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Acetylcholinesterase (AChE) has proven to be an effective drug target in the treatment of neurodegener-
ative diseases such as Alzheimer’s, Parkinson’s and dementia. We developed a novel QSAR regression
model for estimating potency to inhibit AChE, pKi, on a set of 75 structurally different compounds includ-
ing oximes, N-hydroxyiminoacetamides, 4-aminoquinolines and flavonoids. Although the model
included only three simple descriptors, the valence molecular connectivity index of the zero-order,
0vv, the number of 10-membered rings (nR10) and the number of hydroxyl groups (nOH), it yielded
excellent statistics (r = 0.937, S.E. = 0.51). The stability of the model was evaluated when an initial set
of 75 compounds was broadened to 165 compounds in total, with the increase of the range of pKi

(exp) from 6.0 to 10.2, yielding r = 0.882 and S.E. = 0.89. The predictive power of the model was evaluated
by calculating pKi values for 55 randomly chosen compounds (S.E.test = 0.90) from the calibration model
created on other 110 compounds (S.E. = 0.89), all taken from the pool of 165 compounds.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Acetylcholinesterase (AChE) have proven to be effective in the
treatment of Alzheimer’s and Parkinson’s disease symptoms. The
current treatment is based on AChE inhibitors including donepezil,
rivastigmine and alkaloid galantamine (Giacobini, 2006;
Mohammad et al., 2017; Xie et al., 2020). Although Tacrine (Cog-
nexw�) was approved as a drug for AD treatment, it was discontin-
ued from medical use due to high hepatotoxicity. Therefore, with
the ageing of the world population and increased risk of dementia,
the development of AChE inhibitors attracts the highest scientific
interest in the process of designing safer and more effective drugs
(Sanad and Mekky, 2021; Xie et al., 2020).

The QSAR (quantitative structure–activity relationship) method
represents an important tool for drug development and has led to
numerous AChE QSAR models (Jana et al., 2018; Kumar et al., 2020;
Niu et al., 2017) of different complexity and predictivity. The
development of a QSAR regression model could facilitate the
development of therapeutic ligands by establishing a correlation
between the chemical functionalities of the ligand and the desired
biological activity. The proposed regression model comprised of
the molecular parameters (descriptors) of interest would enable
the prediction of biological activity and ease the design of new
compounds with the desired activity (Kubinyi, 1993; Karelson,
2000; Selassie and Verma, 2010). The activity prediction of a QSAR
model and its accuracy is based on the selection of appropriate
molecular descriptors and the reliability of the measured biological
activity (Leach, 1996; Shityakov et al., 2014).

The potential of QSAR models using scoring functions to predict
the inhibition potency of acetylcholinesterase (AChE) ligands was
analyzed in a recent study (Šinko, 2019). The study indicated that
the PLP2 scoring function predicts the inhibition potency of ligands
with a coefficient of determination r2 = 0.591. Several scoring func-
tions were tested against AChE-ligand complexes deposited in the
PDB base: LigScore1, LigScore2, PLP1, PLP2, Jain, PMF and PMF04.
The study showed that the drawback of the scoring function eval-
uation was the low uniformity of kinetic data (Ki or IC50) obtained
using various methods of determination and the enzyme source.
Kinetic data were collected under different experimental condi-
tions, i.e. temperature, as well as using various enzyme species
as a source of AChE, one species for data measurements and
another for the determination of the crystal structure of the
AChE-ligand complex.
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It was interesting to see that studies using the same ligand, e.g.
galantamine, and AChE from the same source Electrophorus electri-
cus may differ in the obtained results due to measuring the IC50

(0.36–1.07 lM) (Atanasova et al., 2015; Mary et al., 1998) instead
of the Ki (0.19 lM) (Rahman et al., 2006). Uncertainty in the IC50

value determination is caused by the type and concentration of
the substrate used for measurements and therefore Ki is a more
reliable parameter, as it is a measure of enzyme ligand affinity in
the absence of a substrate. The negative effect of the solvent mix-
ture on the AChE enzyme activity when using ethanol or DMSO
buffer should be tested, as ethanol or DMSO apparently increase
the ligand inhibition potency due to AChE inhibition (Fekonja
et al., 2007; Kumar and Darreh-Shori, 2017). Therefore, the effect
of a solvent on AChE activity needs to be characterized and com-
pensated properly.

