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Schizophrenia is a complex neurodevelopmental disorder affecting around 19. 8 million

people worldwide. The etiology of the disorder is due to many interacting genetic

and environmental factors, with no one element causing the full spectrum of disease

symptoms. Amongst these factors, maternal immune activation (MIA) acting during

specific gestational timings has been implicated in increasing schizophrenia risk in

offspring. Epidemiological studies have provided the rationale for this link with prevalence

of maternal infection correlating to increased risk, but these studies have been unable

to prove causality due to lack of control of confounding factors like genetic susceptibility

and inability to identify specific cellular and molecular mechanisms. Animal models have

proved significantly more useful in establishing the extent to which MIA can predispose

an individual to schizophrenia, displaying how maternal infection alone can directly

result in behavioral abnormalities in rodent offspring. Alongside information from genome

wide association studies (GWAS), animal models have been able to identify the role

of complement proteins, particularly C4, and display how alterations in this system

can cause development of schizophrenia-associated neuropathology and behavior. This

article will review the current literature in order to assess whether schizophrenia can,

therefore, be viewed as an immune priming disorder.
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INTRODUCTION

Schizophrenia is a long-term mental health disorder with an etiology characterized by a range of
positive symptoms (e.g., delusions and hallucinations), negative symptoms (e.g., loss of motivation)
and cognitive deficits (e.g., working memory deficits) during early adulthood (1). Heritability is
estimated to be 80% (2, 3), but susceptibility of developing schizophrenia is determined by complex
interactions between genes and the environment (4, 5). Risk of developing the clinical phenotype
is generally modeled on the “two-hit hypothesis” where the “first hit” is an early priming event
disrupting neurodevelopment and establishing increased vulnerability to a “second hit” which
tends to be environmental insults occurring later in life (6, 7). Genetic abnormalities are widely
accepted as the “first hit,” but MIA may also serve this function (6).

Ecological studies were first to show the possible link between MIA via infection during
pregnancy and increased schizophrenia risk in offspring. Following the 1957 influenza type A2
epidemic in Finland, maternal viral infection resulted in increased schizophrenia rates per 1,000
live births recorded in Helsinki (8). Other similar studies have attempted to replicate these findings,
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with some showing positive associations whilst others finding no
association (9). Due to widely contradictory results, MIA animal
models have been necessary to establish a causal relationship
between MIA and schizophrenia-related abnormalities (10–
13). These models have been pivotal in identifying molecular
mechanisms that affect normal neurodevelopment in early life
(10), most significantly changes to the complement system (4,
14). These changes cause neuronal connectivity and synaptic
pruning dysfunction which may contribute to pathological
characteristics seen in post-mortem schizophrenic brains (e.g.,
decreased cortical graymatter thickness), leading to social deficits
observed in schizophrenic patients (14–16).

MIA falls under the category of prenatal maternal stress
which broadly encompasses maternal infection/inflammation,
obstetric complications, nutritional deficiencies and psychosocial
stress. In particular, maternal psychological stress is documented
to be a well-characterized early priming event resulting in
both physiological and behavioral deficits in offspring, such
as cardiovascular abnormalities, enhanced anxiety-like behavior
and increased risk of schizophrenia and other psychotic disorders
(17–19). Increased glucocorticoid secretion due to stimulation of
the hypothalamic-pituitary-adrenal (HPA) axis may play a part,
resulting in schizophrenia-like phenotypes, as seen with pregnant
rats exposed to variable stress paradigms (20). Althoughmaternal
psychological stressors can have a large impact on schizophrenia
risk in offspring, this essay will be focused on reviewing
the evidence linking MIA in particular to schizophrenia in
regard to epidemiological studies, MIA animal models and the
complement system in order to evaluate whether schizophrenia
can be classed as an immune priming disorder.

