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Abstract
Statistical models to predict incident diabetes are often based on limited variables. Here we

pursued two main goals: 1) investigate the relative performance of a machine learning

method such as Random Forests (RF) for detecting incident diabetes in a high-dimensional

setting defined by a large set of observational data, and 2) uncover potential predictors of

diabetes. The Jackson Heart Study collected data at baseline and in two follow-up visits

from 5,301 African Americans. We excluded those with baseline diabetes and no follow-up,

leaving 3,633 individuals for analyses. Over a mean 8-year follow-up, 584 participants

developed diabetes. The full RF model evaluated 93 variables including demographic,

anthropometric, blood biomarker, medical history, and echocardiogram data. We also used

RF metrics of variable importance to rank variables according to their contribution to diabe-

tes prediction. We implemented other models based on logistic regression and RF where

features were preselected. The RF full model performance was similar (AUC = 0.82) to

those more parsimonious models. The top-ranked variables according to RF included

hemoglobin A1C, fasting plasma glucose, waist circumference, adiponectin, c-reactive pro-

tein, triglycerides, leptin, left ventricular mass, high-density lipoprotein cholesterol, and

aldosterone. This work shows the potential of RF for incident diabetes prediction while deal-

ing with high-dimensional data.

Introduction

Type 2 diabetes mellitus (T2DM) has been linked to increased risk of cardiovascular and renal
disease, dementia, and cognitive decline [1–3]. This poses a great challenge to the US health-
care system because T2DM and its complications are prevalent and costly. The development of
accurate methods for prediction of incident diabetes could facilitate the identification of
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individuals at high risk of T2DM and the design of prevention strategies. There are many
known predictors of T2DM; risk predictionmodels provide a way to incorporate these risk fac-
tors into algorithms that assess an individual’s risk of developing T2DM over a specifiedperiod
of time [4,5]. Most previous T2DM prediction research is based on traditional statistics, specifi-
cally, multivariable regression models that contain a limited set of variables previously identi-
fied by clinicians and existing literature as risk factors for T2DM.

Machine learningmethods are drawing increasing attention in the area of diabetes detection
and risk assessment. They operate in a different manner than traditional approaches described
above due to their capabilities to deal successfully with large numbers of variables while pro-
ducing powerful predictive models. Somemachine learningmethods have embedded variable
selectionmechanisms which can detect complex relationships in the data, and thus enable cap-
turing subtle multivariate relationships and nonlinearities that are otherwise difficult to detect.

Support vector machines (SVM) and k-nearest classifiers were used by Farran and col-
leagues to assess risk of diabetes and its comorbidities in Kuwait[6]. SVM and artificial neural
networks were used by Choi and colleagues for pre-diabetes screening in a Korean population
[7]. They reported that both approaches outperformed conventional logistic regression in this
context. Yu et al. used SVM to detect incident diabetes using data from the National Health
and Nutrition Examination Survey[8].Most of this previous work is based on models that used
a reduced set of variables.

Here we used Random Forests (RF) [9] to predict incident diabetes using a large panel of
nearly 100 variables. RF is a powerfulmachine learningmethod for classification and regres-
sion which is based on ensemble learning. A set of “learners” (e.g. classifiers, etc.) are estimated
from the data, which are then used to make a decision about assigning a label to a new sample
not seen during the estimation process. Some strengths of the RF approach are: 1) it does not
over fit the data; 2) it is robust to noise; 3) it has an internal mechanism to estimate error rates;
4) it provides indices of variable importance; 5) it naturally works with mixes of continuous
and categorical variables; and 6) it can be used for data imputation and cluster analysis. These
properties have made RF increasingly popular, especially in imaging and genetics applications
[10–17].

In this work we pursue two main goals. First, we investigate the potential of machine learn-
ing methods such as RF for accurate prediction of incident diabetes in a high-dimensional set-
ting defined by a large number of predictors. We hypothesize that RF will compare well to a
conventional method such as logistic regression when predicting incident diabetes based on a
standard panel of metrics–accuracy, sensitivity, specificity and area under the curve. Second,
we aim to identify previously unknown or less investigated predictors of diabetes. To study
these questions, we took advantage of the unique opportunity provided by our access to a rich
clinical research database collected by the Jackson Heart Study, in a well-characterizedAfrican
American population known to be more vulnerable to diabetes.