In a study by Wong et al., the problem of various enzyme
sources in a QSAR analysis of tacrine-like inhibitors was reported.
Therefore, they created 10 different QSAR regression models for
each AChE source, e.g. human, Electrophorus electricus and bovine
AChE (Wong et al., 2014). The inhibition potency of tacrine-like
inhibitors was evaluated by the Ellman (Ellman et al., 1961) or
Rappaport method (Rappaport et al., 1959) using acetylthiocholine
iodide or acetylcholine chloride, respectively, as the substrate. The
reported IC50 values, obtained using different experimental condi-
tions, led to the development of different QSAR regression models
to increase model predictivity and overcome the problem of exper-
imental conditions.

The goal of this study was to highlight the key structural fea-
tures of AChE ligands in correlation with ligand pKi values indicat-
ing inhibitory activity using the simplest possible QSAR model. The
different QSAR models presented in the literature describe various
parameters for AChE ligands, but often these parameters cannot be
easily linked to a ligand’s physicochemical properties (Gurung
et al., 2017; Jana et al., 2018; Šinko, 2019; Wong et al., 2014). In
our approach, we developed a simple QSAR model for the predic-
tion of the human AChE inhibition constant, pKi, on a set of 75
compounds including 4-aminoquinolines, oximes, flavonoids and
N-hydroxyiminoacetamides. For all of the compounds in this study,
Ki was measured by our laboratory and published previously
(Tables 1 and S3, Fig. 1) (Bosak et al., 2019, 2017; Bušić et al.,
2016; Katalinić et al., 2010; Kovarik et al., 2008; Maček Hrvat
et al., 2020; Maraković et al., 2020, 2016; Šinko et al., 2010;
Zandona et al., 2020). The assay used for the AChE activity mea-
surement was based on the Ellman method (Ellman et al., 1961),
with standardized activity measurement regarding enzyme, sub-
strate and inhibitor concentrations (Eyer et al., 2003; Reiner
et al., 2000). To avoid the artefacts of Ki calculation, AChE inhibition
was limited for 20–80% of the control activity (Bosak et al., 2019;
Simeon-Rudolf et al., 2001). Moreover, AChE activities were cor-
rected when the oxime-induced degradation of the substrate (oxi-
molysis) was above 10% of the enzyme control activity (Maček
Hrvat et al., 2018; Šinko et al., 2007, 2006).
2. Materials and methods

2.1. Calculation of topological indices

Molecular descriptors were calculated by the E-DRAGON pro-
gram developed by Tetko et al. E-DRAGON provides more than 1
600 molecular descriptors (topological, constitutional, geometrical,
etc.) in a single run (Tetko et al., 2005). The connectivity matrices
were constructed using the Online SMILES Translator and Structure
File Generator (Online SMILES Translator and Structure File
Generator, 2020). The SMILE formulas, for all compounds studied,
are given in Supplement (Tables S3, S4 and S5).
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The model developed in this study is based on the topological
0vv index (the valence molecular connectivity index of the zero-
order) (Kier and Hall, 1986, 1976a, 1976b; Randić, 2008), which
was defined as:

0vv ¼
X
i

dðiÞ�0:5 ð1Þ

where d(i) is the weight (valence value) of each vertex (atom) i in a
vertex-weighted molecular graph. The valence value, d(i), of vertex i
is defined as:

