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Topological superconductivity in monolayer
transition metal dichalcogenides
Yi-Ting Hsu1, Abolhassan Vaezi2, Mark H. Fischer3 & Eun-Ah Kim1

Theoretically, it has been known that breaking spin degeneracy and effectively realizing

spinless fermions is a promising path to topological superconductors. Yet, topological

superconductors are rare to date. Here we propose to realize spinless fermions by splitting

the spin degeneracy in momentum space. Specifically, we identify monolayer hole-doped

transition metal dichalcogenide (TMD)s as candidates for topological superconductors out of

such momentum-space-split spinless fermions. Although electron-doped TMDs have

recently been found superconducting, the observed superconductivity is unlikely topological

because of the near spin degeneracy. Meanwhile, hole-doped TMDs with momentum-space-

split spinless fermions remain unexplored. Employing a renormalization group analysis,

we propose that the unusual spin-valley locking in hole-doped TMDs together with repulsive

interactions selectively favours two topological superconducting states: interpocket paired

state with Chern number 2 and intrapocket paired state with finite pair momentum.

A confirmation of our predictions will open up possibilities for manipulating topological

superconductors on the device-friendly platform of monolayer TMDs.
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T
he quest for material realizations of topological chiral
superconductors with nontrivial Chern numbers1–4 is
fuelled by predictions of exotic signatures, such as

Majorana zero modes and quantized Hall effects. Unfortunately,
natural occurrence of bulk topological superconductors are rare
with the best candidates being superfluid 3He (ref. 5) and
Sr2RuO4 (ref. 6). Instead, much recent experimental progress
relied on proximity-inducing pairing to a spin–orbit-coupled
band structure building on the proposal of Fu and Kane7. Their
key insight was that a paired state of spinless fermions is bound to
be topological and that the surface states of topological insulators
are spinless in that the spin degeneracy is split in position space
(r-space): the two degenerate Dirac surface states with opposite
spin textures are spatially separated. Nevertheless, despite much
experimental progress along this direction8–14, the confinement
of the helical paired state to the interface of the topological
insulator and a superconductor limits experimental access to its
potentially exotic properties.

Another type of exotic paired states that desires material
realization is the finite-momentum-paired states, which has long
been pursued since the first proposals by Fulde and Ferrell15 and
by Larkin and Ovchinnikov16. Most efforts towards realization of
such modulated superconductors17,18, however, relied on
generating finite-momentum pairing using spin-imbalance
under a (effective) magnetic field in close keeping with the
original proposals. Exceptions to such a spin-imbalance-based
approach are refs 19,20 that made use of spinless Fermi surfaces
with shifted centres. More recently, there have been proposals
suggesting modulated paired states in cuprate high-Tc

superconductors21–23. However, unambiguous experimental
detection of a purely modulated paired state in a solid-state
system is lacking.

We note an alternative strategy that could lead to pairing possi-
bilities for both topological and modulated superconductivity:
to split the spin degeneracy of fermions in momentum space
(k-space). This approach is essentially dual to the proposal of
Fu and Kane, and it can be realized in a time-reversal-invariant
non-centrosymmetric system when a pair of Fermi surfaces
centred at opposite momenta ±k0 consist of oppositely spin-
polarized electrons (see Fig. 1a). When such a spin-valley-locked
band structure is endowed with repulsive interactions, conven-
tional pairing will be suppressed. Instead, there will be two
distinct pairing possibilities: interpocket and intrapocket pairings,
where the latter will be spatially modulated with pairs carrying
finite centre-of-mass momentum ±2k0.

What is critical to the success of this strategy is the
materialization of such k-space-split spinless fermions. A new
opportunity has arisen with the discovery of a family of
superconducting two-dimensional (2D) materials, monolayer
group-VI transition metal dichalcogenides (TMDs) MX2

