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Introduction 

Viral nervous necrosis (VNN) disease, also called viral encephalopathy and rectinopathy, 
viral vacuolating, encephalopathy and rectinopathy or piscine neuropathy. Nervous ne-
crosis virus (NNV) of the genus Betanodavirus (25–30 nm) is the causative agent of 
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Nervous necrosis virus (NNV) is a deadly infectious disease that affects several fish species. 
It has been found that the NNV utilizes grouper heat shock cognate protein 70 (GHSC70) 
to enter the host cell. Thus, blocking the virus entry by targeting the responsible protein 
can protect the fishes from disease. The main objective of the study was to evaluate the 
inhibitory potentiality of 70 compounds of Azadirachta indica (Neem plant) which has 
been reported to show potential antiviral activity against various pathogens, but activity 
against the NNV has not yet been reported. The binding affinity of 70 compounds was cal-
culated against the GHSC70 with the docking and molecular dynamics (MD) simulation 
approaches. Both the docking and MD methods predict 4 (PubChem CID: 14492795, 
10134, 5280863, and 11119228) inhibitory compounds that bind strongly with the GHSC70 
protein with a binding affinity of –9.7, –9.5, –9.1, and –9.0 kcal/mol, respectively. Also, the 
ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties of the 
compounds confirmed the drug-likeness properties. As a result of the investigation, it may 
be inferred that Neem plant compounds may act as significant inhibitors of viral entry into 
the host cell. More in-vitro testing is needed to establish their effectiveness. 

Keywords: Azadirachta indica, dynamic simulation, grouper heat shock cognate protein 70, 
molecular docking and ADMET, nervous necrosis virus  



VNN and it consists of four genotypes: among them, the red spot-
ted grouper nervous necrosis virus genotype shows comprehen-
sive host range [1]. All growth stages of fish are affected heavily by 
NNV but mass mortalities were reported in marine fin fishes, es-
pecially among larvae less than 20 days old [2,3]. There are at least 
five orders of fish that may be affected by this virus which means it 
can infect 16 different families of fish. Since the virus is spread by 
water, it can affect healthy and sick fish in the same area [3] and 
when this virus examined under light microscopy the target organ 
of NNV, is the spinal cord mainly the central nervous system of the 
infected fish and marked vacuolations in the eye retina and brain 
of fish [4]. Japan is probably the first country where nodavirus in-
fection was detected in Japanese parrotfish (Oplegnathus fasciatus) 
[5] and afterwards infection from nodavirus has recorded in about 
40 species till date, causes mass mortality and resulted tremendous 
economic damages globally in last two decades. 

Two-single-stranded positive-sense RNAs are the main com-
pound for NNV genome structure [6]. RNA-1 is responsible for 
RNA-dependent RNA polymerase encode and viral capsid pro-
tein encoded by RNA-2 [7]. Additionally, B-1 and B-2 proteins 
which are the function of a small nonstructural protein are encod-
ed by a sub genome of RNA-1 named RNA-3 of betanodaviruses. 
B-1 and B-2 proteins are encoded by a sub genome of RNA-1 
named RNA-3 [8]. The B-1 protein shows early stage of infection, 
representing an anti-necrotic cell demise function by reducing mi-
tochondrial membrane protein loss and thus, enhancing cell via-
bility [9]. RNAi-mediated cleavage by a host, on the other hand, is 
inhibited by the B-2 protein, which functions as a binder between 
intermediate double-stranded RNA and NNV [10]. The only 
structural protein of the virion is the NNV coat protein and has 
been tested to fix the host range [11]. Monoclonal antibodies spe-
cific for NNV with high neutralizing titers have been produced 
[12], indicating that NNV-specific receptors are present in host 
cells. Virus infection by NNV occurs through receptor-mediated 
endocytosis and macro pinocytosis. Since susceptible SSN-1 cells 
(derived from striped snakehead) contain sialic acid residues that 
are compatible with virus, these are the sites where the virus at-
taches [13]. 

All the knowledge and information related to NNV invasion 
into the host cell remains limited till now. Grouper heat shock cog-
nate protein 70 (GHSC70) and grouper voltage-dependent an ion 
selective channel protein 2 were examined as NNV receptor pro-
tein candidates utilizing the grouper fin cell line GF-1 and purified 
NNV capsid protein in a viral over lay protein binding assay. The 
GHSC70 protein acts as a NNV receptor or coreceptor in GF-1 
cells, most likely acting as a receptor [14]. 