dðiÞ ¼ ½ZvðiÞ � HðiÞ�=½ZðiÞ � ZvðiÞ � 1� ð2Þ
where Zv(i) is the number of valence electrons belonging to the
atom corresponding to vertex i, Z(i) is its atomic number, and H(i)
is the number of hydrogen atoms attached to it. For instance, the
delta values for the primary, secondary, tertiary, and quaternary
carbon atoms are 1, 2, 3, and 4, respectively, while for the oxygen
in the OH group, this equals 5 and for the NH2 group 3. It should
be pointed out that 0vv is the only one of the many members from
the family of valence connectivity indices nvv, which differ amongst
each other by path length, i.e. the number of consecutive chemical
bonds. From Eq. (1) it can be seen that 0vv has a path order of zero,
i.e. it considers only separate vertices (atoms). 1vv (1vv = R [d(i) d
(j)]�0.5) considers vertices (atoms) i and j, making up a path with
a length of 1 (one consecutive chemical bond), 2vv (2vv = R [d(i) d
(j) d(k)]�0.5) considers vertices (atoms) i, j and k, making up a path
with a length of 2 (two consecutive chemical bonds), etc. Connectiv-
ity indices are also called branching indices and are among the most
used topological indices in QSPR/QSAR, e.g. 3vv was very success-
fully used for the estimation of the stability constants of metal che-
lates (Miličević and Raos, 2008; Raos et al., 2008).

2.2. Regression calculations

Regression calculations, including the leave-one-out procedure
(LOO) of cross validation, were done using the CROMRsel program
(Lučić and Trinajstić, 1999). The standard error of the cross-
validation estimate was defined as:

S:Ecv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X
i

DX2
i

N

vuut ð3Þ

where DX and N denote cv residuals and the number of reference
points, respectively.

3. Results and discussion

Although the correlation of the valence molecular connectivity
index of the zero-order, 0vv, on pKi, yields somewhat worse statis-
tics (r = 0.795 and S.E. = 0.88, N = 75) than the correlation with the
squared Ghose-Crippen octanol–water partition coefficient,
AlogP2, (r = 0.857 and S.E. = 0.74, N = 75) and a few other topolog-
ical indices, it has captured our attention. More precisely, consider-
ing the presence of a 10-membered ring (two fused six-membered
rings) in the molecule, two almost parallel correlation lines on 0vv

vs. pKi dependence can be drawn (Fig. 2). The first line (triangles in
Fig. 2, r = 0.800, N = 26) belongs to molecules with a 10-membered
ring and the second (circles in Fig. 2, r = 0.575, N = 49) is without a
10-membered ring. It can also be seen that molecules with a 10-
membered ring in their structure generally have higher values of
pKi. Flavonoids (27–34) are the only compounds for which this
does not apply, but their structure is highly rigid in comparison
with other compounds with a 10-membered ring. This is especially
true for the flavonoid rutin (34), which by far has the highest num-
ber of OH groups (10 hydroxyl groups) of all molecules in the set.



Table 1
The values of negative logarithms of the AChE inhibition constant (pKi), and molecular descriptors for 75 compounds. 0vv, nOH and nR10 were calculated by the E-DRAGON
program system. The compound names are the same as in the original papers whose references are given.

