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Free energy of a chemotactic model 
with nonlinear diffusion
Seung Ki Baek   1 & Beom Jun Kim2

The Patlak-Keller-Segel equation is a canonical model of chemotaxis to describe self-organized 
aggregation of organisms interacting with chemical signals. We investigate a variant of this model, 
assuming that the organisms exert effective pressure proportional to the number density. From the 
resulting set of partial differential equations, we derive a Lyapunov functional that can also be regarded 
as the free energy of this model, and minimize it with a Monte Carlo method to detect the condition for 
self-organized aggregation. Focusing on radially symmetric solutions on a two-dimensional disc, we 
find that the chemical interaction competes with diffusion so that aggregation occurs when the relative 
interaction strength exceeds a certain threshold. Based on the analysis of the free-energy landscape, 
we argue that the transition from a homogeneous state to aggregation is abrupt yet continuous.

Ants communicate with each other through the use of pheromones to adjust their collective behaviour1–3. This 
mechanism often leads to intriguing self-organized patterns. For example, their foraging path can be understood 
as solving a certain optimization problem in terms of time and energy costs4–9, and the shape of the path is pre-
dictable by Fermat’s principle of least time10–12. From a biological point of view, especially in the context of natural 
selection, it is highly plausible that an ant colony benefits from the ability of organizing a foraging path. It is also 
worth noting that the key ingredient is not an individual ant with little computational capacity, but the interaction 
in a group of such ants. It is thus regarded as an example of emergent phenomena13 and the term ‘swarm intelli-
gence’ has been coined to describe this idea. Various computational techniques can be categorized as based on 
swarm intelligence (see, e.g., refs 14 and 15). From a physical point of view, ants provide a good example of active 
matter16, which can aggregate17 or circulate6 spontaneously and exhibit peculiar mechanical properties18.

The Patlak-Keller-Segel equation is a canonical starting point to study organisms that interact by means of 
chemical attractants19, 20. This model treats the density of organisms ρ(r, t) and the concentration of chemical 
attractants c(r, t) as continuous variables, where r denotes spatial coordinates and t means time, and describes the 
interplay between them. The Patlak-Keller-Segel equation has been extensively studied by mathematicians and a 
variety of review papers are available (see, e.g., refs 21 and 22). One of characteristic features of this model is that 
the organisms can form a dense aggregate, developing a δ-function peak within a finite time, when the space has 
dimensionality d > 1. Although such a ‘blow-up’ phenomenon provides an approximate description for biological 
aggregation, it is not entirely realistic that the whole population collapses to a single point. Researchers have sug-
gested various mechanisms to regularize this singularity: To name a few, there are density-dependent chemotactic 
sensitivity23–26, nonlinear diffusion27, 28, logistic damping29, cross diffusion30, and shear flows31. One may also refer 
to a review by Hillen and Painter32 for many variations of the classical Patlak-Keller-Segel model. One may also 
refer to ref. 33 to see how it can be used to describe the organization of a foraging path.

This work adopts the idea of nonlinear diffusion27, 28 to take into account the finite volume of the organisms, 
and analyse its consequences. Let us write down the following set of equations:

ρ χ ρ ρ ρ∂
∂

= ∇ ⋅ − ∇ + ∇
t

c D( ) (1)0 0

ρ ν∂
∂

= + ∇ −
c
t

f c g c, (2)0 0
2

0

where χ0, D0, f0, ν0, and g0 are positive constants. The terms on the right-hand side of Eq. (1) represent chemotac-
tic movement and nonlinear diffusion, respectively. On the other hand, the three terms on the right-hand side of 
Eq. (2) mean generation, diffusion, and degradation, respectively. According to the original derivation27, the 
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nonlinear diffusion term derives from ρ ρ∇h( ) with a pressure function h(ρ) due to crowding. If the pressure is 
expanded as a power series of density, as in the virial expansion, the choice of h(ρ) ∝ ρ corresponds to the 
lowest-order approximation, because the zeroth order clearly vanishes as h(ρ = 0) = 0. Some numerical observa-
tions have been reported in this case28, 32. Although h(ρ) is effective pressure to describe collective motion phe-
nomenologically, it is interesting to note that an ant aggregate has an elastic modulus, which has units of pressure, 
as a linear function of ρ, until the ants are so densely packed that their legs are compressed18. Note that the classi-
cal Patlak-Keller-Segel equation is interpreted as ρ ρ∼h( ) ln  from this viewpoint.

