C at 30 min intervals using a Bioscreen C growth
curve analysis system (Growth Curves, Piscataway, NJ, USA). At least three independent experiments,
each in quadruplicate, were performed. A representative result is presented in each relevant figure.

2.2. Mutant and Reporter Gene Fusion Construction

All mutants, including ∆pfl (SMU.402), ∆pfl2 (SMU.493) and ∆pflA (SMU.1692), were created by
using a PCR ligation mutagenesis approach [35], whereby each gene was deleted by replacing nearly
all of the ORF with a non-polar kanamycin resistance marker (NPKm). Transformants were selected on
BHI agar containing kanamycin, and double-crossover recombination into each gene was confirmed
by PCR. To ensure that no mutations were introduced into flanking genes, the PCR fragments were
sequenced. For conducting the GFP promoter reporter assays to monitor PlrgA activity, the PlrgA-gfp
construct in the shuttle vector pDL278 [36] which was previously created [30], was transformed into
the ∆pfl, ∆pfl2 and ∆pflA, as well as ∆lrgAB mutants. As a control strain, the empty pDL278 plasmid
was also transformed in these mutants.

2.3. Microplate Reporter Assay

To monitor lrgAB expression overgrowth, we used S. mutans strains harboring a PlrgA-gfp reporter
fusion which was previously constructed [30]. Seed cultures of the reporter strains were diluted 1:50
into 175 µL fresh media in individual wells of a 96-well plate (black walls, clear bottoms; Corning)
that was loaded into a Synergy microplate reader (BioTek, Winooski, VT, USA.) controlled by Gen5
software [26,27,30]. The optical density for growth curves and green fluorescence intensity for
lrgAB expression measurement were monitored at 600 nm and 485 nm/520 nm (excitation/emission),
respectively, at 30 min intervals for 18–24 h. The fluorescence of wild type harboring plasmid without
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the reporter gene fusion was subtracted from fluorescence readings of S. mutans strains harboring
the PlrgA-gfp gene fusion. At least three independent replicates, each in triplicate, were performed.
A representative result is presented in each relevant figure.

2.4. Measurement of Extracellular Pyruvate Levels

S. mutans UA159 wild type, ∆pta, ∆ackA and ∆pta∆ackA mutants were grown in BHI medium at
37 ◦C in a 5% CO2 atmosphere. For time course measurements of extracellular pyruvate, excreted during
growth, samples (300 µL) were taken at 1–2 h intervals and 150 µL was used to measure the OD600

in a spectrophotometer for monitoring growth. The rest of the sample (150 µL) was centrifuged for
2 min at 18,000× g to remove the cells, and pyruvate concentration of the supernatant was quantified
with an EnzyChrom™ pyruvate assay kit (BioAssay Systems, Hayward, CA, USA) according to the
manufacturer’s instructions. The level of extracellular pyruvate levels at certain time points (i.e., during
early exponential growth and stationary phase) are predictable without measurement [26]. Thus, the
pyruvate quantification was largely carried out with a particular focus on the samples taken at late-
exponential and early-stationary phases in which lrgAB induction and pyruvate uptake through LrgAB
occur. The results are average or representative of two independent replicates, each performed in duplicate.

3. Results

3.1. Low Glucose Dependence for Stationary Phase Pyruvate Uptake

lrgAB expression is highly responsive to glucose levels in S. mutans [29]. In order to identify the
metabolic components related to lrgAB induction, we further explored how lrgAB responds to glucose
levels lower than 11 mM, the concentration previously shown to allow strong stationary phase induction
of lrgAB [26,30]. For this, we monitored lrgAB promoter activity by culturing the PlrgA-gfp strain in
the wild type background [26,27,30] in FMC2, FMC5, FMC7 and FMC11. A chemically-defined FMC
medium was recently reported to contain abundant acetate and potassium ions which are essential for
lrgAB induction, consequently generating the highest fluorescent intensity (PlrgA activity) among the
various media that were tested [27]. When the gfp reporter strain was cultivated in FMC2, no obvious
lrgAB induction was observed at stationary phase, reaching OD600≈0.15 (Figure 1a). However, in FMC5,
a sharp induction typical of lrgAB expression was observed at early stationary phase (Figure 1b), and
further increases of glucose (7 mM and 11 mM) modestly elevated the overall induction level of lrgAB
in early stationary phase (Figure 1c, d). Additionally, in FMC3, a basal induction level (approximately
30 fluorescence units) of lrgAB was observed (Supplementary Figure S1a). Thus, approximately
5 mM glucose seems to be required for a marked lrgAB induction when S. mutans is cultivated in
FMC medium.
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Figure 1. Low glucose dependence of PlrgA activity during growth in FMC medium. The PlrgA-gfp
reporter strain in the S. mutans wild type background was grown in FMC medium, supplemented
by 2 (a), 5 (b), 7 (c), and 11 mM (d) glucose. Relative gfp expression (green circle) and OD600 (white
diamond) were monitored during growth on a plate reader (see Materials and Methods for details).
The results are representative of three independent experiments.
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3.2. The Response of lrgAB to Extracellular Pyruvate is more Sensitive in Glucose-Limited Conditions