(M¼Mo, W, X¼ S, Se)24–27. Although the transition metal
atom M and the chalcogen atom X form a 2D hexagonal lattice
within a layer as in graphene, monolayer TMDs differ from
graphene in two important ways. First, TMD monolayers are
non-centrosymmetric, that is, inversion symmetry is broken
(see Fig. 1b,c). As a result, monolayer TMDs are direct-gap
semiconductors28 with a type of Dresselhaus spin–orbit
coupling29,30 referred to as Ising spin–orbit coupling31. This
spin–orbit-coupled band structure leads to the valley Hall
effect30,32, which has established TMDs as experimental
platforms for pursuing valleytronics applications30,32–36. Our
focus, however, is the fact that there is a sizable range of chemical
potential in the valence band that could materialize the k-space
spin-split band structure we desire (see Fig. 1d). Second, the
carriers in TMDs have strong d-orbital character and, hence,
correlation effects are expected to be important. Interestingly,

both intrinsic and pressure-induced superconductivity have been
reported in electron-doped (n-doped) TMDs24–27 with the debate
regarding the nature of the observed superconducting states still
on-going37–41.

Here we propose to obtain k-space-split spinless fermions by
lightly hole-doping (p-doping) monolayer TMDs such that the
chemical potential lies between the two spin-split valence bands.
We investigate the possible paired states that can be driven by
repulsive interactions42 in such lightly p-doped TMDs using a
perturbative renormalization group (RG) analysis going beyond
mean-field theory38,43. We find two distinct topological paired
states to be the dominant pairing channels: an interpocket chiral
(p/d)-wave paired state with Chern number |C|¼ 2 and an
intrapocket chiral p-wave paired state with a spatial modulation
in phase. The degeneracy can be split by the trigonal warping or
Zeeman effect.

Results
Spin-valley-locked fermions in lightly p-doped monolayer TMDs.
The generic electronic structure of group IV monolayer TMDs
is shown in Fig. 1d. The system lacks inversion symmetry
(see Fig. 1b,c), which leads to a gapped spectrum and a
Sz-preserving spin–orbit coupling. Such Ising spin–orbit
coupling31 acts as opposite Zeeman fields on the two valleys
that preserve time-reversal symmetry. Furthermore the spin–orbit
coupling is orbital-selective44 and selectively affects the valence
band with a large spin-split29.

By lightly p-doping the TMDs with the chemical potential
m between the spin-split valence bands, spin-valley-locked
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Figure 1 | k-space spin-split in the spin-valley-locked band structure

of group IV monolayer TMDs. (a) Schematic Fermi surface hosting

k-space-split spinless fermions. Here the two pockets centred at some

opposite crystal momenta k¼±k0 host oppositely spin-polarized electrons

(represented by the orange and blue arrows) in a time-reversal-symmetric

manner. (b) A sketch for a unit cell of a monolayer TMD. The blue and red

spheres represent the transition metal M atoms and the chalcogen atoms

X, respectively. (c) A sketch for the top view of the buckled honeycomb

lattice of a monolayer TMD. The blue circles represent the transition metal

M atoms and the solid (hollow) red circles represent the chalcogen atoms

X above (below) the plane of transition metal atoms. (d) Schematic

low-energy dispersion of a monolayer TMD. The hexagon represents

the first Brillouin zone. The green paraboloids represent the nearly

spin-degenerate conduction band, and the orange and blue paraboloids

represent the spin-split valence bands for the spin-up and -down electrons,

respectively. This dispersion is time-reversal-symmetric since the

spin-splits are opposite near the two valleys K and K0 , which centred at

opposite momenta ±K with respect to the G point.
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fermions can be achieved near the two valleys (see Fig. 2a,b).
Assuming negligible trigonal warping at low doping, we can use a
single label t¼m,k to denote the valley and the spin. Denoting
the momentum measured from appropriate valley centres ±K by
q, the kinetic part of the Hamiltonian density is

Hp
0 ¼

X
q;t

� q2

2m
�m

� �
cyq;tcq;t; ð1Þ

where m is the chemical potential, m is the effective mass of the
valence band and cq,m�cKþ q,m and cq,k�c�Kþ q,k each
annihilates a spin-up electron with momentum q relative to the
valley centre K or a spin-down electron with momentum q
relative to the valley centre�K (see Fig. 2a). Hence, the spin-
valley-locked two-valley problem is now mapped to a problem
with a single spin-degenerate Fermi pocket. Nonetheless, the
possible paired states with total spin tz¼±1 and tz¼ 0 in fact
represent the novel possibilities of intrapocket modulated pairings
with total tz¼±1 and interpocket pairing with total tz¼ 0,
respectively (see Fig. 2a,b).