In this work, we show that the system described by Eqs (1) and (2) has a Lyapunov functional whose time 
derivative is smaller than or equal to zero all the time. It will also be called the free energy on the analogy with 
statistical mechanics. In general, a Lyapunov functional is a powerful tool in analysing a dynamical system, and its 
existence can be utilized to study properties of a fixed point beyond the local stability analysis34. After examining 
two stationary states, of which one is homogeneous and the other is not, we investigate the Lyapunov functional 
in the normal-mode coordinates to examine the transition between the homogeneous and inhomogeneous states, 
restricting ourselves to radially symmetric solutions. We will minimize the Lyapunov functional with a Monte 
Carlo method because it is computationally efficient in studying long-time behaviour of the system. We then 
briefly check if the Monte Carlo results are consistent with those from the direct numerical integration of the 
partial differential equations. After characterizing the transition based on the free-energy landscape, we conclude 
this work.

Analysis
In this section, we begin with deriving the Lyapunov functional of Eqs (1) and (2). We are interested in homo-
geneous and inhomogeneous solutions and a transition between them. Of course, their stability can be studied 
in a standard way by adding small perturbation with the lowest nonzero mode, as will be demonstrated below. 
However, our main point is that the transition from the homogeneous distribution to aggregation can be analysed 
in detail by means of the Lyapunov functional, which contains the full spectrum of possible modes in this system.

Lyapunov functional.  Before proceeding, we have to specify the boundary conditions of our model. In 
analysing Eqs (1) and (2), we consider a two-dimensional disc of radius l and choose the Neumann boundary 
conditions,

ρ∂
∂

=
∂
∂

=
r

c
r

0 (3)

at r = 0 and r = l, where r ≡ |r| is the distance from the origin of the disc. This condition means that the organisms 
cannot enter or escape from the system across the boundary, which is the experimental situation under consider-
ation. In other words, Eq. (1) is derived from a continuity equation with current χ ρ ρ ρ= − ∇ + ∇c Dj 0 0 , which 
implies that it conserves the total mass of the organisms:

∫ ∫ ∫ρ θ θ ρ θ= =
π

M r r dr d r dV( , ) ( , ) , (4)
l

0

2

0

where θ means the angle in the polar coordinates and dV is a volume element.
If we assume that the chemical attractant reaches a stationary state very quickly, so that the left-hand side 

of Eq. (2) can be taken to be approximately zero, we can solve the equation for c35. Let us consider the entire 
two-dimensional space for simplicity. The formal solution is then given as

∫ν
ρ= − −c

f
dx y x y y( ) ( ) ( ),

(5)
0

0

where  is the Green function obtained in terms of K0, the modified Bessel function of the second kind, as 
follows:


π

κ− = − −Kx y x y( ) 1
2 ( ) (6)0

with κ ν≡ f /0 0 . Plugging this into Eq. (1), we find that
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2
( ) ( ) ( )
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0 2 0 0

0
E G

Note that the first term is equivalent to the participation ratio in the localization problem36, and the second term 
can be interpreted as interaction energy between organisms at a distance. The participation ratio is minimized 
when ρ is distributed homogeneously, whereas the effective interaction potential, Eq. (6), make the organisms 
attract each other. If diffusion is dominant, i.e., ν χD f0 0 0 0, the interaction term becomes negligible and the 
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aggregation mediated by the chemical attractants will be suppressed. From Eqs (7) and (8), it is straightforward to 
see that

∫
δ
δρ

ρ= − ∇
d
dt

dx x( ) ,
(9)

2
 

which implies that   never increases as time goes by.
We have derived Eq. (8) under the restriction that ∂c/∂t = 0 only because   provides a simple physical inter-

pretation in terms of ρ only. In fact, it is possible to construct a complete Lyapunov functional without such a 
restriction: Let us rescale the variables as τ = D0t and ′ =

χ
c c

D
0

0
. to rewrite Eqs (1) and (2) as

ρ
τ
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∂
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0
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where Z ≡ ρ − c′. We can show that

∫ ∫ ∫
ρ
τ

ρ ρ∂
∂

= ∇ ⋅ ∇ − ∇dV Z dV Z Z dV Z( ) , (12)
2

where the first term on the right-hand side vanishes due to the boundary conditions. By using Eq. (12), we can 
also show the following:
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2
2