Medicinal plants can play a critical role in the treatment of a vari-
ety of ailments, particularly in areas where resources are scarce. 
Traditional remedies are mostly advocated given the abundance of 
these plants all over the world [15]. Before anything, traditional 
drugs have less detrimental consequences than modern drugs, 
which is one of the main reasons why essential chemicals are ex-
tracted and produced from plants [16]. Azadirachta indica is a typ-
ical medicinal plant whose importance has risen steadily in recent 
years around the world. It contains a large number of biologically 
active compounds with a variety of structures. Well over 140 effec-
tive chemical compounds have been reported and extracted from 
various components of this plant, which include leaves, flowers, 
seeds, roots, fruits, and bark have been used traditionally as a treat-
ment for a variety of diseases, as shown in a research. Anti-inflam-
matory, immune-modulator, anti-mutagenic, anti-carcinogenic, 
anti-oxidant, and anti-viral medicines have all been found in these 
potent molecules [17]. 

A. indica components are divided into two categories: non-iso-
prenoids and isoprenoids. Proteins, sulphurous molecules, carbo-
hydrates, and polyphenolics such as dihydrochalcone, flavonoids, 
coumarin, and aliphatic molecules are all examples of non-iso-
prenoid. Azadirone, protomeliacins, limonoids, and some deriva-
tives including nimbin, vilasinin, salanin, and azadirachtin are 
among the di-terpenoids and tri-terpenoids used to make iso-
prenoids [15]. 

To introduce effective medicines in a conventional or standard 
manner can take a long time, be expensive, and require a signifi-
cant amount of effort [18]. For example, high-throughput screen-
ing (HTS) is a technique that integrates multiple-well microplate 
with automated processing to improve drug development by as-
saying a large number of putative drug-like molecules [19]. Addi-
tionally, HTS should have abundant resources, as processing a par-
ticular HTS program is expensive and involves the use of robotic 
devices [20]. On the contrary, computer-aided drug design, also 
known as in silico drug design, is a relatively new technology for 
screening a large database of compounds using a high-throughput 
approach [21]. The in silico virtual screening approach aids in the 
discovery of novel medicines by generating hits for lead com-
pounds in a shorter period and at a cheaper cost [22]. As a result, 
improved in silico drug design reduces the time required to devel-
op, design, and optimize a novel drug. The virtual screening ap-
proach has been used for decades to find the best lead compounds 
with various structural properties for use with a given biological 
target [23]. Furthermore, computer-aided drug design has been 
used to find a wide variety of interesting drug applications and hits 
utilizing virtual screening, molecular docking, and dynamics simu-
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lation techniques [24]. In light of the above-mentioned A. indica 
drugs, the goal of this study is to use molecular docking to screen 
active compounds of A. indica against the GHSC70 and investigate 
their interaction pattern. As a result, the goal of this work was to 
combine virtual screening, molecular docking, and ADMET (ab-
sorption, distribution, metabolism, excretion, and toxicity) fea-
tures strategies to screen potential natural anti-fish drugs. 

Methods 

Retrieving the sequence 
The UniProtKb database (https://www.uniprot.org/) was used to 
retrieve the amino acid (aa) sequence of the GHSC70 protein 
(UniProtKb ID: A0A096VJY) found in NNV and downloaded in 
FASTA format. 

Assessment of secondary structure 
The secondary structural elements of the protein GHSC70 were 
predicted through the SOPMA tool [25] using the default param-
eters (window width of 17, number of states of 4, and similarity 
threshold of 8). 

Prediction, refinement, and validation of three-
dimensional structures 
The three-dimensional structure of the target protein was predict-
ed using the Raptorx server (http://raptorx.uchicago.edu/) [26]. 
The protein 3D structure was refined by GalaxyWeb server 
(https://galaxy.seoklab.org). The structure validity is a crucial 
stage in homology modeling, which is based on experimentally 
validated the structure of 3D proteins. A 3D model of the target 
protein is developed based on a sequence alignment between the 
target protein and the template structure [27]. The protein 3D 
structure was refined by GalaxyWeb server. The structure's validity 
is a crucial stage in homology modeling, which is based on experi-
mentally validated the structure of 3D proteins. The proposed 
GHSC70 protein model was uploaded to ProSA-web for basic 
confirmation [28]. The server foresaw the overall character of the 
model, which is represented by the z-score. If the expected model's 
z-scores are outside the scale of the property for local proteins, it 
indicates that the structure is erroneous [28]. To determine the 
overall quality of the suggested drug, a Ramachandran plot analy-
sis was performed using the Ramachandran Plot Server (https://
zlab.umassmed.edu/bu/rama/) [29]. 

Preparation of protein 
The protein's 3D structure was modelled and developed using the 

following criteria: water, metal ions, and cofactors were removed, 
polar hydrogen atoms were introduced, nonpolar hydrogen was 
combined, and gasteiger charges were calculated using AutoDock-
Tools [30]. 

Retrieval and preparation of compounds 
Phytochemicals derived from naturally occurring medicinal plants 
cover a wide range of chemical spaces that can be used in drug de-
velopment and discovery. IMPPAT stands for Indian Medicinal 
Plants, Phytochemistry, and Therapeutics, a manually curated da-
tabase of over 1,742 Indian medicinal plants and over 9,500 phyto-
chemical compounds that uses cheminformatic methodologies to 
improve natural product-based drug discovery [31]. Because of 
virtual screening, the phytochemical of the neem plant (A. indica) 
has been discovered and obtained from the database. The com-
pounds found from the database were created by assigning accu-
rate AutoDock 4 atom types, merging nonpolar hydrogens, detect-
ing aromatic carbons, and establishing a ‘torsion tree. It has been 
discovered that the AD4 atom type is the same as the compound's 
elements for the majority of atoms. 