Methods

Jackson Heart Study

The Jackson Heart Study (JHS) is a single-site, prospective cohort study of the risk factors and
causes of chronic disease in AfricanAmerican adults. JHS was initiated based on the dispropor-
tionate burden of chronic disease observed among African Americans in Mississippi, especially
within the Atherosclerosis Risk in Communities (ARIC) study site in Jackson [18]. Written
informed consent was obtained from participants, and IRBs at University of Mississippi Medi-
cal Center and theWake Forest School of Medicine approved this research.
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Participants from the ARIC study were recruited into JHS, and comprise approximately
22% of JHS participants [18,19]. The remaining JHS participants were drawn from a probabil-
ity sample of African Americans, 21 to 84 years of age, residing in the three counties surround-
ing Jackson [19]. A total of 5,301 participants were enrolled in JHS at the baseline visit (2000–
2004). Study visits included a physical examination, anthropometric measurements, a survey
of medical history and cardiovascular risk factors, and collection of blood and urine for bio-
marker assessment. Visits 2 and 3 were conducted from 2005–2008 and 2009–2013, respec-
tively, at which time diabetes was identified.Diabetes was defined as current use of insulin or
oral antidiabetic agent or self-report of physician’s diagnosis, fasting glucose� 126 mg/dl, or
hemoglobin A1c� 6.5%. Annual follow-up interviews and cohort surveillance are ongoing.
Further details of the study design have been published elsewhere [19,20].

Random Forests

RF is one of the so-called ensemble methods for classification, because a set of classifiers
(instead of one) is generated and each one casts a vote for the predicted label of a given instance
provided to the model. Each classifier is a tree built using the classification and regression trees
methodology (CART)[21]. In constructing the ensemble of trees, RF uses two types of random-
ness: first, each tree is grown using a bootstrapped version of the training data. A second level
of randomness is added when growing the tree by selecting a random sample of predictors at
each node to choose the best split. The number of predictors selected at each node and the
number of trees in the ensemble are the two main parameters of the RF algorithm.

The RF developers have reported [9] that the method requires little tuning of the parameters
and the default values often produce good results for many problems. Once the forest is built,
assigning a new instance to a class is accomplished by combining the trees, using a majority
vote. As a result of using a bootstrap sampling of the training data, around one-third of the
samples are omitted when building each tree. These are the so-called out-of-the-bag (OOB)
samples, which can be used to assess the performance of the classifier and to build measures of
importance. In the present report, we used the Gini index to assess variable importance. The
Gini index provides a measure of how well a given variable partitions the data during tree
construction.

Statistical analyses

A total of 93 variables from data collected on demographics, anthropometrics, blood biomark-
ers, medical history, echocardiograms, lifestyle behaviors and socio-economic status were
included in the RF approach. We selected these variables: 1) to illustrate RF performance when
dealing with a high-dimensional biomedical problem combining continuous and categorical
traits, and 2) to uncover potentially unknown predictors of diabetes. Variable selectionwas
also guided by biological plausibility and was limited to variables with less than 5%missing
data. These variables are described in S1 and S2 Tables of the supplementary materials. We
compared RF models based on these 93 variables (RF93), with a logistic regression (LR) model
based on the same 93 variables (LR93) and a LR model previously published by the ARIC study
(LRARIC) [22]. Risk factors considered for incident diabetes prediction in the LRARIC model
included age, race (African Americans vs whites), waist circumference, height, parent history
of type 2 diabetes, systolic blood pressure, HDL cholesterol, triglycerides and fasting glucose
[22]. We added Hemoglobin A1c not available in ARIC and removed race since all JHS partici-
pants are African Americans. These variables are a subset of the variables evaluated by RF93. In
addition, we trained two-stage versions of both RF and LR where RF and LRmodels (RF15 and
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LR15) were informed by the top 15 ranked features. The two stages models were estimated
using training data only.

To estimate the performance of the five models, we partitioned the dataset 100 times into
training and testing balanced datasets to deal with an unbalanced classification problem. For
each instance, the training dataset included 500 participants who developed diabetes during
follow-up (incident diabetes group) and 500 who did not. The remaining data comprised the
testing dataset (Fig 1). To avoid possible bias due to differences in dynamic ranges, all predic-
tors were standardized by subtracting the mean and dividing by the standard deviation.Miss-
ing data were imputed using the median values of the available data, and as mentioned above,
variables missing more than 5% were not considered for selection. The RF and LRmodels were
estimated for the training sets; we used the testing sets to evaluate performance based on accu-
racy, sensitivity, specificity and area under the curve (AUC). The Gini index produced by RF93

was used to rank the importance of the variables in the model.We used the randomForest
package in R [23] and its default parameters for RF which are number of trees equal to 500 and
number of variables analyzed at each node to find the best splitmtry ¼ ffiffiffipp where p is the total
number of variables in the problem (93 in our case). Finally, although our main results are
based on a sample size of 1000 (500 participants per group) we investigated the dependence of
performance on sample size for the five models.