In addition, we have the following equality:
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Plugging Eq. (14) into Eq. (16), we get
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where
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It is clear from Eq. (17) that dW/dτ cannot be positive so that W does not increase when the system evolves 
according to Eqs (1) and (2). For this reason, this quantity is sometimes called the free energy of this system. The 
time derivative dW/dτ equals zero if ∂c′/∂τ = 0 and ∝ ∇ =Zj 0 everywhere that ρ > 0. The first integral of Eq. 
(18) consists of the participation ratio and the potential energy due to the coupling between ρ and c, whereas the 
other two integrals describe the chemical energy37. Likewise, one can argue that Eq. (17) contains the chemical 
production term ∝(∂c/∂t)2 on its right-hand side, and that the last term corresponds to something referred to as 
entropy production in the classical Patlak-Keller-Segel model because it is related to the time derivative of the 
Shannon entropy37. In our nonlinear-diffusion model, the last term of Eq. (17) may be regarded as generalized 
entropy production in terms of the Tsallis entropy38. It is also worth noting that the integrands in Eq. (18) are all 
quadratic, which will turn out to be useful for our analysis.

Linear stability of a homogeneous stationary solution.  Equations (1) and (2) admit a homogeneous 
stationary solution ρ ρ= =c

g

f const
0

0
, where ρconst = M/(πl2) from Eq. (4). In this state, Eq. (18) yields

π
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χ
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The standard linear stability analysis assumes small perturbations ερ and εc around this homogeneous solution to 
assume ρ(r, t) = ρconst + ερ(r, t) and ρ ε= +c t tr r( , ) ( , )

f

g cconst
0

0
. By collecting linear terms in ερ and εc, we obtain
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Suppose that the perturbations are described as cylindrical harmonics, satisfying the following equation:

ε
ε∇ +







 = .ρk( ) 0

(21)c

2 2

Each mode then takes the form of Jn(kr)e±inθeηt, where Jn means the Bessel function and η is its growth rate. The 
Neumann boundary conditions are expressed as =∂

∂
J kl( ) 0

r n . The lowest mode is thus found at n = 0, which 
means radially symmetric density fluctuations concentrated around the origin. The first zero of J1 is located at 
kl ≈ 3.832…. If we solve the resulting eigenvalue problem:

η ρ ν η ρ ν χ+ + + + + − =k D g k D g k k f[ ( ) ] [ ( ) ] 0, (22)
2 2

0 const 0 0 const
2

0 0
2

0
2

0 0

the stability condition is obtained as k2D0(g0 + k2ν0) − k2f0χ0 > 0. Note that it is independent of ρconst, differently 
from the classical Patlak-Keller-Segel model39, so that the system does not need critical mass for instability. This 
feature is, however, due to our particular choice of nonlinear diffusion. We find a necessary condition for the 
lowest mode to grow in time as follows:

χ

ν ν
≈ . <






−
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
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l K l14 684 ,

(23)
2 2 0 0
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0
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2 2 2

where

χ

ν ν
≡ − .K

f
D

g

(24)
0 0

0 0

0

0

If we assume that 
g 10 , the expression inside the square root of Eq. (24) is interpreted as a ratio between chem-

otactic strength and diffusivity. This small-g0 limit is often plausible without altering the essential physics, because 
some ant pheromones last for days40. Equation (23) suggests that Kl will be an important dimensionless parameter 
that governs the aggregation phenomenon.

In addition, if the disc is so large that the boundary effects are negligible and there is a continuous spectrum 
of possible wavenumbers, the initial stage of instability from the homogeneous solution is governed by the most 
unstable mode with k = ku such that maximizes the positive η26. The wavenumber ku can be expressed by the 
following formula:

χ
ρ

ν ρ ν
=





 +






k f

D D
1 ,

(25)
u
2

0 0
const

0 0 0 const 0

2

where we take the limit of g0 → 0 to simplify the expression. Equation (25) will determine the typical length scale 
between aggregates, when the homogeneous initial state becomes unstable.

Inhomogeneous stationary solution.  Let us now consider a radially symmetric stationary aggregate. The 
boundary conditions make the flux vanish everywhere, i.e., χ ρ ρ ρ= − ∇ + ∇ =c Dj 00 0 . It implies that

ρ
χ

= −
D

c c( )
(26)

0

0
0

with a constant of integration c0. Substituting Eq. (26) into Eq. (2) with the stationarity condition, we obtain an 
inhomogeneous Helmholtz equation:

χ
ν= − + ∇ −

f
D

c c c g c0 ( ) ,
(27)

0 0

0
0 0

2
0

which has the following radially symmetric solution:

χ

ν
= +c r AJ Kr

f
K D

c( ) ( ) ,
(28)