To further investigate why lrgAB was not induced when the cell was cultivated in FMC2,
we wondered whether the cells are still responsive to extracellular pyruvate. For this, we added
different concentrations of exogenous pyruvate to FMC2 at time of inoculation and monitored lrgAB
expression overgrowth using the same gfp reporter (PlrgA-gfp) strain. No pyruvate control (Figure 2a)
still exhibited no induction, as observed in Figure 1a. However, addition of 1 mM pyruvate to FMC2
remarkably elicited lrgAB expression, reaching approximately 1200 fluorescence units at 24 h (Figure 2b).
Increasing the exogenous pyruvate concentration to 10 mM further elevated the lrgAB induction level
by >10-fold (Figure 2c), compared to that observed with 1 mM pyruvate (Figure 2b). Interestingly,
unlike what was observed in FMC11 supplemented by 40 mM pyruvate [26], the negative effect
of high exogenous pyruvate concentrations on lrgAB expression was markedly alleviated in FMC2
supplemented by 40 mM pyruvate, without a reduction of lrgAB expression (Figure 2d). These results
suggest that cells grown in FMC2 can more efficiently respond to exogeneous pyruvate, and the negative
regulation of lrgAB by high concentrations of exogenous pyruvate can be alleviated by glucose limitation.
We next evaluated how these observed responses of lrgAB expression to supplemented pyruvate impact
the growth of the organism. For this, we monitored the growth of the S. mutans wild type strain in
FMC2, supplemented with increasing concentrations of pyruvate (1, 10 and 40 mM) using a Bioscreen C
plate reader. As shown in Figure 3a, supplemented pyruvate in FMC2, especially ≥10 mM, efficiently
promoted stationary phase growth yields. A notable diauxic growth pattern was observed in wild type
FMC2 cultures supplemented with 40 mM pyruvate, similar to that observed in Figure 2d, suggesting
the utilization of pyruvate as a secondary carbon source. When this same experiment was repeated
in FMC5, FMC11 and FMC20, the impact of exogenous pyruvate on stationary phase growth yields
was lost as the glucose level increased in the medium (Figure 3b–d). In FMC20, previously reported
to suppress lrgAB induction [29], added pyruvate had no obvious effect on stationary phase growth,
although it appeared to alleviate stationary phase cell lysis (Figure 3c, d). These data suggest that uptake
of extracellular pyruvate can be facilitated when cells grow in a glucose-limited environment. Given
the correlation between overflowed pyruvate levels and lrgAB induction, the lack of induction in the
presence of 2 mM glucose could be due to reduced pyruvate overflow.
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∆lrgAB (bottom panel) backgrounds was grown in FMC2 medium, supplemented by 0 (a and e),
1 (b and f), 10 (c and g) and 40 mM (d and h) of pyruvate (pyr). Relative gfp expression (green circle)
and cell growth (white diamond) were monitored during growth on a plate reader (see Materials and
Methods for details). The results are representative of three independent experiments.
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Figure 3. The effect of exogenously added pyruvate on the stationary phase of growth of S. mutans
UA159 wild type and ∆lrgAB mutant strains. Wild type (a–d) and ∆lrgAB (e–h) strains were grown in
FMC2 (a and e), FMC5 (b and f), FMC11 (c and g) and FMC20 (d and h), supplemented by different
concentrations of pyruvate (0, 1, 10 and 40 mM). Optical density at 600 nm was monitored every 30 min at
37 ◦C using the Bioscreen C lab system. The results are representative of three independent experiments.