No. Compound pKi
0vv nOH nR10

1 ICD-585a 4.55 11.70 1 0
2 HI-6a 4.51 11.40 1 0
3 HLo-7a 4.62 12.79 2 0
4 K027a 4.14 11.70 1 0
5 K048a 3.96 12.41 1 0
6 K033a 4.77 12.39 2 0
7 TMB-4a 3.74 11.68 2 0
8 DMB-4a 4.00 10.98 2 0
9 MMB-4a 3.31 10.27 2 0
10 ICD-692a 4.74 11.99 1 0
11 ICD-467a 5.92 11.53 1 0
12 K114b 5.68 14.29 2 0
13 K127b 3.76 12.81 1 0
14 K203b 4.44 12.15 1 0
15 Ic 2.93 9.610 1 0
16 IIc 3.45 14.08 1 0
17 IIIc 4.31 14.93 1 0
18 IVc 3.87 15.41 2 0
19 CQd 4.96 7.050 0 1
20 CQ2d 5.39 8.96 0 1
21 TFCQ2d 5.44 9.46 0 1
22 TFCQ8d 6.34 13.70 0 1
23 CQ8d 6.21 13.20 0 1
24 CQAdd 6.11 16.77 0 1
25 Chloroquined 5.40 14.53 0 1
26 CQEtOHd 5.00 8.83 1 1
27 Galangine 4.07 10.20 3 1
28 Kaempferole 4.03 10.57 4 1
29 Quercitine 4.42 10.94 5 1
30 Myricetine 4.42 11.31 6 1
31 Luteoline 4.18 10.57 4 1
32 Fisetine 4.00 10.57 4 1
33 Apigenine 3.92 10.20 3 1
34 Rutine 3.52 22.29 10 1
35 Metaproterenolf 2.51 8.94 3 0
36 Terbutalinef 2.32 9.86 3 0
37 Fenoterolf 3.07 12.40 4 0
38 Epinephrinef 2.19 7.36 3 0
39 Isoproterenolf 2.60 8.94 3 0
40 Isoetharinef 3.68 10.51 3 0
41 Salbutamolf 2.70 10.57 3 0
42 Salmeterolf 4.52 17.93 3 0
43 1g 3.64 12.15 3 0
44 2g 3.36 12.45 3 0
45 3g 3.90 13.21 3 0
46 4g 4.12 14.04 3 0
47 5g 3.78 13.34 3 0
48 6g 3.98 13.08 3 0
49 7g 4.05 13.48 3 0
50 8g 3.90 13.48 3 0
51 9g 3.90 15.46 3 0
52 1ah 7.82 23.95 1 1
53 2ah 8.22 24.65 1 1
54 1bh 8.05 24.65 1 1
55 2bh 7.55 25.36 1 1
56 1ch 7.17 25.36 1 1
57 2ch 7.49 26.07 1 1
58 1dh 6.89 23.95 1 1
59 2dh 7.64 24.65 1 1
60 1eh 7.39 24.65 1 1
61 2eh 7.00 25.36 1 1
62 Q1i 2.42 5.96 1 0
63 Q2i 3.12 7.01 1 0
64 Q3i 3.28 8.00 1 0
65 Q4i 3.26 8.71 1 0
66 Q5i 5.22 14.79 1 0
67 Q6i 3.80 10.1 1 0

(continued on next page)
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Table 1 (continued)

No. Compound pKi
0vv nOH nR10

68 Q7i 4.49 11.99 1 0
69 Q8i 4.17 11.99 1 0
70 Q9i 4.39 11.16 1 0
71 Q10i 4.04 11.16 1 0
72 Q11i 4.57 11.02 1 0
73 Q12i 3.87 11.02 1 0
74 Q13i 4.74 11.29 1 0
75 Q14i 4.31 11.29 1 0

a From Ref. (Kovarik et al., 2008).
b From Ref. (Šinko et al., 2010).
c From Ref. (Maraković et al., 2016).
d From Ref. (Bosak et al., 2019).
e From Ref. (Katalinić et al., 2010).
f From Ref. (Bosak et al., 2017).
g From Ref. (Bušić et al., 2016).
h From Ref. (Maček Hrvat et al., 2020).
i From Ref. (Zandona et al., 2020).

Fig. 1. Example of chemical structures of the 10 groups of compounds used in the set of 75 compounds.

Fig. 2. Dependence of pKi on the 0vv index for 75 molecules in the set (Table 1). The
lines of correlations are made on two subsets of molecules, with (N = 26, r = 0.800)
and without (N = 49, r = 0.575) a 10-membered ring. Triangles denote molecules
with a 10-membered ring.

A. Miličević and G. Šinko Saudi Pharmaceutical Journal 30 (2022) 369–376

372
All these were the reason why we added nR10 and nOH descrip-
tors alongside 0vv into the equation. In that way, we developed
three descriptor model for the estimation of pKi:

pKi ¼ aþ b1�0vv þ b2 � nR10þ b3 � nOH ð4Þ

yielding r = 0.937, S.E. = 0.51 and S.E.cv = 0.53 (a = 2.54(19),
b1 = 0.170(13), b2 = 1.13(14), b3 = –0.353(38)) for the set of 75 com-
pounds, Fig. 3. It is also important to note that the correlations
between the pairs of descriptors were very small; r = 0.233, 0.123
and 0.483 for nOH vs. nR10, 0vv vs. nOH and 0vv vs. nR10,
respectively.