0
0 0
2

0 0
0

where A is a constant describing the amplitude of aggregation, Jn is the Bessel function, and the wavenumber K 
has been defined in Eq. (24) above. Obviously, the solution is feasible only when the boundary condition is satis-
fied by = − =

=
J Kr KJ Kl( ) ( ) 0d

dr r l
0 1 , and let us suppose that this is the case. The constant A is bounded by a 

condition that both ρ and c must be non-negative everywhere. If we plug Eq. (28) into Eq. (26), we find that
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ρ
χ χ

ν
=







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+

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

−



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


.r

D
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f
K D
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(29)

0

0
0
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2
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0

The unknown constant c0 can be explicitly determined from Eq. (4) because ∫ =J Kr r dr( ) 0l

0 0  as long as the 
boundary conditions are satisfied. After some algebra, we can write the results as

ρ
χ

ρ= +
D

AJ
(30)

0

0
0 const

= +c AJ c , (31)0 const

where ρconst and cconst define the homogeneous solution. We substitute these results into Eq. (18) to calculate the 
Lyapunov functional:

∫

∫ ∫

χ

ν

χ χ χ χ

ν

ν

χ χ

ν

χ

=
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
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1
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2
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∫
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χ
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χ

ν

χ

ν
π

χ

ν

χ

ν
π

χ
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
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−


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D
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f
D

m
f
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2
1
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3 2

0
3

0
0
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2 0
2

0
3

2
0
3

0
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2
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2 2

0
2
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0
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2
0
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0
4

0
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0
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We can see that the three integrals on the last line vanish altogether, if we note the definition of K [Eq. (24)] and 
the following identity:

∫ ∫

∫

∫

=












= −

=

K rJ Kr dr K d
dr

rJ Kr J Kr dr

K rJ Kr d
dr

J Kr dr

K rJ Kr dr

( ) ( ) ( )

( ) ( )

( ) , (34)

l l

l

l

2

0
0
2

0
1 0

0
1 0

2

0
1

2

which is valid under our assumption that J1(Kl) = 0. As a result, we obtain

π

χ

ν

χ
=






−





W M

l
f
D

f
g D2

1 ,
(35)

2

2
0 0

0 0

0 0

0 0

which is identical to the Lyapunov functional of the homogeneous solution [Eq. (19)]. It is consistent with the fact 
that the solution with K has neutral stability in the linear-stability analysis [see, e.g., Eq. (23)], according to which 
the radially symmetric mode ∝J0(kr) can survive only when k is smaller than K. Although we have assumed that 
the wavenumber K is compatible with the boundary condition, it is actually independent of l, which implies that 
the stationarity condition cannot be met exactly. If a perturbative mode with k < K appears from the homoge-
neous state with satisfying the boundary conditions, therefore, it cannot be stationary: Its amplitude will grow 
exponentially at first, but cannot become arbitrarily large because of the non-negativity of ρ and c. The growth 
will stop when A reaches the largest value that does not violate the non-negativity. This scenario seems to suggest 
a jump in A as K crosses a threshold, and this scenario will be scrutinized below by considering a full spectrum 
of normal modes.

Normal-mode expansion.  Let us decompose ρ and c into normal modes:

∑ ∑ρ θ ρ θ θ= + ′








+






=

∞

=

∞
r t J j r l E t p F t p( , , ) ( / ) ( )cos ( )sin

(36)p m
p p m pm pmconst

0 1
,

∑ ∑θ θ θ= + ′








+






=

∞

=

∞
c r t c J j r l G t p H t p( , , ) ( / ) ( )cos ( )sin ,

(37)p m
p p m pm pmconst

0 1
,

where ′jpm denotes the mth zero of J x( )d
dx p . Note that
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∫ ∫ θ′ =
π θrJ j r l e dr d( / ) 0, (38)

l
p pm

ip

0

2

0

so that Eq. (36) automatically conserves the total mass ∫ ∫ ρ θ θ ρ π= =
πM r r dr d l( , )l

0

2

0 const
2. Likewise, the total 

amount of the chemical attractant is given as cconstπl2, which is, however, a function of time in general. It is 
straightforward to see the following orthogonality relation

∫ δ φ δ′ ′ = − ′ ′ = −rJ j r l J j r l dr l J j d
dx

J j l( / ) ( / )
2

( ) ( )
2

,
(39)

l
p pu p pw p pu p pu uw pu uw

0

2 2

2

2

where δuw is the Kronecker delta and φ ≡ ′ ′J j J j( ) ( )pu p pu
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2 .
We will rewrite the Lyapunov functional [Eq. (18)] by using Eqs (36) and (37)]. The first term needs an integral 

of ρ2 over the disc, which can be expressed as
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by using the orthogonality relations. The integrals of ρc and c2 can be done in a similar way. However, the last part 
of the Lyapunov functional [Eq. (18)] is more complicated: It is involved with an integral of ∇c 2, which is decom-
posed into two terms:
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We again substitute Eqs (36) and (37) here to obtain
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Note that the results still have the triple sums over p, m, and n, because we cannot enjoy the orthogonality between 
m and n when performing the integrals over r.

