
GigaScience, 10, 2021, 1–10

https://doi.org/10.1093/gigascience/giab030
Research

RESEARCH

Driftage: a multi-agent system framework for concept
drift detection
Diogo Munaro Vieira *, Chrystinne Fernandes, Carlos Lucena and
Sérgio Lifschitz *

Informatics Department, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Marques de São Vicente,
225, Gávea, Rio de Janeiro, RJ 22451-900, Brazil
∗Correspondence address. Diogo Munaro Vieira, Informatics Department, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Brazil. E-mail:
dvieira@inf.puc-rio.br http://orcid.org/0000-0002-8401-8843 and Sérgio Lifschitz, Informatics Department, Pontifical Catholic University of Rio de
Janeiro (PUC-Rio), Brazil. E-mail: sergio@inf.puc-rio.br http://orcid.org/0000-0003-3073-3734

Abstract

Background The amount of data and behavior changes in society happens at a swift pace in this interconnected world.
Consequently, machine learning algorithms lose accuracy because they do not know these new patterns. This change in the
data pattern is known as concept drift. There exist many approaches for dealing with these drifts. Usually, these methods
are costly to implement because they require (i) knowledge of drift detection algorithms, (ii) software engineering
strategies, and (iii) continuous maintenance concerning new drifts. Results This article proposes to create Driftage: a new
framework using multi-agent systems to simplify the implementation of concept drift detectors considerably and divide
concept drift detection responsibilities between agents, enhancing explainability of each part of drift detection. As a case
study, we illustrate our strategy using a muscle activity monitor of electromyography. We show a reduction in the number
of false-positive drifts detected, improving detection interpretability, and enabling concept drift detectors’ interactivity with
other knowledge bases. Conclusion We conclude that using Driftage, arises a new paradigm to implement concept drift
algorithms with multi-agent architecture that contributes to split drift detection responsability, algorithms interpretability
and more dynamic algorithms adaptation.

Keywords: concept drift; data drift; anomaly detection; time series; multi-agent systems; data mining; machine learning
interpretability; machine learning explainability

Introduction

In muscular monitoring activity, electromyography (EMG) has
long been the primary technique to measure the action poten-
tial from muscle cells [1]. Today, several sports use EMG in such
contexts as monitoring soccer players’ athletic activity or seek-
ing better performance in racehorses [2, 3].

Machine learning techniques have been applied to EMG time-
series data because health monitoring needs fast insights be-
cause the patient could need emergency assistance [4, 5]. These
data have a lot of spikes, and patterns are complicated to un-
derstand. Time-series data with continuous tips are also hard

to learn because all the peaks are similar to outliers or anoma-
lies. Still, these peaks happen all the time, and we claim that al-
gorithms need to be able to distinguish them. For this purpose,
concept drift strategies appear to analyse automatically stream-
ing time-series data [6–8].

There are many types of drifts in the concept drift detection
(CDD) area [7, 9, 10]. Within EMG, sudden, gradual, recurring, or
incremental drifts can be detected because a potential muscular
activity is very reactive. When you make a move, many muscles
react to it [11, 12]. There are many ways to detect each type of
these drifts, and it is not elementary to build an algorithm that
will detect everything. In concept drifts, researchers have devel-

Received: 24 September 2020; Revised: 7 March 2021; Accepted: 30 March 2021

C© The Author(s) 2021. Published by Oxford University Press GigaScience. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any
medium, provided the original work is properly cited.

1

http://www.oxfordjournals.org
http://orcid.org/0000-0002-8401-8843
http://orcid.org/0000-0003-3073-3734
mailto:dvieira@inf.puc-rio.br
http://orcid.org/0000-0002-8401-8843
http://orcid.org/0000-0002-8401-8843
mailto:sergio@inf.puc-rio.br
http://orcid.org/0000-0003-3073-3734
http://orcid.org/0000-0003-3073-3734
http://creativecommons.org/licenses/by/4.0/


2 Driftage: a multi-agent system framework for concept drift detection

oped supervised [13, 14], semi-supervised [15], unsupervised [16,
17, 18], statistical [19, 20], or even evolutionary algorithms [21]
to deal with these drifts, but none of them is perfect for all drift
types.