EPIDEMIOLOGICAL STUDIES

Epidemiological studies have linked MIA to increased
schizophrenia risk via infectious agents like influenza, herpes
simplex virus 1 (HSV-1) and Toxoplasma gondii (T. gondii) (21–
23). Ecological studies, primarily based on maternal influenza
infection, identified this link, but there were many limitations
associated with these. A notable limitation was diagnostic
misclassification of influenza, with exposure in early studies
being based upon maternal recall or whether the mother was in
gestation during the epidemic, meaning around 70% of those in
gestation during the 1957 influenza epidemic would have been
misclassified as being infected whilst, in reality, being unexposed
(8, 22, 24, 25).

A new approach was required to overcome this, leading
to an increase in birth cohort studies using serological
evidence, as summarized in Table 1. These studies used
well-characterized birth cohorts and measured biomarkers in
individual pregnancies using archived biological specimens
obtained during pregnancy or early life of offspring (22). Results
showed increased schizophrenia risk associated with maternal
influenza infection in the first trimester (9), rather than the
second trimester as found in ecological studies (8), and elevated
levels of maternal antibodies against T. gondii (26, 27, 31, 32),

as well as impaired cognitive functions displayed by HSV-1
seropositive offspring (23, 28, 29).

The mechanisms by which infection increases schizophrenia
risk are only speculative and may either be infection-specific
or work by a common causal mechanism (22). For example,
the genome of T. gondii contains two genes encoding
tyrosine hydroxylase which catalyzes L-DOPA production.
L-DOPA is the precursor to dopamine, the dysregulation of
which is well-established in schizophrenia pathology, thereby
providing a potential infection-specificmechanism for increasing
schizophrenia risk (33). However, there is currently limited
evidence identifying T. gondii infection as a risk factor for
schizophrenia, so larger birth cohort studies would be required
to establish a more definitive association. Using human neurons
derived from human induced pluripotent stem cells may also be
useful in studying molecular mechanisms involved in T. gondii
infection that lead to schizophrenia-associated pathogenesis. On
the other hand, infections may act through commonmechanisms
by causing a pro-inflammatory state, increasing cytokine levels
like IL-6 which has been shown to play a key role in behavioral
abnormalities (22). A single injection of IL-6 during mid-
pregnancy in rodents caused pre-pulse inhibition (PPI) and latent
inhibition deficits in adult offspring, translating to sensorimotor
gating deficits seen in schizophrenic patients, which can be
prevented through administration of anti-IL-6 antibodies (34).

The prospective nature of serological studies has been
powerful in establishing a link between MIA and increased
schizophrenia risk through the use of qualitative measures of
pathogenic markers in prenatal life. However, these studies are
limited since they do not have the capacity to identify cellular
and molecular mechanisms which affect neurodevelopment.
Research in animal models provide a platform to overcome
these limitations and potentially establish causality for
these associations.

MIA ANIMAL MODELS

Initially, MIA was modeled using experimental mouse models
of prenatal exposure to human influenza, where pregnant mice
were infused with a mouse-adapted human influenza strain
(35). Neuropathological signs were observed in the offspring,
such as corticogenesis deficits, decreased hippocampal volume,
decreased expression of γ-aminobutyric acid (GABA) markers,
e.g., reelin, and behavioral abnormalities linked to schizophrenia
(35). These results were extended to rhesus monkeys who
showed decreased gray and white matter in cortical and parietal-
cortical brain regions of neonates, verifying the relevance
of rodent findings since corticogenesis in primates is more
advanced and similar to humans (36). Viral MIA immune
models were useful since they produced the full spectrum of
immune responses caused by infections, but due to limitations
associated with viral models such as the need for strict biosafety
provisions and decreased control of immune response intensity
and duration, animal MIA models moved onto using other
immunogens such as polyinosinic:polycytidylic acid (polyI:C)
to mimic viral infection, lipopolysaccharides to mimic bacterial
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TABLE 1 | Table reviewing serological evidence linking various infections to increased schizophrenia risk.

Infection References Method Population Findings Strengths Limitations

Influenza Brown et al.

(9)

Nested

case-control study

of the Prenatal

Determinants of

SZ birth cohort.

A subgroup of 12,094

offspring to mothers

receiving obstetric care

from the Kaiser

Foundation Health Plan

in Alameda County,

California from 1959 to

1966.

Seven-fold increased

SZ risk when exposed

to influenza in 1st

trimester.