To circumvent the time-consuming evaluation of the triple sums, we focus on radially symmetric solutions by 
setting p = 0. If jpm denotes the mth zero of Jp(x), we can identify ′j m0  with j1m because = −J x J x( ) ( )d

dx 0 1 . Therefore, 
Eq. (39) further simplifies to

∫ ∫ δ= =rJ j r l J j r l dr rJ j r l J j r l dr l J j( / ) ( / ) ( / ) ( / )
2

( ) , (44)
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2
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where the first equality is derived in the same way as in Eq. (34), and the second one is the conventional orthogo-
nality of the Bessel function41. Plugging Eqs (36) and (37) with p = 0 into the Lyapunov functional [Eq. (18)] and 
using the orthogonality, we find that
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where we have defined E00 ≡ ρconst, G00 ≡ cconst, and j10 ≡ 0. We are interested in the minimum of Eq. (46), expecting 
that it captures the long-term behaviour of the system. The set of variables {cconst, E01, E02, …, G01, G02, …} result-
ing from the minimization will be independent of the overall rescaling of W and thus determined by three dimen-
sionless ratios, χ0/D0, g0/f0, and ν0/(f0l2). The first ratio measures the chemical sensitivity of the organism with 
respect to its nonlinear diffusivity. The next one measures the relative time scale between the generation and 
decay of the chemical attractant. Finally, the last one gives the typical time scale for the chemical attractant to 
diffuse into the whole system, measured with respect to the generation rate. Let us assume that each summand 
can be considered separately in this minimization problem. Then, for m = 0, only cconst varies, because ρconst is fixed 
by the total mass M, and the optimal value for cconst equals (f0/g0)ρconst as we have already seen in the homogeneous 
stationary solution. For every other m > 1, we have a simple quadratic function of E0m and G0m. From an eigen-
value analysis, it is straightforward to see that the functional shape is elliptic when j1m > Kl and hyperbolic other-
wise, where K is defined by Eq. (24). In the former case, the minimum is located at E0m = G0m = 0. In the latter 
case, the minima of Eq. (46) are found at E0m ∝ G0m = ±∞, and the divergence must be regulated by the condition 
that both ρ and c are non-negative everywhere. The idea is sketched in Fig. 1 for m = 1. According to this argu-
ment, if Kl lies between j11 and j12, for example, we will observe two local minima, one for E01 ∝ G01 > 0 and the 
other for E01 ∝ G01 < 0, while all the other E0m’s and G0m’s with m > 1 remain suppressed to zero. An interesting 
point in this picture is that the Lyapunov functional becomes independent of the amplitude of aggregation if Kl 
exactly equals j11: An infinite number of states would have the same value of the Lyapunov functional. Therefore, 
even if the system converges to two different states as → +Kl j11 and → −Kl j11, respectively, there would be a con-
tinuous spectrum of states between them at Kl = j11.

Numerical Results
Let us choose χ0 = 4 and set other parameters, ρconst, D0, ν0, g0, and l, to unity. With these parameters, the system 
reaches the threshold for aggregation, Kl = j11, when = ≈ .⁎f f 3 920 0 . We minimize the Lyapunov function for 
radially symmetric cases [Eq. (46)] with different values of f0 by means of the Metropolis algorithm (see Method 
for details). In evaluating Eq. (46) numerically, we have to replace the infinite series by a partial sum, and the 
spatial resolution of the resulting expression will be enhanced as we include more and more modes in the sum-
mation. Here, let us use a partial sum up to m = 19 because it already captures the overall behaviour correctly. This 
choice implies that we have to work with 39 variables of cconst, E01, …, G0m. For the algorithm to search for the 
parameter space efficiently, we introduce a ‘temperature’ variable T, which helps the system escape from metasta-
ble local minima. We start with a sufficiently high temperature, say, T = 101, to explore a wide region of the 

(a)
W

Amplitude

(b)

W

Amplitude

(c)