3.3. LrgAB is Essential for Stationary Phase Pyruvate Uptake under Glucose-Limiting Growth Conditions

We previously reported that LrgAB is responsible for uptake and further utilization of excreted
pyruvate at stationary phase [26]. Nevertheless, supplementation of exogenous pyruvate to FMC11
was still able to prolong the exponential growth of the ∆lrgAB mutant, as was also observed in the wild
type strain, suggesting that inactivation of LrgAB does not completely block uptake of pyruvate [26].
However, no further explanation was provided in that study. In fact, when tested in FMC11 using the
same gfp reporter strain, the induction level of lrgAB was about 2-fold higher in the ∆lrgAB background
(Supplementary Figure S2b) than what was observed in the wild type background (Supplementary
Figure S2a). Similar lrgAB induction trends were also observed during growth in FMC2 (Figure 2e)
and FMC3 (Figure S1c), noticeably eliciting lrgAB expression at stationary phase. This suggests that
lack of LrgAB could negatively influence stationary phase lrgAB induction, metabolically increasing
pyruvate need. However, Figure 2f–h show that the response of lrgAB to extracellular pyruvate is
remarkably reduced in ∆lrgAB mutant cells compared to those observed in the wild type background
(Figure 2b–d) in FMC2, especially when grown in the presence of 10 and 40 mM pyruvate (Figure 2g,h,
respectively), compared to those observed in the wild type background (Figure 2 c,d). When ∆lrgAB
mutant cells were cultivated in FMC3, lack of LrgAB more evidently reduced the response of lrgAB to
1 mM exogenous pyruvate (Supplementary Figure S1d), compared to that observed in the wild type
background (Supplementary Figure S1b). This suggests that lrgAB expression may not efficiently
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respond to extracellular pyruvate in the absence of LrgAB. Consistent with this observation, the ∆lrgAB
mutant was unable to utilize exogenously added pyruvate in FMC2, as this strain did not display
increased stationary phase growth yield or prolongation of exponential growth (Figure 3e). In FMC5,
the effect of exogenously added pyruvate on the growth of the ∆lrgAB strain was slightly enhanced but
no evidence was observed on growth/cell yield at stationary phase, although cell lysis was alleviated
by added pyruvate (Figure 3f). The effect of added pyruvate in this ∆lrgAB strain was more evident in
FMC11, moderately prolonging the exponential growth and alleviating cell lysis (Figure 3g). Again,
no obvious effect was observed in FMC20, further supporting that high glucose levels abolish the
stationary phase lrgAB induction and pyruvate uptake [26,29]. Collectively, these results highlight that
LrgAB is essential for the stationary phase pyruvate uptake system when S. mutans cells are grown in a
nutrient (glucose)-limiting condition, likely facilitating recovery from the starvation response itself
and/or affecting cell death/lysis in response to starvation.

3.4. TV Medium Provides a More Favorable Environment for Response of lrgAB to Glucose Limitation

Our recent study showed that the magnitude of lrgAB induction and pyruvate flux depends
on the growth medium [27]. In this previous study, we demonstrated that stationary phase lrgAB
induction and pyruvate uptake are completely blocked in TV11, suggesting that TV medium provides
a different environment from FMC. We previously showed that TV medium primarily contains limited
amounts of acetate and potassium ion which significantly affects the expression of genes, related to the
Pta-AckA pathway, relative to FMC. Thus, we wondered whether LrgAB still plays a critical role in
taking up pyruvate in glucose-limited TV medium. To test the idea, we technically recapitulated the
above experiments in TV medium. In the GFP quantification assays for measurement of PlrgA activity,
we first observed that lrgAB was remarkably induced at stationary phase when the reporter strain was
cultivated in TV2 (Figure 4a), in contrast with that observed in FMC2 (Figure 1a). The induction level
of lrgAB was about 25% further elevated in TV3 with growth enhancement of about 35% (Figure 4b),
relative to that in TV2 (Figure 4a). However, further increases of glucose concentration negatively
influenced lrgAB induction (Figure 4c–f), which was abolished in TV11, as reported recently [27].
This suggests that TV medium provides a more favorable condition for lrgAB induction than FMC
under glucose limitation. A similar trend was also observed in the ∆lrgAB background (Supplementary
Figure S3a–d), although the induction levels of lrgAB were about 50% lower than those observed in the
wild type background (Figure 4). This suggests that lack of LrgAB positively influences stationary
phase lrgAB induction in glucose-limited TV medium, which is in contrast with those observed in FMC
(Figure 2a, e, Supplementary Figure S2). The effect of exogenously added pyruvate on the prolongation
of exponential growth was more profound in TV2 (Figure 5a) than FMC2 (Figure 3a). But the effect was
dramatically reduced in the ∆lrgAB strain (Figure 5b), similar to that observed in FMC2 (Figure 3e),
suggesting that LrgAB is essential for stationary phase pyruvate uptake in glucose-limiting conditions
regardless of growth medium (i.e., TV or FMC). As expected, exogenously added pyruvate had no
marked effect on the stationary phase of wild type growth in TV11 (Figure 5c), which is consistent with
our recently published results [27]. No obvious difference on growth was observed with exogenous
pyruvate in the ∆lrgAB strain (Figure 5d). Therefore, these results suggest that lrgAB may more
efficiently respond to external pyruvate in TV than FMC when the cell experiences glucose limitation,
which could be due to a different pyruvate catabolic rate between two media.
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Figure 4. Low glucose dependence of PlrgA activity during growth in TV medium. The PlrgA-gfp
reporter strain in the S. mutans wild type background was grown in TV medium, supplemented by 2
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for details). The results are representative of three independent experiments.
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Figure 5. The effect of exogenously added pyruvate on the stationary phase of S. mutans UA159 wild
type and ∆lrgAB mutant strains, grown in TV2 and TV11 media. Wild type (a and c) and ∆lrgAB (b and
d) strains were grown in TV2 (a and b) and TV11 (c and d), supplemented by different concentrations
of pyruvate (0, 1, 10 and 40 mM). Optical density at 600 nm was monitored every 30 min at 37 ◦C using
the Bioscreen C lab system. The results are representative of three independent experiments.
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3.5. Inactivation of the Pta-AckA Pathway Completely Inhibits Stationary Phase lrgAB Induction and
Pyruvate Uptake