Some topological and constitutional descriptors correlated to
pKi showed similar statistics and a similar pattern as 0vv, like the
valence molecular connectivity index of the first order, 1vv, the
eccentric connectivity index, CSI, and the number of atoms, nAT
(r = 0.809, 0.798 and 0.777, respectively). Their implementation
in Eq. (4) in place of 0vv yielded slightly worse statistics (S.
E. = 0.53, 0.55 and 0.54, respectively) than the standard error
obtained by 0vv (S.E. = 0.51).



Fig. 3. Plot of experimental vs. calculated (using Eq. (4)) pKi values; N = 75,
r = 0.937, S.E. = 0.51 and S.E.cv = 0.53. Fig. 4. Plot of experimental vs. calculated (using Eq. (4)) pKi (or pIC50) values;

N = 165, r = 0.882, rcv = 0.874, S.E. = 0.89 and S.E.cv = 0.91. Circles denote the set of 75
compounds, triangles the set of 56 compounds used in our previous report (Šinko,
2019), and empty circles the set of 34 oximes (Katalinić et al., 2016).
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Although the best possible model with three descriptors chosen
among all of the 1399 calculated descriptors gave better results
than Eq. (4) (r = 0.952, S.E. = 0.44 and S.E.cv = 0.47), the descriptors
used in that model were not easy to connect to the structure of
compounds; highest eigenvalue number of Burden matrix
weighted by atomic Sanderson electronegativities (BEHe1), 3D-
MoRSE - signal 13 weighted by atomic van der Waals volumes
(Mor13v) and the difference between multiple path count and path
count (PCD).

Previously (Šinko, 2019) we evaluated models using scoring
functions for the pKi (or pIC50) estimation of 56 molecules (Tables
S1 and S4). By applying our model (Eq. (4)) on the same set of com-
pounds, the statistics were not so good, r = 0.830, rcv = 0.798, S.
E. = 1.20 and S.E.cv = 1.30, but one must be aware that the Ki (AChE)
values for this set were not measured by the same laboratory and
on the same type of AChE (they used human, mouse, etc.). More-
over, instead of Ki, for some molecules IC50 values (Rahman et al.,
2006; Atanasova et al., 2015; Herkert et al., 2011; Mary et al.,
1998; Saxena et al., 1999) were given. However, when we brought
together this set of 56 compounds with our set of 75 compounds,
the results of regression on 131 molecules were very good
(N = 131, r = 0.892, rcv = 0.883, S.E. = 0.94 and S.E.cv = 0.97), espe-
cially as the range of experimental pKi (or pIC50) increased from
6.03 to 10.21.

We also used 34 oximes, Tables S2 and S5, from our previous
paper (Katalinić et al., 2016), where we showed that pIC50 can be
estimated by using only one topological index; the model using
eccentric connectivity index (CSI, Sharma et al., 1997) yielded
r = 0.957, S.E. = 0.21 and S.E.cv = 0.23. The 0vv index yielded slightly
worse but also excellent results (r = 0.926, S.E. = 0.27 and S.
E.cv = 0.29). Combining this set of 34 compounds with two sets pre-
sented above (N = 75 and N = 56), our model (Eq. (4)) yielded
r = 0.882, S.E. = 0.89 and S.E.cv = 0.91 (a = 3.17(23), b1 = 0.172
(17), b2 = 0.753(90), b3 = –0.451(55); N = 165, Fig. 4). Comparing
these regression parameters (on a set of 165 molecules) with the
parameters in the model for the 75-member set (a = 2.54(19),
b1 = 0.170(13), b2 = 1.13(14), b3 = –0.353(38)) great similarity
can be observed, although within the limits of S.E. only for 0vv