Molecular docking and receptor grid generation 
The PyRx virtual screening tool AutoDock Vina was used to create 
a protein receptor grid [32]. The molecular docking investigation 
was carried out using the PyRx virtual screening program AutoDo-
ck Vina to find the binding mechanism of the required protein 
with chosen phytochemicals. PyRx is an open-source virtual 
screening application that can screen libraries of compounds 
against a given therapeutic target and is primarily used in Comput-
er-Aided Drug Design (CADD) techniques. PyRx integrates Aut-
oDock 4 and AutoDock Vina as docking wizards with an intuitive 
user interface, making it a more trustworthy CADD tool. This ex-
periment used PyRx's AutoDock Vina wizard for molecular dock-
ing to find the optimum protein and ligand binding poses. For 
docking objectives, the default configuration parameters of the 
PyRx virtual screening tools were utilized, and the highest binding 
energy (kcal/mol) with the negative sign was chosen for further 
investigation. Subsequently, using the BIOVIA Discovery Studio 
Visualizer v19.1.0.18287, the binding interaction of the protein–li-
gands complex was seen. 

Predicted pharmacology 
The physicochemical, pharmacokinetics, metabolism, and excre-
tion properties of molecules into urine and feces are all listed in the 
ADME of a substance [33]. The Swiss-ADME server (http://
www.swissadme.ch/) was used to forecast the various pharmaco-
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kinetic and pharmacodynamic parameters for the experiments 
[34]. In the area of drug discovery and development, initial analy-
sis of a compound's toxicity is critical [35]. Toxicology profiles of 
drug candidates provide information about the hazards to human 
health and the environment, as well as the safety and toxicity of 
chemical constituents. Chemical toxicity is now assessed using 
computer-assisted in-silico testing without the need for animal ex-
periments. As a result, the ProTox-II (http://tox.charite.de/protox 
II) website was used to assess the early-stage toxicity of the chosen 
medication candidates. With ProTox-II, you can identify com-
pounds that are acutely toxic, hepatotoxic, cytotoxic, carcinogenic, 
mutagenic, and immunotoxic [36]. Using quantitative struc-
ture-activity relationships techniques, the software estimates the 
toxicity of specified compounds. 

Quantum mechanics‒based calculation 
When it comes to determining possible active conformation, bind-
ing affinity, and strain discipline within a binding process, there is a 
requirement for conformation analysis of the ligand to the binding 
site. In such an instance, structural optimization and lowest energy 
conformations can be used, which require gas-phase energy and 
the solution phase. A ligand-protein complex system with metal 
ions does not lend itself to the conventional molecular mechanics 
mechanism [37]. Using quantum mechanical calculations, scoring 
functions have been developed that explain electronic structure 
and electronic changes, as well as system-specific charges during a 
system's reaction. A surprising amount of quantum mechanics 
(QM) based computations are currently based on density func-
tional theory (DFT). As a result, the DFT methods-based QM 
calculations of three substances were done in this work. Initially, 
the bond lengths, bond angles, and dihedral angles for potential 
compounds were optimized, then the DFT of the compounds has 
been calculated by using the ORCA quantum chemistry program 
package (version 4.1.1) [38,39]. The dispersion correction energy 
term D3 was used with  

Becke's three parameters (B3LYP) and Lee-Yang-Parr function-
als (B3LYP-D3) to calculate DFT. The conventional combination 
of functionalities B3LYP-D3 was chosen for this investigation be-
cause it does not directly affect the wavefunction or any other mo-
lecular characteristic, and 6-31G**, also known as 6-31G (d, p), 
was chosen as a basis set to describe the molecules electronic wave 
function. 

Frontier molecular orbital HOMO/LUMO calculation 
Based on Kenichi Fukui's frontier molecular orbital (1950s FMO) 
hypothesis, Fukui functions, are the highest energy occupied 

(HOMO) and lowest energy unoccupied (LUMO) orbitals. 
FMOs are electron frontier that help determine the energy differ-
ence between HOMO and LUMO orbitals. In nature, HOMO is 
primarily an electron donor (nucleophilic) and LUMO is primari-
ly an electron acceptor (electrophilic), and the interaction between 
the electron donor and electron acceptor pair can influence other 
chemical reactivity of a molecule [40]. Electrons from the HOMO 
jump to the LUMO during the electrophilic-nucleophilic process, 
resulting in an energy differential between two molecular orbitals. 
The HOMO-LUMO gap is the difference in energy between two 
molecular orbitals, that illustrates photochemistry as well as the 
strength and stability of organic transition metal complexes. To get 
a better understanding of atom susceptibility to electrophilic and 
nucleophilic assaults, the HOMO and LUMO energy were calcu-
lated by using the Avogadro software and visualize by Avogadro 
and Chemcraft software [39], and the energy difference between 
two molecular orbital HOMO-LUMO gaps was calculated from 
the following Eq. (3). 