Results

Of the 5,301 participants at baseline, 3,363 were at-risk for developing diabetes after excluding
those with prevalent diabetes or unconfirmeddiabetes status. These remaining participants

Fig 1. Scheme illustrating the computation experiment designed to compare Random Forests and logistic regression

methods.

doi:10.1371/journal.pone.0163942.g001
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had an average age of 53.4 years and 63.5% were female (Table 1). Of those at risk, 584 devel-
oped incident diabetes during the 9-year follow-up period. Fig 2 shows the relative perfor-
mance of RF and LR across 100 repetitions of the computations. RF93 producedmean values of
74%, 75%, 74% and 0.82 of classification accuracy, sensitivity, specificity and AUC, respectively
(Table 2). LRARIC analyses producedmean values of 74%, 74%, 75% and 0.82 of the same 4
metrics while LR93 produced 71%, 70%, 71% and 0.78. The two-stage versions of RF and LR
informed by the top 15 variables according to RF rank during training generated little or no
gains in performance. Fig 2 shows the dependence of each model on sample size. In general all
models performed similarly with the increase of sample size with the exception of LR93 which
did poorly for small sample sizes but it improved with increasing sample size. RF had longer
computation times of 7.93±0.93 seconds vs LR 0.25±0.03 seconds across 100 iterations. RF15

and LR15 dropped computation times to 6.61±0.47 seconds and 0.03±0.02 seconds
respectively.

Table 3 lists the top 15 ranked variables according to the Gini index, one of the RF measures
of variable importance. Hemoglobin A1c and fasting plasma glucose were the two most impor-
tant variables for classification, according to the Gini index. Among the top-ranked variables,
RF identified five well-known predictors of T2DM (hemoglobin A1c, fasting plasma glucose
levels, waist circumference, triglycerides concentration, and age), predictors that were also part
of the LRARIC model. Several variables not in the ARIC predictionmodel also ranked high in
this study including adiponectin, C-reactive protein, leptin, and aldosterone. S3 Table in the
supplementary materials shows which features appear in LRARIC and RF15. The two models
have six predictors in common: age, hemoglobin A1c, fasting glucose, waist circumference,
HDL cholesterol and triglycerides.Additionally, LRARIC includes the following predictors that
did not make it into RF15: African American race, parent history of diabetes, systolic blood
pressure and height. African American race was not applicable in this population as all JHS
participants are African American. Parent history of diabetes is associated with a wide range of
metabolic abnormalities and is strongly associated with development of type 2 diabetes [24].
While the exact mechanisms for this increased risk are not fully understood, it is likely

Table 1. Baseline Characteristics by Incident Diabetes Mellitus Status in Prediction of Incident Diabetes in the Jackson Heart Study Cohort

using Random Forests.

Baseline Characteristic Diabetes*(N = 584) No Diabetes (N = 2779) All(N = 3363)

Sex

Male (%) 37.0 36.3 36.5

Female (%) 63.0 63.7 63.5

Age, y 55.2 (11.0) 53.0 (12.8) 53.4 (12.5)

Education

< High school (%) 19.9 14.4 15.4

High school graduate (%) 18.7 17.7 17.9

Some college (%) 29.6 29.7 29.7

� Bachelor’s degree (%) 31.8 38.2 37.1

BMI (kg/m2)

BMI <18.5 (underweight) (%) 0.7 0.2 0.6

BMI 18.5–24.9 (normal weight) (%) 17.0 6.4 15.1

BMI 25–29.9 (overweight) (%) 36.4 26.2 34.6

BMI� 30.0 (obese) (%) 46.0 67.3 49.7

Waist circumference (cm) 105.0(14.1) 97.3(15.6) 98.6(15.6)

*Developed after baseline measurements. Abbreviations: BMI, body mass index.

doi:10.1371/journal.pone.0163942.t001
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mediated, in part, by genetic as well as shared environmental components among family mem-
bers. Given the wide array of candidate predictors included as the starting point of the RF15

model it’s possible that some of these mechanisms of increased risk associated with family his-
tory were captured in other predictors that are in the final RF15 model in place of family history
of diabetes. Systolic blood pressure was also included in LRARIC but not in RF15. The link
between hypertension and diabetes is very well established in the literature so this was surpris-
ing to us, however, it is possible that the associated between hypertension and diabetes is medi-
ated through some of the predictors that entered into RF15 in place of systolic blood pressure

Fig 2. The dependence of classification accuracy on sample size is presented.

doi:10.1371/journal.pone.0163942.g002

Table 2. Prediction performance of the five models when using sample size 1000 (500 participants per group). The values in each cell correspond

to mean and standard deviation across the 100 computations.