Three-fold increased

SZ risk when exposed

to influenza from

mid-1st to

mid-2nd trimester.

Prospective study in

well-characterized birth

cohort.

Face-to-face

psychiatric

diagnostic assessment.

Serum samples frozen

for 30+ years which

may affect antibody

levels.

No inclusion of family

history of SZ.

T. gondii Brown et al.

(26)

Nested

case-control study

of the Prenatal

Determinants of

SZ birth cohort.

A subgroup of 12,094

offspring to mothers

receiving obstetric care

from the Kaiser

Foundation Health Plan

in Alameda County,

California from 1959 to

1966.

Two-fold increased SZ

risk in offspring

exposed to higher IgG

antibodies against T.

gondii in utero.

Prospective study in

well-characterized birth

cohort.

Serum samples frozen

for 30+ years which

may affect antibody

levels.

No inclusion of family

history of SZ, maternal

lifestyle or health.

Modest group size.

Mortensen

et al. (27)

Cohort-based,

case-control study

in Denmark.

A group of 413

individuals registered in

the Danish Psychiatric

Case Register born

from 1981 to 1999.

Increased SZ risk

associated with

increased IgG

antibodies against T.

gondii in offspring.

Large sample size.

Included confounders

like family history of

SZ/mental

health disorder.

Confined only to cases

with early onset (18

years or younger), so

cannot generalize to

other age groups.

28% of SZ cases could

not be located in the

biobank which could

have caused bias

in results.

HSV-1 Yolken et al.

(28)

Cognitive

examination of SZ

patients from the

Clinical

Antipsychotic

Trials of

Intervention

Effectiveness

(CATIE) sample.

A group of 1,308

individuals with SZ from

57 sites across all

regions of the USA

except Alaska.

Impaired visuomotor

skills, verbal memory,

attention and executive

function in patients

seropositive for HSV-1

only, not with other

human herpesviruses.

Large sample size. No inclusion of family

history of SZ.

Dickerson

et al. (29)

Cognitive

examination of SZ

patients using the

Repeatable

Battery for the

Assessment of

Neuropsychological

Status.

A group of 229 SZ

patients from several

treatment and

rehabilitation programs

in central Maryland

aged 18 to 65 years

old.

Impaired cognitive

function in patients

seropositive for HSV-1

only, not with other

human herpesviruses.

Used solid-phase

enzyme immunoassays

which allow small

volumes of serum

samples to measure

antibodies against a

number of different

antigens.

No evidence of CNS

infection since did not

measure levels of

herpesvirus antibodies

in the cerebrospinal

fluid.

Cross-sectional study

so could not determine

timing of initial HSV-1

infection or age of

cognitive

dysfunction development.

Buka et al.

(30)

Nested

case-control study

of three cohorts

from the National

Collaborative

Perinatal Project

(NCPP).

A group of 200

offspring with

psychoses from a

sample of pregnant

women from Boston,

Providence and

Philadelphia.

1.8-fold increased

SZ-associated

psychosis risk in

offspring of HSV-2

seropositive mothers.

Elevated risk

associated with

offspring of mothers

who did not use regular

contraception and had

frequent intercourse.

Prospective study in

well-characterized birth

cohort.

Large sample size.

Losses to follow up

may have caused bias.

Overrepresentation of

males and those from a

high socioeconomic

background in

this sample.

SZ, schizophrenia; Ig, immunoglobulin G.
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infections and turpentine to mimic local inflammation (10).
This article will particularly focus on polyI:C animal models
due to the strength of their results, with Table 2 summarizing
the main contributions these models have made to the study of
schizophrenia pathophysiology.