(1) 
∆E(gap) = ELUMO – EHOMO

here, ∆E is the HOMO-LUMO gaps, ELUMO is the lowest energy 
unoccupied molecular orbital energy, and EHOMO is the highest en-
ergy occupied molecular orbital energy. 

Molecular dynamics simulation 
The binding stability of the selected candidate compounds to the 
desired protein to the active site cavity of the protein was assessed 
using 50 ns molecular dynamic simulations (MDS) [41]. The 
MDS of the receptor-ligand complex was carried out using the 
'Desmond v6.3 Program' in Schrödinger 2020-3 under the Linux 
framework to assess the receptor-ligand complex's thermodynam-
ic stability [42]. A preset TIP3P water model was utilized to solve 
the system, with an orthorhombic periodic boundary box shape 
with a box distance of 10 Å to both sides to maintain a certain vol-
ume. Appropriate ions, such as Na+ and Cl‒, with a salt concentra-
tion of 0.15 M, were chosen and inserted randomly in the solvated 
system to electrically neutralize the state. The system was reduced 
and relaxed using the default protocol introduced within the Des-
mond module with OPLS 2005 force field settings after generating 
the solvated system comprising protein in complex with the ligand 
[41]. NPT ensembles were kept at 300 K and one atmospheric 
(1.01325 bar) pressure using the Nose-Hoover temperature cou-
pling and isotropic scaling approach, followed by 150 PS recording 
intervals with an energy of 1.2. All MDS pictures were taken with 
Maestro v-12.5. Using the Simulation Interaction Diagram (SID) 
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of Desmond module v6.3, the root-mean-square deviation 
(RMSD) and root-mean-square fluctuation (RMSF) were utilized 
to evaluate the stability of the complex structure based on the 150 
ns trajectory performance. 

Results 

Sequence retrieval and secondary structure inquiry 
The amino acid (aa) sequence of the NNV protein (UniProtKb 
ID: A0A096VJY) was obtained from the NCBI database. There 
are 650 amino acids in the protein. Fig. 1 provides additional infor-
mation on the protein (UniProtKb ID: A0A096VJY). The alpha 
helix (Hh), extended strand (Ee), beta turn (Tt), and random coil 
(Cc) of the protein (A0A096VJY) were predicted by the SOPMA 
software to be 272 (41.85%), 118 (18.15%), 46 (7.08%), and 214 
(32.92%) (Fig. 2). Most proteins contain the α-helix, which is a 
fundamental structural element. Α-helices are formed by hydrogen 
bonds between the carbonyl oxygen of one peptide bond and the 
amino acid located three amino acids away. β-strands are also im-
portant structural elements of proteins. The protein chains are 
predominantly linear when β-strands are present. Furthermore, 
some portions of the protein chain do not form a regular second-
ary structure or have a consistent hydrogen-bonding pattern. 
These regions are known as random coils and are found in two lo-
cations in proteins: (a) terminal arms and (b) loops. 

Three-dimensional structure prediction, refinement, and 
validation 
The 3D structure of the protein model predicted using the Rap-
torX server (http://raptorx.uchicago.edu/). The Galaxy Refine 
server was used to refine the predicted protein tertiary structure, 

yielding five refined models and increasing the amount of amino 
acid residues in the favored location. When compared to the other 
models, the scores listed above indicate the improved model's cali-
ber. Crude model and refine model 1 (RMSD value 0.409) were 
chosen and visualized in Pymol (Fig. 3). Ramachandran Plot Serv-
er and ProSA-Web online server were used to validate the before 
and after revised GHSC70 protein model. Ramachandran plot 
analysis of the before refine structure revealed that 96.649% of the 
structure was in the favorable zone, as per Ramachandran plot 
server. After refining, the rampage server produced a better result, 
with 98.765% of residues in the preferred regions (Table 1). The 
validation quality and potential faults in a basic tertiary structure 
model are assessed using the ProSA-web server. Validation of the 
final GHSC70 protein model reveals a Z-score of –11.24 (Table 1, 
Supplementary Fig. 4). 

Fig. 1. The amino acid (aa) sequence of the protein of nervous necrosis virus.

Fig. 2. Secondary structural elements predicted by SOPMA server.
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Retrieval and preparation of phytochemicals 
The Indian natural and medicinal phytochemical compound li-
brary (IMPPAT database) was used to find the accessible com-
pounds of the required plant. A list of 70 chemicals was discovered 
in the database from the Neem (A. indica) plant (Supplementary 
Fig. 5). The phytochemical components found in neem plants 
were extracted and recorded in a 2D (SDF) file format. During the 
ligand preparation procedures, the compounds were produced 
and optimized, then converted to pdbqt file format for further as-
sessment. 