Some publications are arising with machine learning ensem-
bles for CDD because of the nature of the data that these detec-
tors need to adapt to [22–25]. There are several factors such as
data seasonality or change of data drift type; these ensembles
can choose the best estimator for each case, and each estima-
tor can still act alone. Nevertheless, this approach necessitates
retraining of base learners and strategies to select the best esti-
mator that can affect detection speed [22, 26].

One approach to designing adaptive software is using the
MAPE-K (Monitor-Analyse-Plan-Execute over a shared Knowl-
edge) software pattern for self-aware systems [27–30]. MAPE-K
is organized into 4 components:

(i) The ”Monitor” is responsible for environmental monitor-
ing, basically capturing data from sensors or what else the
software knows about the environment and stores on the
knowledge base (KB);

(ii) The ”Analyser” will enrich knowledge using the collected
data from the environment and reporting to the KB the re-
sult of its analysis;

(iii) The ”Planner” understands the analysis made by analysers
and makes decisions on it while saving this information into
the KB; and

(iv) The ”Executor” gets decisions from the KB and knows how
to execute them. The most common representation for the
executor is an actuator.

The KB is unnecessary for all components on MAPE-K, but
all systems need to communicate and share information [31].
MAPE-K software architecture was recently used to model an
agent on multi-agent systems (MAS) [32]. However, in this work,
each agent is a component of MAPE-K architecture.

Traditionally, a MAS comprises agents, each of which au-
tonomously learns from the environment and exchanges mes-
sages with others. This structure is great for solving complex
problems [33, 34]. There are some obstacles in the MAS field be-
cause of the complexity imposed when multiple smart agents
communicate, particularly in distributed environments. Some of
these challenges test the system [35] and flow consistency [36].
Moreover, streaming architectures using MAS that guide this
work with best practices add less responsibility for each agent,
splitting intelligence between more specific agents [37, 38].

There is a lot of synergy with CDD and MAS ensembles be-
cause each agent can communicate with others and analyse the
data individually to determine whether the drift was detected.
Some studies using MAS with ensemble strategies have already
been performed [39, 40], but none are focused on CDD. Also,
there are multiple architectures for a MAS that can be chosen to
elaborate an agent-oriented software. The major challenge in-
volves finding a good one that learns with the environment and
solves the problem [33, 41, 42].

The more the architecture for these systems is enhanced, the
more complicated the system gets. In addition, there is a greater
chance of losing control, resulting in mistakes in the produc-
tion environment, even with some methods already described
to avoid this [43, 44]. Detecting concept drifts on data streams in
a scalable model for production environments is time consum-
ing because you need to build CDD algorithms and be aware of
the data pipeline, data ingestion, and drift detection results [45].

To solve the dependency of data engineering pipelines and
customized CDD machine learning algorithms, we propose here

Driftage, a modular multi-agent framework for CDD with only
certain types of agents that can be implemented with special-
ized functions deriving in other agents. Focus on a process is the
best practice for MAS implementation to avoid the complexity of
multiple agents and improve software reuse [46, 47].

It is very complex to explain what is happening inside ma-
chine learning ensemble algorithms and interpret their results
because they consist of a mixture of multiple machine learn-
ing techniques and algorithms [48]. In this article, we propose a
method to modularize these ensembles into various MAS agents
with a much more straightforward way to explain the results
of each agent’s model, as well as the ensemble algorithm. This
MAS modularity provides both explainability for each agent’s
machine learning model and interpretability for its effects. Ex-
plainability and interpretability for each agent enable us to do
the same for the whole system.

A case study with Driftage was created in this article with
EMG data to validate how MAS software architecture helps de-
tect concept drifts on muscular activity during a punching exer-
cise, enabling split efforts between scalability and drift detection
issues during CDD challenges with a highly extensible and mod-
ular framework.

Methods
Driftage architecture

Driftage is a modular framework based on MAPE-K, chosen as
the pattern to model this agent-based framework because CDD
needs high adaptability and fits very well with MAS.

Each agent type in Driftage has only 1 accountable agent on
the MAPE-K architecture. Each agent can be implemented to fol-
low the selected goal without affecting the others but can ex-
change information with others. Instead of an agent using the
MAPE-K software pattern, an agent on the Driftage framework
can be implemented following 1 of the 4 types: Monitor, Anal-
yser, Planner, or Executor. Each type can generate multiple au-
tonomous agents.