In glucose-limited conditions, pyruvate is converted to acetyl coenzyme A (acetyl-CoA) by
pyruvate formate lyase (Pfl) or pyruvate dehydrogenase complex (Pdh), depending on oxygen
availability. Acetyl-CoA is then metabolized to acetate by the Pta-AckA pathway with the production
of one molecule of ATP [37]. We recently revealed that the genes encoding the key enzymes (Pta,
phosphate acetyltransferase and AckA, acetate kinase) of the Pta-AckA pathway were significantly
upregulated during the transition to stationary phase in BHI and FMC11 (lrgAB-inducible) but
not in TV11 (lrgAB-noninducible) [27]. Therefore, we assumed that the Pta-AckA pathway may
participate in the regulation of lrgAB, especially in this glucose-limiting condition. To test this
possibility, we transformed the same PlrgA-gfp reporter construct into the ∆pta, ∆ackA and ∆pta∆ackA
strains [38,39] and monitored the expression of lrgAB in FMC11, allowing the strongest stationary
phase induction of lrgAB among the media tested [27,30]. Interestingly, inactivation of either pta
(Figure 6b) or ackA (Figure 6c), or both genes (Figure 6d) almost completely inhibited expression
of lrgAB at stationary phase, compared to that observed in the wild type background (Figure 6a).
All mutant strains also exhibited a lower growth rate than the wild type strain in FMC11, suggesting
that the Pta-AckA pathway is important for cell growth. More interestingly, the induction level of
lrgAB was not elevated even by exogenously adding pyruvate to these mutant cultures (Supplementary
Figure S4b–d), unlike what was observed in the wild type background (Supplementary Figure S4a),
suggesting that S. mutans cells do not respond to external pyruvate in the absence of Pta or AckA.
In accordance with these observations, exogenously added pyruvate had no obvious regrowth effect
on the exponential or stationary phase of both ∆pta (Figure 7b) and ∆ackA (Figure 7c) strains, unlike
what was observed in the wild type strain (Figure 7a). However, it did slightly enhance a growth rate
of the ∆pta strain (Figure 7b). Similar results were obtained when tested in different media, including
FMC11 (Supplementary Figure S5a-c) and TV3 (Supplementary Figure S5d-f), recently reported to be
acetate-enriched and -limited, respectively. Thus, the lack of acetate by disruption of the Pta-AckA
pathway does not seem to affect inhibited lrgAB induction and pyruvate uptake. When the pta mutation
was complemented by producing Pta in a shuttle plasmid pDL278 [36,39], exogenously added pyruvate
was normally utilized to prolong the exponential growth of the complemented strain (Figure 7d),
as observed in the wild type strain (Figure 7a), further supporting the intimate linkage of the Pta
pathway to stationary phase lrgAB induction and pyruvate uptake. However, no complementation
was observed in the ∆ackA mutant strain [38], although the growth rate was slightly enhanced in
the complemented strain (Figure 7e), suggesting that AckA activity may be subjected to additional
metabolic regulation.