Molecular docking analysis 
A molecular docking study was first conducted to screen and iden-
tify the optimal intermolecular interaction among the desired pro-
tein and phytochemical substances. PyRx tools AutoDock Vina 
wizard was used to perform molecular docking between 70 phyto-

chemical compounds and their proteins of choice. The binding af-
finities discovered during molecular docking of the phytochemical 
molecule reported in Supplementary Fig. 5. Based on the binding 
affinity top 4 of 70 phytochemical (total 4) compounds have been 
chosen (Fig. 4). The docking methods predict 4 (PubChem CID: 
14492795, CID: 10134, CID: 5280863, and CID: 11119228) in-
hibitory compounds that bind strongly with the GHSC70 protein 
with a binding affinity of –9.7, –9.5, –9.1, and –9.0 kcal/mol, re-
spectively (Fig. 4). 

Predictive pharmacology 
The ADME characteristics of chemical compounds are crucial in 
determining a drug's effectiveness. Pharmacokinetics-related fail-
ure in clinical stages can be reduced by optimizing ADME charac-
teristics, which is complex and demanding in the drug design and 
trial process [34]. It has been discovered that assessing ADME at 
an early stage in the clinical drug development process can lower 
attrition rates. As a result, the SwissADME online tool was used to 
conduct an early-stage evaluation of ADME characteristics for four 
drugs. Focusing on hydrophilic nature, solubility, pharmacokinet-
ics, medicinal chemistry, and drug-likeness characteristics, the 
server assessed the ADME qualities of four compounds (CID: 
14492795, CID: 10134, CID: 5280863, and CID: 11119228). All 
the compounds have maintained an optimum pharmacokinetics 
property (Table 2). Toxicity testing is an essential and crucial 
phase in pharmaceutical development that aids in determining the 

Fig. 3. (A) 3D structure of crude model. (B) 3D structure of refine model.

Table 1. Validation of selected protein model by Ramachandran and 
z-score studies

Parameter Initial model Refine model Remarks
Ramachandran
  Highly preferred 0.96649 0.98765 Significant
  Preferred 0.02822 0.01058 Significant
  Questionable 0.00529 0.00176 Significant
ProSA Web
  Z-score –11.01 –11.24 Significant

Crude model Rifine modelAA BB
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Fig. 4. The top 4 compounds' molecular docking score and ligand 
structure.

Table 2. List of absorption, distribution, metabolism, and excretion (ADME) and toxicity of compounds

Property CID: 14492795 CID: 10134 CID: 11119228 CID: 5280863
Physiochemical properties
  MW (g/mol) 422.51 400.68 274.35 286.24
  Heavy atoms 31 29 20 21
  Aro. atoms 12 0 6 16
  Rotable bonds 6 5 0 1
  H-bond acceptors 5 1 3 6
  H-bond donors 2 1 2 4
  TPSA (Å2) 75.99 20.23 57.53 111.13
Lipophilicity
  Log Po/w (Cons) 5.11 6.88 3.25 1.58
Water solubility
  Log S (ESOL) Soluble Moderately soluble Moderately soluble Soluble
Pharmacokinetics
  GI absorption High Low High High
  BBB permeant No No Yes No
  P-GP substrate No No Yes No
Drug likeness
  Lipinski violations 0 1 0 0
Medi. chemistry
  Synth. accessibility Very easy Easy Medium Easy

MW, molecular weight; Aro., aromatic; TPSA, topological polar surface area; GI, gastrointestinal; BBB, BOILED-egg; P-GP, P-glycoprotein.

adverse levels of toxic compounds on people, wildlife, plants, and 
the surroundings. Traditional toxicity testing of chemicals necessi-
tates the use of an in vivo animal model, that is time-consuming, 
costly, and fraught with ethical issues [36]. As a result, comput-
er-aided in silico toxicity measurements of chemical compounds 
might be regarded beneficial in the drug development phase. The 
study used the ProTox-II web server to compute the toxicity of the 
chemical since it is quick, inexpensive, and does not need any ethi-
cal concerns. The four compounds (CID: 14492795, CID: 10134, 
CID: 5280863, and CID: 11119228) selected previously through 
different screening process have been submitted in the ProTox-II 
web server that determines the acute toxicity, hepatotoxicity, cyto-
toxicity, carcinogenicity, and mutagenicity of the compounds list-
ed in Table 3. All the compounds have shown no oral toxicity or 
organ toxicity effect. 

Geometry optimization 
Most computational biologists, chemists, academicians, and re-
searchers utilize geometry optimization, a quantum chemical ap-
proach, to discover the configuration of least energy with the most 
stable form of a chemical properties. This is a technique for taking 
crude geometric approximations and perfecting them [42]. Be-
cause molecules in the lowest energy state naturally lower their en-
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ergy by emitting, the geometry with the lowest energy is the most 
stable. Using the default basis set 6-31G (d,p) in Avogadro, the 
most optimized molecular shape with the lowest energy value has 
been established. The 2D structures and 3D optimized geometries 
of the compounds CID: 14492795, CID: 10134, CID: 5280863 
and CID: 11119228 have been plotted in Fig. 5. 