Method Accuracy (%) Sensitivity (%) Specificity (%) AUC

RF93 74 (0.02) 75 (0.05) 74 (0.02) 0.82 (0.02)

LRARIC 74 (0.01) 74 (0.05) 75 (0.01) 0.82 (0.02)

LR93 71 (0.01) 70 (0.05) 71 (0.01) 0.78 (0.03)

RF15 75 (0.02) 74 (0.05) 75 (0.01) 0.82 (0.02)

LR15 74 (0.01) 74 (0.04) 74 (0.01) 0.82 (0.02)

RF93 = RF using as input all 93 variables; LR93 = logistic regression using as input all 93 variables; LRARIC = the logistic ARIC model; RF15 –two stage RF;

LR15 = two stage LR.

doi:10.1371/journal.pone.0163942.t002
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[25]. Finally, height was included in LRARIC but not in RF15. This is likely because BMI was
included in RF15 and the two measures are typically significantly correlated (albeit inversely).

An ad hoc analysis (not presented) showed that the prediction is driven by the two top bio-
markers (hemoglobin A1c and fasting glucose) while the rest had little or no impact in predic-
tion performance. However most of the top predictors ranked high by RF were statistically
significant between the two groups and several of them are factors traditionally or more
recently linked to diabetes risk. This suggests that RF is capturing complex interactions present
in the data.

Discussion

Rather than conducting a strict mathematical comparison of these methods, here we have
focused on contrasting two approaches to disease risk assessment and statistical modelling.On
the one hand are the traditional methods which are parsimonious and based on strong input
from experts (e.g. the logistic regression model used in ARIC—LRARIC). On the other hand,
there are high-dimensionalmachine learning approaches represented here by RF that can deal
with large number of variables and contain embeddedmechanisms for variable importance
detectionwhich replaces the experts input during the model building process. Here we used RF
to predict incident diabetes based on data from a well-characterized and large clinical research
database, the Jackson Heart Study. The full RF93 model showed similar prediction performance
when compared to a traditional statistical model when predicting incident diabetes in the JHS
cohort. The RF model informed by RF top ranked features producedmarginal gains in terms
of classification accuracy. However, LRARIC, LR15 and RF93 produced the same AUC suggesting
that in our analyses RF was relatively robust to the number of predictors. In addition, our
investigation of dependence of performance on sample size that the full RF93 model performed
better across all sample sizes when compared to LR93, illustrating an advantage of machine
learningmethods over classical statistical methods like LR. LR model based on all variables is
not able to deal with high-dimensional data especially when sample sizes are small. However,

Table 3. Top 15 Variables Found in Random Forest Analyses, according to the Gini Index (N = 1000).

Variable Gini Index Diabetesa No Diabetes p-value*

Hemoglobin A1c (%) 57.4 5.9(0.4) 5.4 (0.4) < .0001

Fasting plasma glucose (mg/dL) 39.9 97.1 (10.7) 88.8 (7.8) < .0001

Waist circumference (cm) 19.4 105.0 (14.1) 97.3 (15.6) < .0001

Adiponectin (ng/mL) 19.0 4091.9 (2750.3) 5566.3 (4032.8) < .0001

Body mass index (kg/m2) 17.6 33.56 (7.0) 30.7 (6.9) < .0001

High sensitivity C-reactive protein (mg/dL) 15.4 0.6 (0.9) 0.4(0.7) < .0001

Triglycerides (mg/dL) 14.9 113.88 (59.0) 94.8 (54.7) < .0001

Age (years) 13.5 55.2 (11.1) 53.0 (12.8) 0.0001

Leptin (ng/mL) 13.2 32.1(27.2) 26.0 (21.9) < .0001

Body Surface Area (m2) 12.6 2.1 (0.2) 2.0 (0.2) < .0001

eGFR (mL/min/1.73 m2) 12.0 85.8 (17.8) 87.2 (16.1) 0.02

2D calculated left ventricular mass (grams) 11.6 157.1 (89.3) 141.8 (39.3) < .0001