In viral infection, double stranded RNA (dsRNA) is an
intermediate in single stranded RNA replication or during
symmetrical transcription of DNA viruses (10). Recognition
of dsRNA by toll-like receptor 3 (TLR3) causes increased
pro-inflammatory cytokine expression (10, 13). PolyI:C acts
as a synthetic analog of viral dsRNA and mimics the acute
phase response to viral infection (10, 13). The most significant
finding from polyI:C rodent models would be how gestational
timing of MIA exposure can influence the phenotype displayed
by offspring (9, 11, 12). Pregnant mice were injected with
polyI:C at either gestational day (GD) 9 or GD17 (39, 40, 47),
translating to mid-first trimester and early second trimester,
respectively, in humans (48). GD9 offspring were found to
have phenotypes consistent with positive symptoms such as PPI
deficits, latent inhibition deficits, decreased dopamine 1 (D1) and
D2 receptor density in the prefrontal cortex (PFC) and increased
tyrosine hydroxylase levels. Conversely, GD17 offspring showed
phenotypes consistent with negative and cognitive symptoms
such as N-methyl-D-aspartic acid (NMDA) receptor alterations,
impaired reversal learning, working memory deficits, increased
hyperlocomotion to MK-801 (an NMDA receptor antagonist)
and decreased hippocampal expression of the N1 subunit of
NMDA receptors (12). A limitation of this study is that these
results were observed only in the C57 mouse strain. Therefore,
further studies were undertaken in rats to provide evidence that
these results were generalizable across species (12).

Pregnant Wistar rats were injected with polyI:C at GD10
or GD19 and their offspring undertook behavioral tests such
as the acoustic startle response, delayed non-match to position
testing and drug-induced locomotor activity assessments (12).
Results from the rat study partially replicated findings from
mouse studies; offspring exposed to late MIA showed working
memory deficits and hyperlocomotion in response to MK-801,
and offspring from both groups exhibited hyperlocomotion in
response to amphetamine (12). Unlike the mouse study, the rat
study showed decreased PPI in male offspring exposed to MIA
at any gestational timing (12). This may be because the estrous
cycle was not controlled for in female rats, meaning estrogenmay
have prevented the PPI disruption (12). On the contrary, a later
study found female rats exposed to MIA in late gestation also
exhibited sensorimotor gating deficits (11). These contradictory
results suggest GD10 and GD19 may not be key sensitive periods
of gestation for rats. Studies based on different gestational days
with larger sample sizes should be undertaken to compare results.

Gestational timing of MIA is of great importance due
to neuronal migration in neurodevelopment. A recent study
reported decreased cortical and striatal, but not hippocampal,
somatostatin (SST) mRNA in polyI:C adult rat offspring (11).
This may be related to the distinct origins of these inhibitory
neurons and the different timings involved in their migration
(11). Cortical SST-containing inhibitory neurons derive from the
medial ganglionic eminence (MGE), whilst 40% of hippocampal

SST-containing inhibitory neurons derive from the caudal
ganglionic eminence (CGE) (11). The MGE has an early
dominant period of neurogenesis between GD9.5-GD13.5, whilst
the CGE has a later period between GD12.5-16.5 (11). This
explains why the hippocampus, and not the cortex, was spared
when MIA was inflicted during GD10 and GD19, highlighting
the great impact the specific timing of MIA can have on neuronal
distribution (11). Further experiments should be conducted with
MIA being inflicted during the key neurogenesis period of
the hippocampus. If polyI:C offspring expressed characteristics
associated with hippocampal dysfunction, such as memory
and attention deficits, it would confirm whether MIA affects
neurodevelopment through alterations in neuronal migration.

MIA animal model studies have also played a prominent role
in identifying a link between complement system dysregulation
and increased risk of schizophrenia-like phenotypes. The
complement system is a key mediator of immunity, meaning
that dysregulation of this system directly implicates the
immune system in the etiology of schizophrenia. Complement
proteins are involved in neurogenesis, neuronal migration and
synaptic formation (4, 14), with C3 knockout mice showing
synaptic elimination deficits (49) and impaired migration of
neuroblasts (50). Early studies implicating complement system
dysfunction in schizophrenia used hemolytic activity assays
to measure overall complement component function in the
blood (51–53). Results were varied, with some studies finding
decreased total hemolytic activity in patients (52), whilst others
found no differences between patients and controls (53).
Complement system abnormalities are more reliably observed
during infection; mothers of schizophrenic patients with
increased fetal antibodies against adenovirus and HSV-2 also
had higher C1q levels, indicating an early neurodevelopmental
role for the complement cascade that may be due to MIA (54).
Western blot analysis of C1q in different brain regions of polyI:C
adult rodent offspring showed increased C1q expression in the
PFC compared to controls (55). Although increased C1q likely
contributes to behavioral abnormalities, this hypothesis has not
specifically been assessed, meaning further behavioral tests are
required to confirm this.