W

Amplitude

Figure 1.  Sketches of the Lyapunov functional W along a principal axis, a combination of the amplitudes 
E01 and G01, when (a) Kl < j11, (b) Kl = j11, and (c) Kl > j11, respectively. The vertical dotted lines represent the 
physical constraint that both ρ and c should be non-negative, so that the system can explore only the landscapes 
of W drawn with solid lines. The small red circles show local minima of the given landscapes.
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parameter space and then gradually lower the temperature down to T = 0. As argued above, we observe a sharp 
transition from a homogeneous solution to aggregation when f0 exceeds ≈ .⁎f 3 920 , and the aggregation pattern 
is approximated to J0(j11r/l) [Fig. 2]. From f0 = 3.93 to f0 = 4.00, on the other hand, the system remains qualitatively 
the same, although small variations exist from sample to sample. To sum up, the behaviour at Kl ≈ j11 is indeed 
explained by the assumption that the minimization of Eq. (46) can be carried out term by term.

As f0 increases, however, the assumption loses validity. In Fig. 3, we plot our numerical minimization results 
with f0 = 5 while all the other parameters are the same as above. Then, the value of Kl ≈ 4.3589 still falls between 
j11 ≈ 3.8317 and j12 ≈ 7.0156. If Wref denotes the value of the Lyapunov functional of the homogeneous solution, 
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Figure 2.  (a) Density of the organisms ρ and (b) the density of their chemical attractants c, obtained by 
minimizing a partial sum of Eq. (46) up to m = 19 with the Metropolis algorithm. We choose χ0 = 4, ρconst = 1, 
D0 = 1, ν0 = 1, g0 = 1, and l = 1. For each f0, we run 20 independent samples, slowly lowering the ‘temperature’ 
from T = 10 to T = 0.
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Figure 3.  Minimization results of a partial sum of Eq. (46) up to m = 19, obtained by the Metropolis algorithm. 
In this plot, we show (a) the density of the organisms ρ, (b) that of the chemical attractants c, (c) the amplitudes 
E0m’s for describing ρ, and (d) G0m’s for c. We choose f0 = 5, χ0 = 4, ρconst = 1, D0 = 1, ν0 = 1, g0 = 1, and l = 1. The 
initial condition is given by cconst = (f0/g0)ρconst and E0m = G0m = 0 in each case. For the zero-temperature case, 
i.e., T = 0, the system approaches either of two different local minima, represented by the purple and green lines, 
respectively. If we instead slowly cool down the system from T = 101 to T ≈ 10−3, we find high concentrations 
of ρ and c around r = 0 for all the 20 samples shown in this plot (the blue lines). Among the blue lines, the solid 
ones represent the sample with the best minimization result.
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we see from Eq. (19) that Wref/πl2 = −190. To see the minimization performance, we check a relative difference 
from this value,

∆ ≡
−

.
W W

W (47)
ref

ref

We first run the Metropolis algorithm from E0m = G0m = 0 with fixing the temperature T to zero. We then find two 
different minima as expected: One describes a population concentration around r = 0, and the other shows an 
annular structure which is reminiscent of an ant mill6. These patterns nicely match with our picture in Fig. 1(c). 
Especially, the concentration around r = 0 is essentially the same pattern that we have shown in Fig. 2. However, 
if we start from T = 101 and gradually lower the temperature down to T ≈ 10−3, a better minimization result is 
achieved and it is characterized by systematic deviations of E0m from zero for <



m 10. The small yet finite temper-
ature T ≈ 10−3 shows us how the modes are affected by environmental noises. Due to the excitation of high-m 
modes, we observe higher concentrations of ρ and c around the origin than expected from the zero-temperature 
case. Such coupling between modes would not be observed if Eq. (46) was minimized term by term. In Fig. 3, we 
see that E01 is considerably greater than that of the zero-temperature result. Higher modes with m > 1 should thus 
be excited to ensure the non-negativity of ρ, increasing W. Nevertheless, the reduction of W from m = 1 may well 
overtake the increment from m > 1, because each mode appears with a different weight in Eq. (46). The excitation 
of high-m modes becomes more pronounced as we go far above j11: For example, let us choose f0 = 10.0 and 
χ0 = 8.0, for which Kl ≈ 8.8882 is greater than j12 ≈ 7.0156 but lies below j13 ≈ 10.1735. We observe that the 
zero-temperature Metropolis algorithm ends up with one of three different minima shown in Fig. 4(a). Once 
again, the annealing procedure from T = 101 to T = 10−3 finds a much better result, concentrating the most of the 
population around r = 0. Note that the amplitudes E0m exhibit a nontrivial structure in Fig. 4(c). It actually extends 
to even higher m > 19 if we take more modes into account in computing Eq. (46), but those higher modes hardly 
affect the radius of the aggregate in Fig. 4(a).