3.6. Inactivation of the Pta-AckA Pathway Modulates Pyruvate Flux

To further elucidate how the Pta-AckA pathway effects lrgAB induction, we monitored the
extracellular concentration of pyruvate during cultivation of the S. mutans wild type and Pta-AckA
pathway-deficient strains in BHI. The wild type culture excreted approximately 93 µM of pyruvate at
peak (late exponential phase) (Figure 8a), which is consistent with what was previously observed [26].
Somewhat surprisingly, the other mutant cultures excreted much higher levels of pyruvate during
growth: approximately 600 µM for ∆pta (Figure 8b), approximately 380 µM for ∆ackA (Figure 8c),
and approximately 550 µM for ∆pta∆ackA (Figure 8d). Thus, considering the previously observed
extracellular pyruvate concentration dependence of lrgAB induction [26], blockage of lrgAB induction by
disruption of the Pta-AckA pathway does not seem to be due to excreted pyruvate. Also, in accordance
with the observations in Figures 6 and 7, reuptake of excreted pyruvate was almost completely blocked
at the stationary phase of these mutant cultures (Figure 8b–d). Therefore, the data reinforce the direct
linkage of the Pta-AckA pathway to pyruvate uptake LrgAB system and suggest that stationary phase
pyruvate uptake may be determined by intracellular pyruvate consumption.
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Figure 6. The contribution of the Pta-AckA pathway to stationary phase PlrgA activity. For measurement
of PlrgA activation, the PlrgA-gfp reporter strain in the wild type UA159 (a), ∆pta (b), ∆ackA (c) and
∆pta∆ackA (d) backgrounds, was grown in FMC11 medium. Relative gfp expression (green circle)
and cell growth (white diamond) was monitored during growth on a plate reader (see Materials and
Methods for details). The results are representative of three independent experiments.

Microorganisms 2020, 8, x FOR PEER REVIEW 9 of 16 

 

Figure 6. The contribution of the Pta-AckA pathway to stationary phase PlrgA activity. For 

measurement of PlrgA activation, the PlrgA-gfp reporter strain in the wild type UA159 (a), pta (b), 

ackA (c) and ptaackA (d) backgrounds, was grown in FMC11 medium. Relative gfp expression 

(green circle) and cell growth (white diamond) was monitored during growth on a plate reader (see 

Materials and Methods for details). The results are representative of three independent experiments. 

 

Figure 7. The effect of exogenously added pyruvate on the stationary phase of growth of S. mutans 

UA159 wild type and Pta-AckA pathway derivative strains. Wild type (a), pta (b), ackA (c), KB12 

(pta-complemented, (d) and KB034 (ackA-complemented, (e) strains were grown in BHI, 

supplemented by different concentrations of pyruvate (0, 10 and 40 mM). Optical density at 600 nm 

was monitored every 30 min at 37 °C using the Bioscreen C lab system. The results are representative 

of three independent experiments. 

3.6. Inactivation of the Pta-AckA Pathway Modulates Pyruvate Flux 

To further elucidate how the Pta-AckA pathway effects lrgAB induction, we monitored the 

extracellular concentration of pyruvate during cultivation of the S. mutans wild type and Pta-AckA 

pathway-deficient strains in BHI. The wild type culture excreted approximately 93 µM of pyruvate 

at peak (late exponential phase) (Figure 8a), which is consistent with what was previously observed 

[26]. Somewhat surprisingly, the other mutant cultures excreted much higher levels of pyruvate 

during growth: approximately 600 µM for pta (Figure 8b), approximately 380 µM for ackA (Figure 

8c), and approximately 550 µM for ptaackA (Figure 8d). Thus, considering the previously observed 

extracellular pyruvate concentration dependence of lrgAB induction [26], blockage of lrgAB induction 

by disruption of the Pta-AckA pathway does not seem to be due to excreted pyruvate. Also, in 

accordance with the observations in Figures 6 and 7, reuptake of excreted pyruvate was almost 

completely blocked at the stationary phase of these mutant cultures (Figure 8b–d). Therefore, the data 

reinforce the direct linkage of the Pta-AckA pathway to pyruvate uptake LrgAB system and suggest 

that stationary phase pyruvate uptake may be determined by intracellular pyruvate consumption. 

Figure 7. The effect of exogenously added pyruvate on the stationary phase of growth of S. mutans
UA159 wild type and Pta-AckA pathway derivative strains. Wild type (a), ∆pta (b), ∆ackA (c), KB12
(pta-complemented, (d) and KB034 (ackA-complemented, (e) strains were grown in BHI, supplemented
by different concentrations of pyruvate (0, 10 and 40 mM). Optical density at 600 nm was monitored
every 30 min at 37 ◦C using the Bioscreen C lab system. The results are representative of three
independent experiments.



Microorganisms 2020, 8, 846 10 of 16
Microorganisms 2020, 8, x FOR PEER REVIEW 10 of 16 

 

 

Figure 8. Measurement of extracellular pyruvate during growth of S. mutans UA159 wild type and 

Pta-AckA pathway derivative strains. Wild type (a), pta (b), ackA (c) and ptaackA (d) strains were 

grown in BHI. For time course measurements of extracellular pyruvate and growth, samples were 

taken at 1 or 2 h intervals (see Materials and Methods for details). The concentration of pyruvate was 

determined using an EnzyChrom™ pyruvate assay kit, and growth was measured by the optical 

density at 600 nm (OD600). Bars indicate the average concentration of extracellular pyruvate and a 

solid line with black circles indicates the corresponding growth curve. The results are an average of 

two independent experiments. Error bars = standard deviation. 