A recent GWAS of schizophrenia confirmed a robust
genetic association with the major histocompatibility (MHC)
locus, strongly implicating immune dysfunction as a potential
pathological mechanism in schizophrenia (56). More specifically,
through the use of digital droplet polymerase chain reactions
and analysis of single nucleotide polymorphism (SNP) data,
overexpression of C4 (originating from the MHC locus),
particularly the C4A gene, has been linked with increased
schizophrenia risk, with C4A mRNA being elevated in
post-mortem brain tissue from schizophrenic patients (15).
Immunohistochemistry on brain sections showedmajority of C4-
positive cells to be in the hippocampus, and co-immunostaining
with pre-synaptic (vesicular glutamate transporters 1 and 2)
and post-synaptic (post-synaptic density protein 95) markers
showed much of the C4 was localized at synaptic puncta (15).
Additionally, C4 knockout mice showed reduced synaptic
pruning, suggesting C4 overexpression may contribute to
decreased synapse numbers observed in schizophrenia (15). A
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TABLE 2 | Main contributions made by polyI:C rodent models to the study of schizophrenia pathophysiology.

References Gestational

day

challenge

Main neurobiological findings Main behavioral findings

Meyer et al. (37) 9 Increases in IL-10 at 1 and 6-h post-challenge. Increases

in IL-1β at 12 h post-challenge

Impairments in exploratory behavior, PPI, LI and spatial

working memory. Enhanced locomotor response to

systemic amphetamine.

Meyer et al. (38) 6, 9, 13 or 17 Increases in IL-10:TNF ratio in GD17 offspring. GD6, 9 or 13 offspring display LI deficits.

Smith et al. (34) 12.5 - Co-administration of IL-6 antibody with polyI:C prevents

PPI, LI and exploratory/social deficits caused by polyI:C

in offspring.

Meyer et al. (39) 9 or 17 GD9 offspring show decreased prefrontal D1 receptors

in adulthood. GD17 offspring show decreased

hippocampal NMDA receptor subunit expression.

Potentiation of locomotor activity to amphetamine and

decrease in reelin- and parvalbumin-expressing

prefrontal neurons occur independently of polyI:C

challenge timing.

GD9 offspring display impaired sensorimotor gating.

GD17 offspring display impaired working memory and

potentiation of locomotor activity to NMDA receptor

antagonists.

Li et al. (40) 9 or 17 GD9 offspring display enlarged lateral ventricles in

adulthood. GD17 offspring show 4th ventricle volume

expansion.

GD9 offspring display PPI deficits.

Bitanihirwe et al. (41) 17 Sex-specific changes in neurotransmitter levels

including: Reduced dopamine and glutamate in the PFC

and hippocampus. Reduced GABA in hippocampus.

Reduced glycine in the PFC.

Both male and female offspring display deficits in social

interaction, anhedonic behavior, alterations in locomotor,

and stereotyped behavioral responses to acute

apomorphine treatment. Male offspring also display

enhanced LI.

De Miranda et al. (42) 16 PolyI:C exposure inhibits embryonic neuronal stem cell

replication and population of the superficial neocortex

layers by neurons which is dependent on TLR3.

Impaired neonatal locomotor development and abnormal

sensorimotor gating responses in adult offspring.

Abazyan et al. (43) 9 Prenatal polyI:C exposure in mhDISC1 mice causes

decreased reactivity of the

hypothalamic-pituitary-adrenal axis and attenuated

serotonin neurotransmission in hippocampus. Reduced

enlargement of lateral ventricles. Decreased volumes of

amygdala and periaqueductal gray matter. Decreased

density of dendritic spines of granule cells in

hippocampus. Modulated secretion of cytokines in fetal

brains. Altered levels of mhDISC1, endogenous mouse

DISC1 and glycogen synthase kinase 3β.