When the distribution ρ(r) is given, the degree of aggregation can be estimated by the Shannon entropy:
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Figure 4.  Minimization results of a partial sum of Eq. (46) up to m = 19, obtained by the Metropolis algorithm. 
We choose f0 = 10 and χ0 = 8, and keep all the others the same as in Fig. 3. (a) The density of the organisms. 
(Inset) If we run the zero-temperature Metropolis algorithm starting with 

= = = = = = E E G G 001 02 01 02 , the system approaches either of three different local minima, which 
are represented by the purple, green, and blue lines, respectively. We can also start from T = 10 and then cool 
down the system slowly. Performing this process with 20 independent samples, we plot their ρ at T = 10−3 with 
the orange lines. Among the orange lines, the solid ones represent the sample with the best minimization result. 
The other panels show (b) the density of the chemical attractants, (c) the normal-mode amplitudes for ρ, and 
(d) those for c, respectively.



www.nature.com/scientificreports/

1 0Scientific REPOrts | 7: 8909  | DOI:10.1038/s41598-017-09369-w

∫ ∫ ρ ρ
ρ

θ= − .
π

S r r r dr d( ) log ( )

(48)

l

0

2

0 const

Figure 5 shows S as a function of f0 at two different temperatures of the Monte Carlo calculation. The other param-
eters are set to the same as in Figs 2 and 3. When T is high, the system is insensitive to f0, and S does not show any 
significant change. For low T, on the other hand, it becomes clear that a jump of S exists in the vicinity of = ⁎f f0 0 . 
Recall that the separability assumption predicts that the system undergoes stepwise changes as f0 increases, 
because Kl has to exceed j1m to excite the mth mode (m = 1, 2, …). That is, if the assumption was valid everywhere, 
all the higher modes would remain suppressed unless Kl > j12, which requires f0 > 12.55. However, our Monte 
Carlo results have shown that modes tend to be coupled to each other to reduce the free energy to a greater extent 
than predicted by the separability assumption. In other words, it implies that S jumps only once at ⁎f0  and then 
changes continuously for higher f0, which is indeed the case in Fig. 5.

It is also instructive to directly consider dynamics of Eqs (1) and (2) for the following reason: The idea behind 
our Monte Carlo calculation is that the result can describe long-time behaviour of the real dynamics. As men-
tioned in Method, the algorithm checks the non-negativity of ρ and c as well as the change of W, so that a Monte 
Carlo move will be rejected if it violates the non-negativity, even if it decreases W. On the other hand, the dynam-
ics of Eqs (1) and (2) does not have such rejection but only continues with dW/dt ≤ 0 [Eq. (17)]. Therefore, one 
may well ask if the dynamics always confines the system in a physical region where both ρ and c are non-negative. 
Fortunately, the answer is yes, as has been proved in ref. 27. We can thus safely move on to the next question, i.e., 
whether the long-time behaviour is consistent with the Monte Carlo result. Under radial symmetry, the equations 
are written as
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We can integrate these equations numerically, e.g., with the Forward-Time Central-Space (FTCS) method42, and 
the results are given in Fig. 6. We still use the same parameters as in Figs 2 and 3 to have a threshold at 

= ≈ .⁎f f 3 920 0 . As expected, both ρ and c become flatter as time goes by when < ⁎f f0 0  [Fig. 6(a,b)]. On the other 
hand, when > ⁎f f0 0  [Fig. 6(c,d)], ρ and c instead converge to inhomogeneous distribution functions, respectively, 
which exactly match with the ones in Fig. 2. Moreover, the time evolution undergoes critical slowing down as we 
approach ⁎f0 . It is consistent with the linear-stability analysis in which the eigenvalue governing the mode growth 
(or decay) vanishes at the threshold. However, we also note that the naive FTCS scheme becomes unstable at large 
t, violating the non-negativity condition. This must be a numerical artefact because, as mentioned above, the 
dynamics itself preserves the non-negativity of ρ and c27. A better alternative could be to utilise the 
operator-splitting scheme43, incorporating exact solutions of the porous-medium equation (see, e.g., ref. 44).