3.7. Pfl is Involved in the Regulation of lrgAB Expression 

Given that the Pta-AckA pathway, responsible for the conversion of acetyl-CoA to acetate, plays 

a critical role in regulating stationary phase lrgAB induction and pyruvate uptake, we further 

assumed that the conversion of pyruvate to acetyl-CoA may also participate in the regulation of 

lrgAB. When glucose concentration is low, pyruvate is converted to acetyl-CoA and formate by Pfl 

(pyruvate formate lyase) or acetyl-CoA and CO2 by the Pdh (pyruvate dehydrogenase) complex, 

depending on the absence or presence of oxygen, respectively. In fact, our previous studies suggested 

a strong correlation between Pdh/Pfl and lrgAB regulation, because pdhC and pfl were also 

significantly upregulated at the early stationary phase, compared to that of the early exponential 

phase [27,28]. To test for a role of Pdh or Pfl in lrgAB regulation, we attempted to mutate the gene(s) 

encoding Pdh or Pfl. However, we failed to inactivate the pdhC gene or the entire pdhDABC operon, 

suggesting that these gene(s) may be essential for growth or genetic transformation. Three pfl-like 

genes, including pfl (SMU.402), pfl2 (SMU.493) and pflA (SMU.1692), were identified in the S. mutans 

UA159 genome. Our previous microarray study showed that both pfl and pfl2 genes were remarkably 

upregulated at the late exponential phase, compared to the early exponential phase [26,28]. The pflA 

gene is known to encode Pfl-activating enzyme, which is responsible for the conversion between 

active (O2-sensitive) and inactive (O2-resistant) forms of Pfl [40]. We successfully deleted all three 

genes and replaced them with a kanamycin resistant cassette, generating pfl, pfl2 and pflA strains. 

To monitor the expression of lrgAB throughout growth, we transformed the PlrgA-gfp reporter 

construct into each of these mutant strains. When the reporter strains were anaerobically grown in 

FMC11, the stationary phase induction level of lrgAB did not show a dramatic change in these mutant 

backgrounds compared to that in the wild type strain, although it was slightly elevated in the pfl 

background (Figure 9a–d). However, the pfl and pflA mutant strains less efficiently utilized 

exogenously-added pyruvate at stationary phase (Figure 9f, h, respectively), compared to the wild 

type and pfl2 strains (Figure 9e,g, respectively). Although it is unclear from these data alone whether 

Figure 8. Measurement of extracellular pyruvate during growth of S. mutans UA159 wild type and
Pta-AckA pathway derivative strains. Wild type (a), ∆pta (b), ∆ackA (c) and ∆pta∆ackA (d) strains
were grown in BHI. For time course measurements of extracellular pyruvate and growth, samples
were taken at 1 or 2 h intervals (see Materials and Methods for details). The concentration of pyruvate
was determined using an EnzyChrom™ pyruvate assay kit, and growth was measured by the optical
density at 600 nm (OD600). Bars indicate the average concentration of extracellular pyruvate and a
solid line with black circles indicates the corresponding growth curve. The results are an average of
two independent experiments. Error bars = standard deviation.