Frontier molecular orbital HOMO/LUMO calculation 
In organic chemistry, the FMO is increasingly widely utilized to 
describe the structure and reactivity of molecules. HOMO-LU-
MO bandgap energy is used in the theory to describe the electrical 
and optical characteristics of molecules. The energy gap between 
the two orbitals HOMO and LUMO also helps to determine the 
sensitivity of atoms toward electrophilic and nucleophilic attacks, 
chemical kinetic stability, chemical hardness, and softness of a 
molecule. The electrons in the HOMO orbital are the freest to en-
gage in nucleophilic reactions, whereas the electrons in the LUMO 
orbital participate in electrophilic reactions. A soft molecule is one 
that has a low HOMO-LUMO gap energy and a high chemical re-
activity while also having a poor kinetic stability. A molecule with a 
high frontier (HOMO-LUMO) orbital gap should have low chem 
reactivity or bioactivity and high kinetic stability in this process due 
to the limited likelihood of attaching an electron to the high-energy 
LUMO. When compared to a molecule with a low FMO energy 
gap, molecules with a large FMO energy gap are energetically stable 
due to low chemical reactivity and high kinetic stability [42]. 
Therefore, to evaluate the chemical reactivity and kinetic stability 
of the selected three compounds the HOMO, LUMO, and HO-
MO-LUMO, gap energy was calculated from Eq. (1) and shown in 
Fig. 6. The calculated FMO energy band gap values found for the 
compounds CID: 14492795, CID: 10134, CID: 5280863 and 
CID: 11119228 was 3.786 eV, 3.919 eV, 3.712 eV, and 3.855 eV, re-
spectively, which was considerably higher, indicating kinetic stabili-
ty and low chemical reactivity of the molecules. 

Re-docking and interaction 
Redocking score 
The re-docking procedure was used to find potential docking pos-
es in a limited area by utilizing previously acquired protein binding 
sites. The geometry optimized structure has been docked and the 
score found for the selected three compounds CID: 14492795, 
CID: 10134, CID: 5280863, and CID: 11119228 were −10.4 
kcal/mol, −9.9 kcal/mol, −9.9 kcal/mol, and −9.5 kcal/mol re-
spectively, which was better than the previously obtained binding 
score (Fig. 4). As a result, it can be concluded that the QM-based 
compound optimization was successful for the three compounds 
chosen. 

Protein-ligands interaction interpretation 
With the desired GHSC70 protein model, the compound CID: 
10134 produced two Pi-Alkyl interactions with ARG76 (4.83) and 
ARG76 (5.11), where two Alkyl bonds was discovered to form at the 
positions ARG72 (4.32) and PHE150 (4.56) (Table 4, Fig. 7). 

The interaction investigation of the compound CID: 5280863 
revealed two Pi-Alkyl bonds at the location of ARG72 (4.46) and 
VAL82 (5.16) and one Pi-Anion bonds at the residual positions of 
ARG76 (4.01) and one Pi-Cation at the residual positions of 
ASP80 (4.47). One conventional hydrogen bond interaction at 
the position of THR226 (2.89) and one carbon hydrogen bond 
formed at the position of THR216 (3.12) (Table 4, Fig. 7). 

With the target protein, compound CID: 11119228 has been 
found to create single conventional hydrogen bonds at the posi-
tions GLY437 (2.15) and 2 Pi-Alkyl bonds at the positions 
ALA406 (5.05) and ALA406 (5.35) (Table 4, Fig. 7). 

Conventional hydrogen bonds were observed to form exclusively 
at the TYR15 (2.8579) position of the molecule CID: 14492795, 
where pi–anion and alkyl bonds have been observed at the posi-
tions of GLU268 and VAL369, where the distance for the Pi-Alkyl 
bond was 4.6868 and the distance for Alkyl bonds was 5.4303 as 
shown in Table 4 and Fig. 7. 

Table 3. The toxicity endpoints of chosen four chemicals include acute toxicity, hepatotoxicity, cytotoxicity, carcinogenicity, and mutagenicity

Classification Target CID: 14492795 CID: 10134 CID: 11119228 CID: 5280863
Oral toxicity LD50 (mg/kg) 2,000 890 760 1190

Toxicity class 4 4 4 4
Organ toxicity Hepatotoxicity Inactive Inactive Inactive Inactive
Toxicity Carcinogenicity Inactive Inactive Inactive Inactive

endpoints Mutagenicity Inactive Inactive Inactive Inactive
Cytotoxicity Inactive Inactive Inactive Inactive
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RMSD of protein 
The RMSD of the three compounds chosen was used to deter-
mine the differences in protein structure when compared to the 
beginning point. It also aids in determining the protein's equilibra-
tion status, which is defined by the flattening of the RMSD curve. 