(b1 = 0.172(16) vs. 0.170(13)).
We tested the predictability of our model (Eq. (4)) by a training/

test method. We selected every third molecule (molecules 3, 6, 9,
12. . ., Table 1, S1 and S2) into the test set and thereby divided
the set of 165 compounds into a training set (110 compounds)
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and test set (55 compounds). Statistics of the calibration model cal-
culated from Eq. (4) on the training set (r = 0.882, S.E. = 0.89 and S.
E.cv = 0.92, N = 110) were of the same quality as the model made on
165 compounds and we used it for predicting the pKi values of 55
molecules from the test set. The standard error of the test set (S.
E.test = 0.90) was very similar to the S.E. and S.E.cv of the calibration
model (S.E. = 0.89 and S.E.cv = 0.92), which proved the high predic-
tive power of Eq. (4).

A comparison of the AChE active site amino acid composition
and related functional characteristics with the QSAR descriptors
0vv, nR10 and nOH led us to the following observations. The
human AChE active site gorge is a�20 Å deep and�5 Å wide cavity
composed of mainly aromatic residues (Phe, Trp or Tyr) thus creat-
ing a hydrophobic space (Ordentlich et al., 1993; Sussman et al.,
1991). At the bottom of the narrow active site, where substrate
hydrolysis occurs, a catalytic triad Ser203, Glu334 and His447 is
located (Fig. 5). The substrate of AChE is a small carboxyl ester with
a positively charged choline part, acetylcholine. During acetyl-
choline hydrolysis, the following key interactions between enzyme
residues and substrate formed: hydrogen bonds, hydrophobic
interactions and cation-p interactions (Colletier et al., 2006).
Ligands that can create these interactions producing strong bind-
ing within the AChE active site are possible drug candidates.

Several residues of the AChE active site: Asp74, Glu202, Tyr124,
Ser293 and Tyr337 have hydrogen bond donor or acceptor groups,
and therefore may stabilize ligands via hydrogen bonds (Šinko,
2019). Hydrogen bond donors or acceptor groups are the molecular
basis for an nOH descriptor presence in the QSAR model. Two
important sub-domains of the AChE catalytic site, the peripheral
anionic site and choline binding site, are responsible for substrate
transport and orientation during catalytic turnover (Colletier et al.,
2006). Tryptophan Trp86 and Trp286 are key residues of the cho-
line binding site and peripheral anionic site, respectively
(Colletier et al., 2006; Ordentlich et al., 1993). These two residues
create cation-p and/or p-p interactions with ligands having aro-
matic groups; e.g. two fused benzene rings (nR10) in quinolines
or benzopyrans create p-p stabilizing interactions by overlapping
with Trp indole ring. Studies have shown that ligands long enough
to bind simultaneously in the choline binding site and the periph-
eral anionic site are more potent inhibitors of AChE, e.g. donepezil
depicted in Fig. 5 (Bourne et al., 2016; Cheung et al., 2012; Felder



Fig. 5. Crystal structure of the human AChE active site (PDB ID 4EY7). Aromatic
residues of the peripheral anionic site are orange, of the choline binding site purple,
and of the acyl pocket blue. The anti-Alzheimer drug donepezil is yellow. Catalytic
Ser203 is represented by a ball and stick. Figure adopted from ref. (Miličević and
Šinko, 2021).
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et al., 2002; Rydberg et al., 2006). Crystal structures of AChE-ligand
complexes showed that the binding would be stronger if the con-
formation of the residues stabilizing the ligand was complemen-
tary to the conformation of the apo-AChE active site, e.g.
donepezil only affects the conformation of Tyr337, while confor-
mation of the other residues remained unchanged (Cheung et al.,
2012; Gerlits et al., 2019). It has been shown that some ligands
upon binding induce the change of the conformation of the AChE
active site residues (Bourne et al., 2010), therefore there is no clear
connection between active site residues conformation and the
strength of ligand binding (Šinko, 2019). Index 0vv accounts for
the size of the ligand but more importantly for the complexity of
the ligand structure, including branching. We showed a positive
correlation between 0vv and pKi in Fig. 2. A similar finding was pre-
sented in a prior study where the complexity property of ligands
positively correlated with the scoring functions was described
(Šinko, 2019).