3.7. Pfl is Involved in the Regulation of lrgAB Expression

Given that the Pta-AckA pathway, responsible for the conversion of acetyl-CoA to acetate, plays a
critical role in regulating stationary phase lrgAB induction and pyruvate uptake, we further assumed
that the conversion of pyruvate to acetyl-CoA may also participate in the regulation of lrgAB. When
glucose concentration is low, pyruvate is converted to acetyl-CoA and formate by Pfl (pyruvate formate
lyase) or acetyl-CoA and CO2 by the Pdh (pyruvate dehydrogenase) complex, depending on the
absence or presence of oxygen, respectively. In fact, our previous studies suggested a strong correlation
between Pdh/Pfl and lrgAB regulation, because pdhC and pfl were also significantly upregulated
at the early stationary phase, compared to that of the early exponential phase [27,28]. To test for
a role of Pdh or Pfl in lrgAB regulation, we attempted to mutate the gene(s) encoding Pdh or Pfl.
However, we failed to inactivate the pdhC gene or the entire pdhDABC operon, suggesting that these
gene(s) may be essential for growth or genetic transformation. Three pfl-like genes, including pfl
(SMU.402), pfl2 (SMU.493) and pflA (SMU.1692), were identified in the S. mutans UA159 genome.
Our previous microarray study showed that both pfl and pfl2 genes were remarkably upregulated at
the late exponential phase, compared to the early exponential phase [26,28]. The pflA gene is known to
encode Pfl-activating enzyme, which is responsible for the conversion between active (O2-sensitive)
and inactive (O2-resistant) forms of Pfl [40]. We successfully deleted all three genes and replaced them
with a kanamycin resistant cassette, generating ∆pfl, ∆pfl2 and ∆pflA strains. To monitor the expression
of lrgAB throughout growth, we transformed the PlrgA-gfp reporter construct into each of these mutant
strains. When the reporter strains were anaerobically grown in FMC11, the stationary phase induction
level of lrgAB did not show a dramatic change in these mutant backgrounds compared to that in the
wild type strain, although it was slightly elevated in the ∆pfl background (Figure 9a–d). However,
the ∆pfl and ∆pflA mutant strains less efficiently utilized exogenously-added pyruvate at stationary
phase (Figure 9f, h, respectively), compared to the wild type and ∆pfl2 strains (Figure 9e,g, respectively).
Although it is unclear from these data alone whether Pfl2 actually functions as a pyruvate formate
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lyase, these findings do suggest that lrgAB expression and pyruvate uptake are partially coordinated
in the conversion of pyruvate to acetyl-CoA.
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Figure 9. The contribution of the Pfl pathway to stationary phase PlrgA activity (a–d) and pyruvate
uptake for regrowth (e–h). For measurement of PlrgA activation, the PlrgA-gfp reporter strain in the
wild type UA159 (a), ∆pfl (b), ∆pfl2 (c) and ∆pflA (d) backgrounds, was grown in FMC11 medium.
Relative gfp expression (green circle) and cell growth (OD600; white diamond) were monitored during
growth on a plate reader (see Materials and Methods for details). For measurement of growth in
response to external pyruvate, wild type UA159 (e), ∆pfl (f), ∆pfl2 (g) and ∆pflA strains were grown
in BHI, supplemented by different concentrations of pyruvate (0, 10 and 40 mM). Optical density
at 600 nm was monitored every 30 min at 37 ◦C using the Bioscreen C lab system. The results are
representative of three independent experiments.

4. Discussion

In this present study, we demonstrate that the role of LrgAB as a pyruvate uptake system
comes into its own when S. mutans encounters glucose limitation (at low mM levels), or experiences
nutritional stress. This affords the organism a means to get out of stationary phase and contributes to
the development of mature pathogenic biofilms and caries in the oral cavity when, from the bacterial
point of view, it experiences prolonged periods of carbohydrate limitation. However, the magnitude
and pattern of LrgAB activation depends on several external conditions, as observed in FMC- and
TV-based media. Growth in TV medium appears to decrease the threshold of glucose induction of
lrgAB because TV allows lrgAB induction or repression at lower glucose concentrations compared
to FMC. Nevertheless, the finding that exogenously added pyruvate appeared to fuel a remarkable
regrowth during stationary phase prolongation in both FMC and TV media containing 2 mM glucose,
highlights that external pyruvate can be utilized as an alternative carbohydrate source for growth,
especially under low glucose (nutrient) conditions. Similarly, we also found that stationary phase cell
lysis could be alleviated by exogenously added pyruvate, suggesting that pyruvate can reactivate or
stimulate the metabolic activity of S. mutans cells experiencing carbon starvation. It further suggests a
potential connection between pyruvate regulation and cell death/lysis, hypothesized to be induced
by the Cid/Lrg system, including LrgAB and its partner operon CidAB [29]. In fact, such a role of
pyruvate as a metabolic stimulator has been reported in many pathogens, including Campylobacter
jejuni, E. coli, Lactobacillus acetotolerans, Legionella pneumophila, Salmonella typhi, Shigella flexneri, Shigella
sonnei, Vibrio cholerae and Yersinia pestis [41–49]. Although the precise underlying mechanisms are
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still unclear, these bacteria have been reported to enter the viable but non-culturable (VBNC) state
in response to adverse environmental conditions, such as high/low temperature, osmotic stress,
oxidative stress and starvation [6,46]. They could be resuscitated to a growing state by addition of
pyruvate [18,50,51]. Therefore, we hypothesize that pyruvate plays an intricate role not only as a key
metabolic intermediate of glycolysis but also as a growth-promoting molecule that could simulate
metabolic activity, consequently enhancing the capacity of the organism to survive and persist against
unfavorable environments. Considering that pyruvate could also provide protection against oxidants,
which in turn would be less stress on the cells, inhibition/alleviation of cell lysis could be unrelated to
pyruvate metabolism.