The protein frames and the backbone of the reference frame were 
initially aligned. The RMSD of the system was determined based 
on the atom selection during the MDS. The complex system with 
a time frame x should have the RMSD that can be calculated from 
the following Eq. (2).  

Fig. 5. Geometry optimization of selected four compounds.
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Fig. 6. The molecular frontier orbital wave function is shown with negative and positive phases for selected four compounds, representing 
asymmetric HOMO, LUMO, and HOMO-LUMO gaps.
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(2)

<(ri'(tx) – ri (tref))2  RMSFx = ∑1
N

N
i=1

Here, the RMSDx is the calculation of RMSD for the specific 
number of frames, N is the number of selected atoms; tref is the ref-
erence or mentioned time, and r' is the selected atom in the frame 
x after superimposing on the reference frame, tx is the recording in-
tervals. 

RMSD has been determined for compounds CID: 10134 (sky 
blue), CID: 11119228 (orange), CID: 14492795 (gray) and CID: 
5280863 (yellow), and GHSC70 backbone or Apo (deep blue) 
based on the selection of the ligand fit protein atom shown in Fig. 
8. Except for the compound’s CID: 10134 and CID: 5280863, the 
RMSD data revealed that the two compounds were stable, but all 
compounds are more stable when compared to Apo protein. The 
average value change of the CID: 11119228 and CID: 14492795 
compounds was 0.0–0.3Å, with the value change for the com-
pound CID: 10134 and CID: 5280863 being >3.2Å, which was 
more over the required range, indicating the protein's substantial 
conformational shift (Fig. 8). 

RMSF analysis 
The RMSF is useful for observing local changes in a protein be-
cause it allows you to calculate the average change seen over a large 
number of atoms, which allows you to estimate the displacement 
of a single atom in comparison to the reference structure [43]. 
This is a numerical computation similar to RMSD that may be 
used to characterize a protein and determine the flexibility and 
fluctuation of the residues during simulation. The RMSF for resi-
due i has been calculated from the following Eq. (3).  

(3)

<(ri'(t) – ri (tref))2 >RMSFi = ∑1
T

T
t=1

where T is the overall trajectory time, ri'(t) is the residue loca-
tion, tref is the reference time, r' is the location of atoms in residue i 
after aligned on the reference, and the angle brackets (< >) are the 
average of the square distance. 

The significant peaks of variations for CID: 10134 were discov-
ered among 30 to 650 residues maximum, with a fluctuation of 
6.3Å, according to the RMSF graph (Fig. 9). The compound also 
showed a second round of maximum fluctuations with a range of 
about 5.8Å of apo protein. CID: 5280863 were discovered among 

Table 4. List of bonding interactions between four phytochemicals and the GHSC70 protein

Ligand ID Distance Category Types Binding site
CID: 14492795 2.25 Hydrogen bond Conventional hydrogen bond ASN454

3.64 Hydrophobic Pi-Alkyl VAL82
4.76 Hydrophobic Pi-Alkyl VAL82
3.95 Hydrophobic Pi-Alkyl HIS227
4.90 Hydrophobic Alkyl PHE150
5.45 Hydrophobic Alkyl LEU399

CID: 10134 2.8368 Hydrogen bond Conventional hydrogen bond THR13
4.83 Hydrophobic Pi-Alkyl ARG76
5.11 Hydrophobic Pi-Alkyl ARG76
4.32 Hydrophobic Alkyl ARG72
4.56 Hydrophobic Alkyl PHE150

CID: 11119228 2.15 Hydrogen bond Conventional hydrogen bond GLY437
5.05 Hydrophobic Pi-Alkyl ALA406
5.35 Hydrophobic Pi-Alkyl ALA406
5.47 Hydrophobic Alkyl LEU439

CID: 5280863 2.89 Hydrogen bond Conventional hydrogen bond THR226
3.12 Hydrogen bond Carbon hydrogen bond THR216
4.46 Hydrophobic Pi-Alkyl ARG72
5.16 Hydrophobic Pi-Alkyl VAL82
4.47 Electrostatic Pi-Cation ASP80
4.86 Hydrophobic Pi-Pi T-shaped PHE150
4.01 Electrostatic Pi-Anion ARG76

GHSC70, grouper heat shock cognate protein 70.
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30 to 650 residues maximum, with a fluctuation of 4.2Å. The re-
maining compounds were discovered to be quite stable, with varia-
tions of less than 3.8Å. Nevertheless, as compared to apo, the fluc-
tuations of the compound CID: 5280863 were always acceptable. 