Pairing possibilities. To discuss the pairing symmetries of the
two pairing possibilities, it is convenient to define the partial-
wave channels ~l with respect to the two-valley centres ±K. Since
a total spin tz¼±1 intrapocket pair consists of two electrons
with equal spin, Pauli principle dictates such pairing to be in a
state with odd partial-wave ~l. Stepping back to microscopics, such
pairs carry finite centre-of-mass momentum ±2K and form two
copies of phase-modulated superconductor15. This case may or

may not break time-reversal symmetry due to the absence of
locking between the ~ls of the two pockets t¼m,k. For the total
tz¼ 0 interpocket pairing, the allowed symmetries of a
superconducting state is further restricted by the underlying C3v

symmetry of the lattice. In particular, the absence of an inversion
centre allows the pairing wavefunction in each irreducible
representation to be a mixture between parity-even and -odd
functions with respect to the G point45. Specifically, s-wave mixes
with f-wave and d-wave mixes with p-wave (see Fig. 2c,d). Among
the irreducible representations of C3v, two fully gapped
possibilities are the trivial A1 representation, which amounts to
(s/f)-wave pairing (~l ¼ 0) and a chiral superposition of the 2D E
representation, which amounts to a mixture of p±ip and d8id
pairing ( j ~l j ¼ 1). The mixing implies that the non-topological
f-wave channel that is typically dominant in trigonal systems as a
way of avoiding repulsive interaction will be blocked together
with s-wave by the repulsive interaction in the p-doped TMDs.
Hence, it is clear that the pairing instability in j ~l j ¼ 1 channel is
all one needs for topological pairing in the p-doped TMDs.

Two distinct topological paired states. To investigate the effects
of the repulsive interactions between transition metal d-orbitals,
we take the microscopic interaction to be the Hubbard interac-
tion, which is the most widely studied pardignamtic model of
strongly correlated electronic systems

H0ðWÞ ¼
X

i

Uni;"ni;#; ð2Þ

where W is the ultraviolet energy scale, U40 and ni,s is the
density of electrons with spin s on site i. By now, it is well
established that the interaction that is purely repulsive at the
microscopic level can be attractive in anisotropic channels for
low-energy degrees of freedom, that is, fermions near Fermi
surface. The perturbative RG approach has been widely used to
demonstrate this principle on various correlated superconductors.
For the model of p-doped TMDs defined by Equations (1) and
(2), the symmetry-allowed effective interactions at an inter-
mediate energy scale L0\0 close to the Fermi level in the Cooper
channel (see Supplementary Note 1) would be:

H0eff L0ð Þ ¼
X

q;q0;t;t0
gð0Þt;t0 q; q0ð Þcyq0;tc

y
� q0;t0c� q;t0cq;t; ð3Þ

where q and q0 are the incoming and outgoing momenta.
Now, the remaining task is to derive the effective inter- and
intrapocket interactions gm,k(q,q0) and gm,m(q,q0) perturbatively in
the microscopic repulsion U and check to see whether attraction
occur in the j ~l j ¼ 1 channel (see Methods and Supplementary
Note 2).

Before going into the details of calculation, it is important to
note that isotropic pairing with ~l ¼ 0 is forbidden by Pauli
principle in the total tz¼±1 channel and blocked by the bare
repulsive interaction in the total tz¼ 0 channel. Hence, we need
to look for attraction in the anisotropic ~l 6¼ 0 channel, which is
given by the momentum-dependent part of gtt0