Summary
In summary, we have investigated a variant of the Patlak-Keller-Segel model in which pressure is assumed to 
increase linearly with the density of the organisms [Eqs (1) and (2)]. We have derived its Lyapunov functional 
W in Eq. (18), which may also be called the free energy of this system. The linear stability analysis of the homo-
geneous solution predicts a jump in the amplitude of aggregation as a parameter K, defined in Eq. (24), exceeds 
j11/l. We have checked this transition by using the exact Lyapunov functional, simplified for radially symmetric 
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Figure 5.  Shannon entropy [Eq. (48)] as a function of f0. The other parameters are the same as in Figs 2 and 3. 
For each data point, we take an average over 20 independent samples. The vertical dotted line represents 

= ≈ .⁎f f 3 920 0  to make Kl = j11.
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solutions [Eq. (46)]. The system converges to two different states depending on in which direction the transition 
point is approached. At the transition point, however, W is independent of the amplitude of aggregation and a 
continuous spectrum of infinitely many states exists between the two states with exactly the same value of W. The 
transition is thus continuous.

Our numerical calculation furthermore shows that Eq. (46) has multiple local minima (Figs 3 and 4). It is an 
open question if the existence of multiple local minima in W is due to the fact that we have restricted ourselves to 
radially symmetric solutions. That is, if we relaxed the symmetry requirement, some of the local minima could 
be connected to others via non-symmetric states. For example, the annular structure in Fig. 3(a) has relatively 
high W than other minima, and it is likely to collapse into another state in the presence of non-symmetric per-
turbations. At the same time, the extended parameter space could well introduce far more metastable states in 
the absence of the radial symmetry: Reference 28 shows us one of such states obtained with the finite-element 
method. To check those possibilities, we are currently working with the full normal-mode expression of W with-
out the radial symmetry.

Method
In minimizing a partial sum of W from m = 0 to = ˆm m [Eq. (46)] numerically, we treat the total mass M [Eq. (4)] 
and temperature T as input parameters. The initial state is defined by a set of variables, G00 ≡ cconst = M/(πl2) and 

= = = = = = E E G G 001 02 01 02 , from which W is computed. Note that E00 ≡ ρconst = M/(πl2) is a constant 
that will not be updated throughout the minimization procedure. We generate a neighbouring state in the follow-
ing way: We first choose a mode ∈ … ˆm m[0, , ]. If m > 0, we add two independent random numbers rE and rG, 
each of which is taken from [−0.1, 0.1), to the corresponding amplitudes E0m and G0m, respectively. If m = 0, on 
the other hand, only G00 will be updated by rG ∈ [−0.1, 0.1) because E00 = ρconst should remain constant. From this 
neighbouring state, we can calculate the Lyapunov functional, and let us denote its value W′. We basically employ 
the standard Metropolis algorithm to determine whether to accept the move to this neighbouring state: We first 
check if the move satisfies W′ ≤ W. Otherwise, we draw a random number from [0, 1) and check if it is smaller 
than exp[(W − W′)/T]. If either of those two conditions is met, we proceed to check if the move leaves both ρ and 
c non-negative everywhere inside the disc by dividing the region into a sufficiently fine mesh compared to the 
variations of the highest mode with m̂. In short, we carry out the move only if it is accepted by the Metropolis 
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Figure 6.  Direct numerical simulation of Eqs (1) and (2) under radial symmetry with the Forward-Time-
Central-Space (FTCS) scheme. Panels (a,c) show ρ(r, t) and the others do c(r, t). We use the same parameter as 
in Figs 2 and 3, which means that the threshold corresponds to ≈ .⁎f 3 920 . Both for = . < ⁎f f3 800 0  (the upper 
panels) and = . > ⁎f f4 000 0  (the lower ones), the system starts from an identical configuration which is found 
by the Monte Carlo calculation at some high T. The only difference in the initial conditions is the total amount 
of the chemical attractants because we have set cconst = (f0/g0)ρconst ∝ f0. The time step for integration is chosen to 
be Δt = 10−7, and the horizontal axis is divided into 200 grid points. Note that the vertical axes are drawn on the 
log scale in panels (a,c) to see the behaviour of ρ(r, t) near the boundary at r = L.
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algorithm without violating the non-negativity. One Monte Carlo step consists of +m̂( 1) such attempts to move 
to neighbouring states.

We test the algorithm by running it at T = 0 to obtain the expected results such as in the inset of Fig. 4(a). To 
find a better minimum of W, we choose an annealing schedule as T = 10 × (1.2)−n with n = 0, 1, …, 50, and take 
1.5 × 104 Monte Carlo steps at each T (Figs 3 and 4). We also note that we have added calculations with T = 0 at 
the end of this annealing schedule for clarity in Fig. 2.
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