Discussion 

Viral encephalopathy and retinopathy, also known as VNN, is a 
devastating disease that affects a variety of farmed and wild fish 
species, causing significant losses due to vacuolating lesions of the 

retina and central nervous system [44]. The virus's genome is 
made up of two single-stranded positive-sense RNA molecules 
that are bi-segmented [7]. This virus, which has been found in at 
least 120 cultured or wild marine and freshwater species, has al-
ready wreaked havoc on the aquaculture sector in recent decades, 
and we may expect it to worsen as a result of global warming [45]. 
There are currently no specific drugs or vaccines available to pre-
vent or treat infections caused by this deadly disease [45,46]. It has 
been discovered that the NNV utilizes GHSC70 to enter the host 
cell, and that inhibiting the virus's entry by targeting the protein 

Fig. 8. Root-mean-square deviation (RMSD) values retrieved from protein fit lig atoms of the complex structure, viz. CID: 10134 (sky blue), 
CID: 11119228 (orange), CID: 14492795 (gray), and CID: 5280863 (yellow), and grouper heat shock cognate protein 70 backbone or apo (deep 
blue) for a 50 ns simulation time.

Fig. 9. Root-mean-square fluctuation (RMSF) values retrieved from protein residues Cα atoms of the complex structure, viz. CID: 10134 (sky 
blue), CID: 11119228 (orange), CID: 14492795 (gray), and CID: 5280863 (yellow), and grouper heat shock cognate protein 70 backbone or 
apo (deep blue) for a 50 ns simulation time.
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which can lower the economic losses cause by the virus [47,48]. 
According to several studies, neem (Azadirachta indica) is the 

most beneficial traditional medicinal plant on the planet. From an-
tiquity, almost all components of the plant have medicinal charac-
teristics and have been utilized as traditional medicine or cures for 
a variety of diseases. It is now regarded as a valuable source of 
unique natural compounds for the creation of medications to treat 
a variety of illness [49-51]. Furthermore, phytochemicals found in 
plants may boost the innate immune system, have antibacterial 
properties, and are redox active molecules with antioxidant prop-
erties, all of which may aid in improving the fish's overall physio-
logical state. Many research have looked into the benefits of phyto-
chemicals in disease prevention [52]. 

CADD is one of most promising tool for selection of novel com-
pounds against a specific protein as its includes of different ad-
vance features and techniques [53]. The CADD approaches has 
minimized the required time and costs involved in entire drug dis-
covery process that make the virtual screening process includes 
molecular docking, molecular dynamic simulation, and ADMET 
etc. as integral parts of drug designing [42]. 

The 3D structure prediction, the identified models were refined 
and selected the best model (based on the lowest energy score). In 
the validation test of 3D structure, we found a good number of 
Z-score (–11.24) and the superior features of most favored, ac-
cepted, and disallowed regions for the Ramachandran plot. 

In this study, we identified potential drugs by molecular docking 
and other process. Initially, molecular docking process has used to 
screen the compounds, where the top 4 compounds has been se-
lected with the highest binding affinities of –9.7 to –9.0 kcal/mol 
have been chosen for further validation. The RO5 demonstrated 
the drug like properties of the for the selected compounds [54,55]. 
All the four compounds were found to follow the five Lipinski’s 
rules of drug likeness properties. The compound with good 
ADME properties has been further evaluated through the toxicity 
properties to measure the harmful effect on humans or animals 
[56]. Analysis of toxicity found no or less toxicity of the selected 
four compounds. 

The compounds were investigated and optimized by a compu-
tational DFT based QM simulation. We retrieved and re-docked 
the geometry optimized by DFT with the desired protein, and the 
docking energy was significantly above >9.00 kcal/mol. To deter-
mine the reactivity of the compounds, the HOMO-LUMO ener-
gy gap was calculated using a FMO model. The HOMO-LUMO 
gap energy found for all the four compounds were high >3.50 eV 
which confirms the low reactivity correspondence to the bioactivi-
ty of the compound. 

Molecular dynamics simulation is used to confirm the stability 
of a protein in complex with ligands [42,56]. Also, it can deter-
mine the stability and rigidity of protein-ligand complexes at a spe-
cific artificial environment like body [42]. The RMSD values of 
the complex systems indicate the best stability of the compounds 
and RMSF values measures mean fluctuation that determine the 
compactness of the protein-ligand complex [57]. Therefore, in this 
study after the molecular dynamic simulation all the four com-
pound PubChem CID: 14492795, 10134, 5280863, and 
11119228 showed stabilities against the GHSC70 protein. So, we 
can conclude that these compounds can be a potential inhibitor 
against the NNV in fish. 

To the best of our knowledge, this study offers the first compres-
sive in-silico approaches to identify potential natural antiviral drug 
candidates against NNV to target GHSC70 protein. An integrative 
molecular modelling, virtual screening, molecular docking, AD-
MET, and MDS approaches revealed CID: 11119228 and CID: 
14492795 as potential drug candidates that will help to inhibit the 
activity of the GHSC70 protein of the virus. Further evaluation 
through different lab-based experiment techniques can help to de-
termine the activity of the compound that will provide alternatives 
for NNV immunotherapy. 
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