(0). With our
assumption of isotropic dispersion at low-doping, one needs to go
to the two-loop order to find momentum dependence in the
effective interaction. Fortunately, it has been known for the model
of Equations (1) and (2) that effective attraction is indeed found
in anisotropic channels at the two-loop order46. Here we carry
out the calculation explicitly (see Methods and Supplementary
Note 2) and find the effective interactions in the j ~l j ¼ 1 channel
to be attractive, that is,

lð0Þ; j
~lj ¼1

t;t0 ¼ 1
p

Z p

0
dygð0Þt;t0 yð ÞF1 yð Þo0 ð4Þ
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Figure 2 | Symmetry-distinct pairing channels in a lightly p-doped

monolayer TMD. The two oppositely spin-polarized Fermi surfaces centred

at K and K0 valleys (represented by the maroon and blue circles) can

develop (a) interpocket pairing or (b) intrapocket pairing. Here cq,m (cq,k )

denotes the annihilation operator for spin-up (-down) electrons on the

pocket at valley K (K0), and q denotes the momentum relative to the pocket

centres. (c,d) Candidate gap functions for interpocket pairing allowed by

the point group C3v. Each hexagon represents the first Brillouin zone where

the curves around the corners within the unshaded (shaded) wedges are

segments of Fermi surfaces around valley K (K0). Owing to the broken C6

rotations (expressed by the shaded wedges), the gap structures of

(c) s-wave and f-wave both belong to the same irreducible representation A1

and can thus mix. Similarly, the gap structures of (d) p-wave and d-wave both

belong to the two-dimensional irreducible representation E and can mix as well.

The number in each wedge labels the angle corresponding to the phase of

each gap function at the midpoint of the Fermi surface segment in the wedge.

Note that the (pþ ip)- and (d� id)-waves have the same phase-winding

pattern on each pocket around respective valley centres.
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for t,t0 ¼m,k, where y � 2sin� 1ð j q�q0 j
2qF
Þ is the angle associated

with the momentum transfer, and F1ðyÞ ¼
ffiffiffi
2
p

cosðyÞ is the
normalized angular-momentum-one eigenstate in 2D.

In the low-energy limit, the effective attractions in the j ~l j ¼ 1
channel at the intermediate energy scale L0 in Equation (4) will
lead to the following two degenerate topological paired states
(see Methods): the interpocket (p/d)-wave pairing, which is
expected to be chiral (see Fig. 3a) and the modulated intrapocket
pairing (see Fig. 3b). The degeneracy is expected for the model of
Equations (1) and (2) with its rotational symmetry in the pseudo
spin t. There are two ways this degeneracy can be lifted. First, the
trigonal warping will suppress intrapocket pairing as the two points
on the same pocket with opposing momenta will not be both on
the Fermi surface any more (see Fig. 3c). On the other hand, a
ferromagnetic substrate will introduce an imbalance between the
two pockets, which promotes intrapocket pairing47 (see Fig. 3d).

Discussion
The distinct topological properties of the two predicted exotic
superconducting states lead to unusual signatures. The inter-
pocket j ~l j ¼ 1 paired state (see Fig. 3a) is topological with Chern
number |C|¼ 2 because of the two pockets (see Methods). The
Chern number dictates for two chiral edge modes, which in this
case are Majorana chiral edge modes each carrying central charge
(1)/(2) (refs 1,48). This is in contrast to dþ id paired state on a
single spin-degenerate pocket, which is another chiral
superconducting state49–54 with four chiral Majorana edge
modes. An unambiguous signature of two Majorana edge

modes in the interpocket chiral j ~l j ¼ 1 paired state will be a
quantized thermal Hall conductivity1 of

KH ¼ c
p2k2

B

3h
T ð5Þ

at temperature T, where c¼ 1 is the total central charge. In
addition, signatures of the chiral nature of such state could be
revealed by a detection of time-reversal symmetry breaking in
polar Kerr effect and muon spin relaxation measurements.
Finally, a sharp signature of anisotropy of the pairing will be
the maximization of the critical current in a direct current
superconducting quantum interference device (dc SQUID)
interferometry set-up of Fig. 4a at some finite flux Fmaxa0.

The intrapocket j ~l j ¼ 1 paired state (see Fig. 3b) is not only
topological, but also its phase of the gap is spatially modulated with
ei2K?r and e� i2K?r for spin-up and -down pairs, respectively, where
r is the spatial coordinate of the centre-of-mass of the pair (see
Supplementary Note 3). Since the gaps on the two pockets are not
tied to each other in principle, the system may be either helical
respecting time-reversal symmetry (C¼ 0) or chiral (C¼ 2). Either
way, there will be a Majorana zero mode of each spin species at a
vortex core so long as tz is preserved. What makes the intrapocket
paired state distinct from existing candidate materials for
topological superconductivity, however, is its spatial modulation.
Smoking gun signature of the modulation in phase would be the
halved period (hc)/(4e) of the oscillating voltage across the dc
SQUID set-up in Fig. 4b in flux F due to the difference between the
pair momenta on the two sides of the junction. Another signature
of the intrapocket paired state will be the spatial profile of the
modulated phase directly detected with an atomic resolution
scanning Josephson tunnelling microscopy23,55.