Fasting HDL Cholesterol Level (mg/dL) 11.5 49.3 (12.9) 52.9 (14.8) < .0001

Fasting LDL Cholesterol Level (mg/dL) 11.2 129.2 (37.9) 127.1 (35.9) 0.15

Aldosterone (ng/mL) 11.0 6.43 (6.48) 5.28 (4.05) < .0001

* Mean, standard deviations and p-values resulting from Wilcoxon- Mann-Whitney tests.
a Developed after baseline measurements.

doi:10.1371/journal.pone.0163942.t003
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machine learning (or regularized) versions of LR[26] have proven to be very successful in deal-
ing with problems of much larger dimensionality (number of variables)[27,28]. RF with all var-
iables included was able not only to performwell but also to detect automatically most of the
variables in the LRARIC model with no feedback from experts.

Furthermore, our RF analyses also offered useful information about the potential impact of
other, less well-investigated biomarkers not included in the ARICmodel; these included adipo-
nectin, C-reactive protein, and leptin. Several studies have shown that higher adiponectin levels
are associated with a lower risk of T2DM across diverse populations, consistent with a dose-
response relationship[29]. This idea is consistent with the observedvalues of adiponectin in
the JHS cohort at baseline, which were higher for participants who did not develop T2DM dur-
ing follow-up compared to those who did (see S2 Table). Leptin, a protein secreted by adipose
tissue, correlates positively with fat mass and is involved in regulating energy expenditure and
insulin sensitivity. Consistent with previous findings suggesting leptin resistance in obese
states, JHS participants who developed T2DM during follow-up had, on average, higher levels
of leptin at baseline. C-reactive protein is an inflammatory biomarker, minor elevations of
which have been reported as a marker of cardiovascular risk in patients with T2DMmellitus
[30,31]. In the JHS cohort, those who eventually developed diabetes have been shown to have
higher C-reactive protein levels at baseline[32]. In this cohort individuals with higher left ven-
tricularmass are at increased risk of diabetes. Obesity has been linked to an increase in left ven-
tricularmass independent of blood pressure [33]. It is not clear if left ventricular hypertrophy,
independent of obesity, increases the risk of T2DM. An interesting finding is the strong associ-
ation of triglycerides and HDL to the development of T2DM in African Americans. Dyslipide-
mia of insulin resistance is characterized by elevated triglycerides and low HDL. The
universality of this concept has been questioned for African Americans given that this popula-
tion usually has normal triglycerides levels. The findings in the JHS study suggest that the asso-
ciation of triglyceride levels in the development of T2DM hold in African Americans but the
cut off seems to be significantly lower when compared to that of non-Hispanic white popula-
tions[34–36].

This study also suggests a potential role for aldosterone as a risk factor in the development
of T2DM in African Americans. A relationship betweenmineralocorticoidreceptor activation
and decreased insulin sensitivity has been demonstrated both in human studies [37,38]. Fur-
thermore there is some evidence suggesting that mineralocorticoidblockade has the potential
of improving insulin resistance. From our study it is unclear if the effect of aldosterone is
dependent of the upstream regulator renin. This variable had to be excluded from the analysis
due to the number of participants with missing levels.

Our results compare well with other reports of machine learningmethods in the literature
(see Table 4), especially considering our relatively smaller sample size. We provide more robust
performance estimates than those given in the literature since ours are based on taking averages
over 100 different partitions of the data into training and testing sets to account for variability
in the data. Previously, RF has been used to predict incident diabetes in studies based on elec-
tronic health records [39,40]; it showed overall superior performance when compared to other
classifiers.Mani et al ([39]) using RF reported results comparable to our study. However, the
present study differs from theirs in several respects: 1) They predicted incident diabetes using
data from controls and cases six months and one year in advance of disease onset. By contrast,
we used JHS data to make longer term predictions (up to 9 years), a more difficult problem; 2)
Our estimates of metrics of performance are more robust, since they are based on testing data
never seen during estimation and median values over 100 repetitions; and 3) We used a much
larger set of predictors, allowing us to evaluate the value of other biomarkers not available in
clinical databases. Anderson et al (30) studied a high-dimensional input space based on 298
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features. Although some variables were similar to the ones we used, there also were important
differences. For example, they usedmedication information (150 variables), which we did not.
On the other hand, we used echocardiographic data and other variables not used in their
approach. Although they reported a slightly better performance in their best model, it was
based on sample size two to three times larger than ours. Our investigation shows that the per-
formance of the RF approaches improve with sample size. Unlike both previous studies, we
used RF measures of variable importance to investigate their relative value for prediction of
incident diabetes. In addition, a unique feature of our work is that we focused on a vulnerable
African American population using well-characterized clinical data from the JHS. Another
work by Guo using a more sophisticated approach based on combination of RF and gradient
boosting reported accuracy of 87% when predicting incident diabetes. But they predicted inci-
dent diabetes 1 year before disease onset and also a much larger same size (9948).