It may not be surprising that the removal of the major acetate production pathway encoded by
Pta (phosphotransacetylase) and AckA (acetate kinase) led to the blockage of lrgAB expression and
subsequent pyruvate uptake, because acetate was recently reported to contribute to the induction of
lrgAB to stationary phase [27]. A more interesting finding is that both the ∆pta and ∆ackA mutant strains
became insensitive to exogenous pyruvate. A simple explanation for this could be that disruption of
the Pta-AckA pathway could decelerate pyruvate consumption, accumulating intracellular pyruvate
levels and consequently increasing the excretion of pyruvate as an overflow metabolite. It is also
possible that inhibition of lrgAB induction in the Pta-AckA-deficient strains could also be due to
increased acetyl-CoA levels [38]. Accordingly, our previous microarray experiment demonstrated that
the genes responsible for the conversion of pyruvate to acetyl-CoA (pfl2 and pdhA) were significantly
downregulated in these mutant strains compared to the wild type strain [38]. Either way, these findings
suggest that the alteration of pyruvate catabolic activity could affect the capacity of S. mutans cells to
take up extracellular pyruvate, consequently affecting the degree of cell lysis and death at stationary
phase. Given that inactivation of the Pta-AckA pathway could lead to redirection of the carbon flow
into multiple metabolic pathways with changes in the levels of key metabolites including ATP, NAD+,
NADH and other organic acids [52,53], the trend of lrgAB induction and pyruvate flux may be a result
of the highly complicated regulatory behavior at the central pyruvate node, even with a possible
involvement of glycolytic metabolites between glucose and pyruvate. In this study, we also showed
that disruption of the Pfl pathway resulted in a moderate inhibition of pyruvate uptake at stationary
phase which is consistent with the observed upregulation in expression of pfl at the late exponential
phase compared to the early exponential phase [28]. This suggests that the Pfl pathway is also linked,
at least in part, to the stationary phase response through LrgAB activity, even in the absence of oxygen.
However, given the dramatic elevation of pdh expression at the late exponential phase compared to
the early exponential phase [26,28] and complete inhibition of stationary phase lrgAB expression and
pyruvate uptake by disruption of the Pta-AckA pathway, the majority of the carbon flux is likely
channeled through the Pdh and Pta-AckA branch, which may determine the need of the cell to take
up external pyruvate through LrgAB. Our previous microarray data also show that even by lack of
Pta and AckA, the expression level of ldh which encodes lactate dehydrogenase and is responsible
for the conversion of pyruvate to lactate, was not elevated [38]. This suggests that excess pyruvate,
accumulated by disruption of the Pta-AckA pathway, would be overflowed without forwarding to the
Ldh pathway under glucose limitation. Therefore, stationary phase lrgAB expression and pyruvate
uptake seem to be primarily coordinated by continuous and rapid redirection of intracellular flux at
the pyruvate node in response to changing environments, aerobically and nutritionally.

Another linkage between the Pta-AckA pathway and pyruvate uptake regulation may be related
to the extracellular level of acetate, the major end product of the Pta-AckA pathway which is excreted
as another overflow metabolite during growth to eliminate extra redox potential when glucose is
no longer oxidized to CO2. We recently demonstrated that external acetate can enhance stationary
phase lrgAB induction and inhibit growth in excess [27], suggesting that acetate may mediate the
response of lrgAB to the stationary phase, as well as cell lysis and death. Although the disruption of
the Pta-AckA pathway inhibits acetate production, lack of acetate does not seem to directly result in the
observed dramatic reduction of lrgAB induction and pyruvate uptake, because the inhibitory effect of
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an inactive Pta-AckA pathway on lrgAB induction was observed in both FMC11 (acetate-enriched) and
TV3 (acetate-limited). Nevertheless, the fact that, like the LrgAB system [30,31], the Pta-AckA pathway
is also tightly regulated by CcpA and CodY [54], implicates that the pyruvate uptake and acetate
production systems may be linked in a metabolically complex manner which warrants further study.

5. Conclusions

In conclusion, this current study identifies a major metabolic route for stationary phase lrgAB and
pyruvate regulation and demonstrates that pyruvate can be utilized for growth as the secondary carbon
source and potentiate alleviation of cell lysis at the stationary phase. An increase of external pyruvate
levels increases both pyruvate uptake rate and intracellular pyruvate level [26,55]. Pyruvate may have
activated certain metabolic pathways for energy generation and growth stimulation. Thus, further
studies of these aspects will expand our understanding of the mechanisms for how S. mutans cells adapt
to adverse environments such as nutritional starvation and oxidative condition, and consequently
develop pathogenic mature biofilms (caries), especially through pyruvate metabolism and uptake.
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