Offspring display anxiety, depression-like phenotypes

and altered social behavior. Behavioral effects only

observed if mhDISC1 expressed throughout lifespan.

Coiro et al. (44) 12.5 Decreased number and turnover rates of dendritic

spines at sites of excitatory synaptic inputs in cortex.

Reorganization of pre-synaptic inputs with more spines

contacted by both excitatory and inhibitory presynaptic

terminals.

Increased repetitive behavior. Treatment with

anti-inflammatory drug ibudilast prevents synaptic and

behavioral impairments.

Duchatel et al. (45) 10 or 19 GD19 offspring showed increased NeuN+ IWMN

density. Offspring exposed to polyI:C at both gestational

stages showed increased SST+ IWMN density. 1st

study to show MIA increases IWMN in adult offspring in a

similar manner to what is seen post-mortem SZ brains.

-

Meehan et al. (12) 10 or 19 Male GD10 offspring show increased D1 receptor mRNA

levels in nucleus accumbens.

GD19 offspring display transient working memory

impairments. Male offspring exposed at either

gestational timings display sensorimotor gating deficits.

Duchatel et al. (46) 10 or 19 Male GD19 offspring show significant increase in C4

gene expression in cingulate cortex.

-

Rahman et al. (11) 10 or 19 Decreases in SST mRNA in cingulate cortex and nucleus

accumbens shell, and reduction of parvalbumin mRNA in

infralimbic cortex regardless of polyI:C challenge timing.

GD19 offspring display decreases in SSTR2 mRNA in

cortex and striatum.

-

IL, interleukin; LI, latent inhibition; TNF, tumor necrosis factor; TLR, toll-like receptor; mhDISC1, mutant human-disrupted in schizophrenia 1 gene; NeuN, neuronal nuclear antigen;

IWMN, interstitial white matter neurons; SST, somatostatin; SSTR2, somatostatin receptor 2.
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limitation of this investigation is that C4 is encoded for by the
C4A and C4B genes in humans, whilst encoded by a single C4b
gene in mice, meaning these results may not directly translate to
humans (15).

The involvement of C4 in synaptic pruning was rigorously
studied by Comer et al. through C4 overexpression in
mouse models (16). Results show dendritic spine abnormalities
in C4-overexpressing mice which is consistent with post-
mortem studies of schizophrenic patients (57). Changes in
dendritic spines were most prominent in L2/3 of the PFC,
but abnormalities have also been observed in other regions
like the frontal lobe, temporal lobe and hippocampus (57).
Therefore, targeting different areas with in utero electroporation
(IUE) would be required to see if C4 overexpression decreased
dendritic spine density in other areas also (16). Additionally,
filopodia play a large role in synaptogenesis (58); decreases
in the number of filopodia seen in these mice mean C4 may
cause dysregulation of filopodia-dependent synapse formation in
early development, resulting in abnormal synaptic elimination
and circuitry that is seen in schizophrenia (16). Findings of
decreased excitatory synaptic drive show how these structural
abnormalities in dendritic spine density result in functional
changes in connectivity (16). They also found excessive
microglial engulfment of synaptic material was driven by
C4 overexpression (16). Previous studies have showed that
phagocytosis of synaptic material by microglia to be a necessary
aspect of normal brain wiring (59), meaning the complement
system may mediate brain circuitry, resulting in pathology when
dysregulated. As well as genetic and molecular associations
between C4 overexpression and schizophrenia, Comer et al. have
found C4 overexpression in the frontal cortex to be sufficient in
changing social interactions of both juvenile and adult mice, with
results suggesting that overexpression of C4 can lead to long-term
changes in PFC circuitry (16).

These results are the first to have shown a direct causal
link between increased C4 levels and PFC dysfunction, and
how this can lead to hypoconnectivity and abnormal synaptic
functioning that drives expression of behavioral phenotypes seen
in schizophrenia. Although it is recognized that schizophrenia
is caused by a wide range of etiological factors, strong genetic,
molecular and behavioral evidence has been provided by Comer
et al. that altering the expression of only the C4 gene is sufficient
in mice to cause schizophrenia-like pathology. Future studies
should focus on identifying whether changes in C4 expression
in other brain areas can cause other schizophrenia-related
phenotypes such as memory deficits.