Based on our results, RF methods have utility in the health care setting, where large datasets
with thousands of well-characterizedphenotypes and large numbers of participants are com-
mon. Furthermore, development of biomedical technologies will very likely lead to cheaper
data acquisition in the future, making available evenmore biomarkers that could be included
in mathematical models to make predictions about health outcomes.

Our study is not without limitations. We did not test other available traditional models or
other high-dimensionalmachine learning approaches. We did not validate our model using
other datasets. In the two-stage approach we did not optimize the number of top ranked fea-
tures to be included in the second step of the two-stage procedure.We selected adhoc the top
15 produced by RF93. Some of the biomarkers ranked in the top 15 by RF were correlated (e.g.
BMI and waist circumference) which should be taken into account when interpreting these
results. In general the two approaches to modeling (traditional and machine learning) should
be seen as complementary rather than exclusive. For example, an approach such as RF can be
used for hypothesis setting via pattern discoverywhile more traditional methods like LR can be
used for further hypothesis testing. Even though during model building phase RF needed very
little input from experts, ultimately the results of any mathematical model, including data min-
ing methods, need to be validated by experts.

Table 4. Studies investigating prediction of diabetes using machine learning methods.

Reference Method Predictors Sample

Size

Type of

prediction

Performance

Yu et al. 2010 SVM family history, age, gender, race and ethnicity, weight, height, waist

circumference, BMI, hypertension, physical activity, smoking,

alcohol use, education, and household income(NHANES Cohort).

4915 Cross-

sectional

AUC = 0.73

Mani et al.

2012

RF A1c,Sys BP,Diastolic BP, GLU, BMI, Creatinine, HDL, MDRD,

Triglycerides, Race, Gender, Age(EHR Data).

2280 1 year ahead AUC = 0.80

Choi et al.

2014

SVMANN age, body mass index, hypertension, gender, daily alcohol intake,

and waist circumference(KNHANES cohort)

4685 Cross-

sectional

AUC = 0.74

Anderson

et al. 2016

age,gender,systolic/diastolic BP, Height, Wieght, BMI, 150 ICD9

code, 150 common meds(HER data).

9948 Cross-

sectional

AUC = 0.81

Luo 2016 BRT

+ RF

The data set includes information ondemographics, diagnoses,

allergies, immunizations, lab results, medications, smoking status,

and vital signs.

9948 1 year ahead Accuracy = 87.4%

Our Study RF15 Hemoglobin A1c, fasting glucose, waist circumference, adiponectin,

BMI, hs-CRP, triglycerides, age, leptin, body surface area, eGFR,

2D calculated left ventricular mass, HFL cholesterol, LDL

cholesterol, aldosterone.

3633 8 years ahead AUC = 0.82Accuracy = 75%

ANN–Artificial Neural Networks; BRT +RF–Combination of Boosting Regression Trees and RF classifiers.

doi:10.1371/journal.pone.0163942.t004
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Conclusion

In summary, this work shows the potential of high-dimensional machine learning analyses for
prediction of incident diabetes. RF was evaluated using data from the JHS to predict incident
diabetes in a well characterized cohort of African Americans followed for 8 years. Even though
a large body of research has accumulated to develop methods to predict incident diabetes most
of the published work is based on traditional statistical methods.Machine learning approaches
are beginning to gain the attention of the community and within this context our work is an
additional contribution to the field that characterized performance of RF in a high-dimensional
setting where many biomarkers not usually included in traditional models were evaluated.We
believe that in general our results compare well with other reports in the literature but more
work remains to be done to increase the quality of prediction.Machine learning technologies
can be used to develop powerful predictive models of incident diabetes with relatively little
input from human experts in the model- building phase. Methods such as RF have internal
mechanisms that allow the detection of influential variables on prediction performance which
are at the core of the pattern detection paradigm embodiedby the datamining approaches.
Future work will seek to validate these results in other large databases, increase the sample size
to improve performance or deploy more sophisticated modeling approaches.
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