In summary, we propose the k-space spin splitting as a new
strategy for topological superconductivity. Specifically, we predict
lightly p-doped monolayer TMDs with their spin-valley-locked
band structure and correlations to exhibit topological super-
conductivity. Of the monolayer TMDs, WSe2 may be the most
promising as its large spin-splitting energy scale56 allows for

i

–i

–1Phase: 1

Interpocket pairing

q

ΓK ′ K

q

K

q
or

K

Intrapocket pairingba

Γ

�

K ′

q

K K ′ K

dc

Figure 3 | The inter- and intrapocket j~l j ¼ 1 paired states. The gap

functions of the~l ¼ � 1 paired states have the approximate form qx±iqy on

the two pockets (represented by hollow circles) centred at ±K, which we

assume to be small and circular as discussed in the text. The colour scheme

on the circles represents the phase of the gap functions, as indicated by the

colour wheel. (a) For the interpocket pairing case, the phase winding on

the two pockets are locked to each other. Overall, the paired state breaks

time-reversal symmetry. (b) For the intrapocket pairing case, each pocket

can independently have either ~l ¼ 1 or ~l ¼ � 1, which leads to a

counterclockwise or clockwise phase winding of 2p. The possible factor

and way to tilt the balance between the inter- and intrapocket pairings:

(c) A sketch for the trigonally warped Fermi pockets expected upon a

heavier doping where the chemical potential still lies within the spin-split.

Such trigonal warping is expected to suppress the intrapocket pairing

as an electron at q has no pairing partner on the same pocket at � q.

(d) The schematic low-energy dispersion near the two valleys for a

monolayer TMD grown on a ferromagnetic substrate. As the chemical

potential m (represented by the dashed line) intersects only one band near

one valley, the intrapocket pairing is expected to be promoted.
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Figure 4 | Configurations of possible SQUID experiments for probing the

two paired states. In both a,b, the red and blue parts indicate the lightly

p-doped monolayer TMD and a uniform s-wave superconductor,

respectively, which are connected by two Josephson junctions represented

by the yellow strips. I is the applied current and F is the magnetic flux

through the loop. (a) The proposed dc SQUID interferometer set-up that

can detect the anisotropy of the interpocket pairing symmetry. The flux

dependence of the critical current is expected to be insensitive and

sensitive to the angle y between the edges connected to the two junctions

for isotropic and anisotropic pairing, respectively. (b) The proposed dc

SQUID interferometer set-up that can probe the finite pair momentum of the

intrapocket pairs for the C¼0 case. The TMD is oriented in the direction such

that the phase of the pairing wavefunction is spatially modulated along the

junction. The period in flux F of the modulated voltage V across the SQUID

loop is expected to be halved into (hc)/(4e) since the difference between the

pair momenta on the two sides of a junction requires simultaneous tunnelling

of a spin-up and a spin-down intrapocket pair, each carrying pair momentum

2K and � 2K, into the uniform superconductor.
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substantial carrier density within the spin-valley-locked range of
doping57. The rationale for the proposed route is to use a lower
symmetry to restrict the pairing channel. The merit of this
approach is clear when we contrast the proposed setting to the
situation of typical spin-degenerate trigonal systems. With a
higher symmetry, trigonal systems typically deals with the need
for anisotropic pairing due to the repulsive interaction by turning
to the topologically trivial f-wave channel2,49. The n-doped
TMDs whose low-energy band structure is approximately spin-
degenerate fall into this category. Hence, experimentally realized
superconductivity in n-doped systems would likely be
topologically trivial even if the superconductivity is driven by
the same repulsive interaction we consider here. The predicted
topological paired states in p-doped TMDs are a direct
consequence of the spin-valley locking, which breaks the spin
degeneracy in k-space and creates two species of spinless
fermions. Experimental confirmation of the predicted
topological superconductivity in p-doped TMDs will open
unprecedented opportunities in these highly tunable systems.