Additionally, Comer et al. identified a critical developmental
time period, around E16 in mice, during which PFC circuits
are more vulnerable to changes in C4, highlighting the
importance in the timing of gestational insults. This is further
strengthened by a study using polyI:C MIA rodent models
which, through qPCR, found a significant increase in C4 gene
expression in the cingulate cortex of offspring infected at
GD19 only. This provides direct evidence, paired with results
from Comer et al., that late MIA can cause schizophrenia-
like deficits (46). Future studies could utilize transcriptomic
and proteomic technology to delineate the molecular pathways

underlying the relationship between late gestational MIA and
C4 overexpression.

DISCUSSION

After review of epidemiological studies and animal models
of MIA, it can be argued that schizophrenia can be regarded
as an immune priming disorder, with MIA increasing the
vulnerability of an individual to neuropathological effects of
other environmental insults. Animal models have provided a
wealth of information highlighting interactions between early
neurodevelopmental disturbances and psychosis, showing strong
face, construct and predictive validity (60). In particular, polyI:C
models have been able to model behavioral, neuroanatomical
and neurochemical changes seen in schizophrenic patients,
including increased mesencephalic dopamine neuronal density
and decreased NMDA receptor function in the PFC, consistent
with the dopaminergic and glutamatergic hypotheses of
schizophrenia (13). The obvious limitation of animal models
is that many clinical manifestations of schizophrenia, e.g.,
hallucinations and delusions, are impossible to detect in animals
(60). Therefore, behavioral, anatomical and physiological
characteristics must be examined through translational models
rather than modeling the whole syndrome (60). Although
polyI:C models cannot mimic the full spectrum of immune
responses, the relevance of this model in preclinical studies is
not undermined since it does not influence its capacity to mimic
schizophrenia-like behaviors and neuropathology (13, 60).

Animal models have provided strong evidence for the role of
MIA in schizophrenia pathology, emphasizing the importance
of gestational timing of infection in neurodevelopment and
behavior. More specifically, MIA in late gestation causes
increased C4 expression seen in schizophrenic patients.
Subsequently, C4 overexpression has been proven to cause
hypoconnectivity in the PFC and social deficits that are
characteristic of schizophrenia, displaying how MIA is
sufficient in causing schizophrenia-like phenotypes. Future
studies utilizing modern functional imaging techniques are
required to elucidate this relationship in humans and further
confirm the contributing factor of C4 overexpression in
schizophrenia development.

Although MIA may predispose individuals to schizophrenia,
it is neither sufficient, nor necessary by itself for the development
of the disease. Instead MIA can be viewed as a “priming”
event, increasing vulnerability to the disorder, acting as
a “first hit” toward the development of the disorder. The
role of complement proteins in MIA is simply one aspect,
among many, of immune dysfunction schizophrenia.
Furthermore, the effect may also likely to be non-specific.
Maternal stress is also a significant factor resulting in
increased risk of different psychiatric disorders amongst
offspring, potentially due to its effect on immune molecules
like cytokines, with elevated maternal pro-inflammatory
cytokines being associated with abnormal neurodevelopment
(61–63). Taken together, a “multi-hit threshold model”
encompassing different aspects of neurodevelopment
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would more accurately represent the dynamic interaction
between genes and the environment in schizophrenia
development (64).

Understanding the neuropathological origins of
schizophrenia is important for detecting increased disease
risk at an early stage and the development of preventative
therapies. Detection of significant immune molecules, such as
C4, may allow development of medication that could target these
molecules or their receptors. Additionally, the identification of a
key window of vulnerability provides a critical time period where
such preventative therapies would be most efficacious. However,
preventative therapies for neurodevelopmental disorders are

controversial and would require extensive evaluation on both a
scientific and ethical basis before being implemented in a clinical
setting. Nevertheless, further investigation into the immune
basis of schizophrenia could provide many potential therapeutic
opportunities to improve treatment of this disorder.
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