4. Conclusions

The presented QSAR model (Eq. (4)) is based on the valence
molecular connectivity index of the zero-order, 0vv, combined with
the number of 10-membered rings (nR10) and the total number of
OH groups in a molecule (nOH). On a set of 75 molecules, the
model yielded S.E. = 0.51, meaning that pKi (or pIC50) values can
be estimated by an error of 8.5% of the pKi range ((S.E./range pKi)
100%). Although the model on 131 compounds, after adding 56
compounds from the literature (Rahman et al., 2006; Atanasova
et al., 2015; Herkert et al., 2011; Mary et al., 1998; Saxena et al.,
1999) seemed to deteriorate (S.E. = 0.94), ultimately this was not
the case. The reason was that the pKi (or pIC50) range increased
from 6.03 to 10.21, so, although the S.E. almost doubled, the error
of estimation increased only slightly, to 9.2%. This, and especially
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the regression on 56 molecules (S.E. = 1.20, with an error of estima-
tion of 12.8%), told us that QSAR should be avoided on non-
standardized experimental data. When we added 34 oximes (IC50

measured in our laboratory) to the set of 131 compounds, the
range of pKi (or pIC50) values stayed the same, and the S.E. and
error of estimation dropped to 0.89 and 8.7%, respectively.

Comparing errors of estimation yielded by Eq. (4) with the
mean experimental error in Ki measurements, which was 15% for
the set of 75 molecules, we can conclude that our results are very
satisfactory (Raos et al., 2008; Raos and Miličević, 2016). This is
proof that the variables we used in our three-descriptor model
(0vv, nR10 and nOH) were profoundly chosen according to the
structural features of the compounds and AChE active site. Further-
more, unlike some of the molecular descriptors usually used in
QSARmodels (Gurung et al., 2017; Wong et al., 2014), our variables
are simple and easy to explain.
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Bosak, A., Knežević, A., Gazić Smilović, I., Šinko, G., Kovarik, Z., 2017. Resorcinol-,
catechol- and saligenin-based bronchodilating b2-agonists as inhibitors of
human cholinesterase activity. J. Enzyme Inhib. Med. Chem. 32 (1), 789–797.
https://doi.org/10.1080/14756366.2017.1326109.

Bosak, A., Opsenica, D.M., Šinko, G., Zlatar, M., Kovarik, Z., 2019. Structural aspects of
4-aminoquinolines as reversible inhibitors of human acetylcholinesterase and
butyrylcholinesterase. Chem. Biol. Interact. 308, 101–109. https://doi.org/
10.1016/j.cbi.2019.05.024.
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Lučić, B., Trinajstić, N., 1999. Multivariate regression outperforms several robust

architectures of neural networks in QSAR modeling. J. Chem. Inf. Comput. Sci. 39
(1), 121–132. https://doi.org/10.1021/ci980090f.
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Maraković, N., Knežević, A., Rončević, I., Brazzolotto, X., Kovarik, Z., Šinko, G., 2020.
Enantioseparation, in vitro testing, and structural characterization of triple-
binding reactivators of organophosphate-inhibited cholinesterases. Biochem. J.
477, 2771–2790. https://doi.org/10.1042/BCJ20200192.

Mary, A., Renko, D.Z., Guillou, C., Thal, C., 1998. Potent acetylcholinesterase
inhibitors: design, synthesis, and structure–activity relationships of bis-
interacting ligands in the galanthamine series. Bioorg. Med. Chem. 6 (10),
1835–1850. https://doi.org/10.1016/S0968-0896(98)00133-3.
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Raos, N., Branica, G., Miličević, A., 2008. The use of graph-theoretical models to
evaluate two electroanalytical methods for determination of stability constants.
Croat. Chem. Acta 81, 511–517 https://hrcak.srce.hr/file/49347.

Rappaport, F., Fischl, J., Pinto, N., 1959. An improved method for the estimation of
cholinesterase activity in serum. Clin. Chim. Acta 4 (2), 227–230. https://doi.
org/10.1016/0009-8981(59)90134-2.
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