Methods
Perturbative RG calculation. For the RG calculation, we follow the perturbative
two-step RG procedure in ref. 49, which has been used to study superconductivity
in systems such as Sr2RuO4 (ref. 58) and generic hexagonal lattices with spin
degeneracy49. Taking the Hubbard on-site repulsion in Equation (2) as the
microscopic interaction, the first step is to integrate out higher-energy modes
and obtain gt,t0

(0) in Equation (3), the low-energy effective interactions in the Cooper
channel at an intermediate energy L0\0 close to the Fermi level. The second step
is to study the evolution of these effective interactions as the energy flows from L0

to 0, which is governed by the RG equations.
In the first step, we calculate the inter- and intrapocket effective interactions

ginter
(0) (q,q0)�gð0Þt;�t (q,q0) and gintra

(0) (q,q0)�gt,t
(0)(q,q0) in terms of the incoming and

outgoing momenta q and q0 order by order in U until we obtain attraction in one of
them in certain partial-wave channel ~l. Following ref. 46, we find the effective
interactions to be (see Supplementary Note 2)

gð0Þinter q; q0ð Þ � Cþ m2U3

2p3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4q2

F � p02
p

2qF
� U3m2

64p3
1� p2

4q2
F

� �
log 1� p2

4q2
F

� �
; ð6Þ

and

gð0Þintra q; q0ð Þ � C0 � m2U3

2p3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4q2

F � p2
p

2qF
� U3m2

64p3
1� p2

4q2
F

� �
log 1� p2

4q2
F

� �
; ð7Þ

where p¼ q±q0 is the momentum transfer, C40 and C0o0 are momentum-
independent constants coming from tree level and one-loop order, and the
momentum-dependent terms come solely from two-loop order.

Each partial-wave ~l component is given by the projection of ginter/intra
(0) (q,q0) on to

the normalized angular momentum ~l eigenstate in 2D, F~lðyÞ ¼
ffiffiffi
2
p

cosð~lyÞ, where
y � 2sin� 1ð p

2qF
Þ is the angle associated with the momentum transfer p. We find

lð0Þ;
~l

inter=intra ¼
1
p

Z p

0
dygð0Þinter=intra yð ÞF~l yð Þ

¼ 2
ffiffiffi
2
p

a
p
�1ð Þ~lþ 1

1� 4~l2
� bffiffiffi

2
p

p
H1�~l þH1þ~l þ 2log2� 3

~l 1�~l2
� � sin ~lp

� �
; ð8Þ

where Hn is the nth harmonic number and a�(U3m2)/(2p3) and b�(U3m2)/(64p3)
are postive constants related to density of states and interaction strength. Here terms
with a and b come from contributions with one particle–particle and one particle–
hole bubble, and two particle–hole bubbles, respectively (see Supplementary Note 2).

The a term in lð0Þ;
~l

intra acquires an extra minus sign on top of ð� 1Þ~l from the closed

fermion loops in Supplementary Fig.1 (3g) and (3h). Meanwhile, the a term in lð0Þ;
~l

inter

contains an implicit ð� 1Þ~l factor because of the fact that the outgoing external
momenta in Supplementary Fig. 1 (3a) and (3b) are exchanged, which is equivalent to
setting F~l yð Þ ! F~l p� yð Þ.

Note that lð0Þ;
~l

intra with even ~ls is forbidden since intrapocket pairs have equal

spin, and that lð0Þ;
~l

inter ¼ lð0Þ;
~l

intra for odd ~ls since they correspond to the spin-triplet
states with tz¼ 0 and ±1, respectively. While linter

(0),040 as expected from the bare

repulsion, the most negative values are lð0Þ;�1
inter ¼ lð0Þ;�1

intra � � 0:3a� 0:04bo0.
In the second step, we derive and solve the RG equations to study the evolutions

of the effective interactions l
~l
inter=intra Eð Þ as the energy E lowers from L0 to 0. Using

lð0Þ;
~l

inter=intra in Equation (8) as the initial values for the RG flows, the channel with the

most relevant attraction in the low-energy limit E-0 is the dominant pairing
channel. Under the assumption that the energy contours for 0oEoL0 are
isotropic, different partial-wave components do not mix while the inter- and
intrapocket interactions with the same ~l can in principle mix. By a procedure
similar to that in refs 50,59, we find the RG equations up to one-loop order to be

dl
~l
inter

dy
¼ � 1� d2ð Þ l

~l
inter

� �2
ð9Þ

and

dl
~l
intra

dy
¼ �ðd1 � d3Þðl

~l
intraÞ

2 � 2d3ðl
~l
interÞ

2; ð10Þ

where the inverse energy scale y � �s�s
ppð0Þ � n0log L0=Eð Þ is the RG running

parameter, d1(y)�(@Ppp
ss (±2K))/(@y), d2(y)�ð@

Qs�s
phð�2KÞÞ=ð@yÞ, and

d3(y)�(@Pph
ss (0))/(@y). Here Ppp/ph

ss0 (k) is the non-interacting static susceptibility at
momentum k in the particle–particle or particle–hole channel defined in
Supplementary Note 1. Since the low-energy band structure is well nested at ±2K
in the particle–particle channel, the Cooper logarithmic divergence appears not
only at k¼ 0 but also ±2K (see Supplementary Note 1). Thus, d1(y)¼ 1. On the
other hand, since the low-energy band structure is poorly nested at any k in the
particle–hole channel and is far from van Hove singularity, the particle–hole
susceptibilities do not diverge in the low-energy limit (see Supplementary Note 1).
Thus, d2ðyÞ; d3ðyÞoo1 in the low-energy limit y-N. Therefore, with logarithmic
accuracy, the inter- and intrapocket interactions renormalize independently with
the well-known RG equation in the Cooper channel

dl
~l
i

dy
¼ � l

~l
i

� �2
ð11Þ

with i¼ inter, intra. The RG flow l
~l
iðyÞ ¼

lð0Þ;
~l

i

1þ lð0Þ;
~l

i y
, which solves the RG

equation, shows that the pairing interaction in channel ~l becomes a marginally

relevant attraction only if the initial value lð0Þ;
~l

i o0. Since we concluded that the

most negative initial values occur in the j ~l j ¼ 1 channels for both inter- and

intrapocket interactions in the first step of the RG procedure, we expect degenerate

inter- and intrapocket j ~l j ¼ 1 pairings in the low-energy limit.

The Chern number of interpocket paired state. The interpocket chiral j ~l j ¼ 1
paired state becomes just a spinful pþ ip paired state with total spin tz¼ 0 when
we map the spin-valley-locked two-pocket problem to a spin-degenerate single-
pocket problem. The spinful pþ ip pairing comprises two copies of ‘spinless’ pþ ip
pairings as the Bogoliubov-de Gennes Hamiltonian of the former can be written as

H ¼
X

q

eq c
y
q;"cq;" þ c

y
q;#cq;#

� �
þDq c

y
q;"c
y
� q;# þ c

y
q;#c
y
� q;"

� �
þH:c:

¼
X

q

eqc
y
q;þ cq;þ þDqc

y
q;þ c
y
� q;þ þH:c:

� �

þ eqcyq;� cq;� �Dqcyq;� cy� q;� þH:c:
� �

;

where the low-energy dispersion eq¼ � (q2)/(2m)� m, the gap function
Dq � qx � iqy and cq,±�(cq,m ±cq,k )/

ffiffiffi
2
p

. Since a spinless pþ ip paired state has

Chern number C¼ 1, where C ¼ 1
8p

R
d2qm̂ � @qx

m̂�@qy
m̂

h i
with

m̂ ¼ ðRe½Dq�; Im½Dq�; eqÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2

q þ j Dq j 2
q

, the tz¼ 0 spinful pþ ip paired state in

the single-pocket system has C¼ 2. Hence, the interpocket chiral j ~l j ¼ 1 pairing
in the two-pocket system has C¼ 2 as well.

Data availability. The authors declare that the data supporting the findings of this
study are available within the paper and its Supplementary Information file.
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