There are 2 main flows on this framework:

(i) Monitor–Analyser: for capture and fast prediction of concept
drifts on data;

(ii) Planner–Executor: to analyse whether concept drift de-
tected should be alerted.

These 2 flows can intercommunicate by means of a KB, where
drifts are stored, and we make all history about drift analysis
persistent. Each agent communicates through an XMPP server
on the framework because the implementation extends Spade
[49], which is a library for MAS using Python. The XMPP protocol
solves some problems with MAS, already providing authentica-
tion and communication channels for the agents. XMPP servers
also work for load balancing and guarantee message exchanges.

We have implemented Driftage using Python because data
engineers widely use it, and it enables the programmer to an-
swer the system’s requirements. The data flow for this frame-
work is described in Fig. 1. The next section describes how
we structure the KB for data sharing between flows Monitor–
Analyser and Planner–Executor. These 2 agent communications
flows are further explained in the following subsections of the
Methods.

Knowledge Base
On the MAPE-K pattern, systems use shared knowledge that is
implemented on the Driftage architecture by a database. This



Vieira et al. 3

Figure 1 Driftage data flow for concept drift detection. All agents communicate
through XMPP server, and only the Analyser and the Planner can use information

from the Knowledge Base.

database stores all concept drifts that are detected and whom
they were detected by, with the schema shown in Table 1.

This schema works for any relational database, and even for
non-relational, which SQLAlchemy [50] supports.

Stored data collected and predicted by Analyser can be
queried for retraining or by the Planner to improve the re-
searcher’s predictions. This way, we can connect the 2 flows.
Only the Analyser and Planner know how to connect to KB.

Monitor–Analyser
This first flow is responsible for capturing data and detecting the
concept drift. After drift detection, this flow saves the result on
KB.

Monitor agents capture the data integrated into any desired
framework: Spark, Flink, or even a Python function. Our frame-
work sends these collected data to every Analyser that asks for
it. The Analyser subscribes to Monitors to receive the data col-
lected and analyses them using a customized predictor for CDD.
Fast classifiers from Scikit-Multiflow or Facebook Prophet can be
attached as a predictor.

The flow is shown as a sequence diagram in Fig. 2. After Anal-
yser agents have subscribed to Monitors, Monitors subscribe to
Analysers too because they need to know whether Analysers are
working to send new data. When Analysers receive data from
Monitors, they can predict those data and store them in the KB.
There is another asynchronous task for the Analyser algorithm
retraining that happens systematically.

Planner–Executor
This last flow is responsible for alerting about drifts detected. It
queries KB and decides whether a drift detection should be in-
formed. The Planner agents keep observing for new predictions
and, based on them, decides whether the drift is valid. If it is
an actual drift, it should be sent to the Executor. A custom pre-
dictor can be created for this purpose too, like a voting one or a
more time-consuming algorithm from Scikit-Learn, TensorFlow,
PyTorch, etc. Executor agents are subscribed from Planners and
receive from them new drifts to send to a custom Sink. This Sink
can be an Apache Kafka, RabbitMQ, API, and so forth. The Execu-
tor knows whether a Sink is available and informs the Planner
regarding whether it can handle new drifts. We consider a se-
quence diagram to describe this flow in Fig. 3.

Analyser and Planner interaction
MAS distributed architecture makes possible a lot of combina-
tions on stream evaluation. Figure 4 presents an example of a

combination that uses the Analysers as base learners classifying
CDD on streams for further evaluation by Planner with an en-
semble algorithm. Each Planner combines results from multiple
Analysers that are evaluating 1 stream and can change the Anal-
yser subscription, ignoring its evaluation or adding new Analy-
sers depending on ensemble algorithm. Multiple Planners can
watch the same Analysers using different Executors to save in-
formation about concept drift. This function is useful when it is
necessary to configure multiple algorithms for CDD with differ-
ent sensibilities. Some machine learning models are more sen-
sitive to data drifts than others that can wait for more aggressive
data changes.

The Driftage framework gives CDD models flexibility and in-
terpretability because each part of the CDD evaluation model
can be evaluated and metrified alone. This is useful for debug-
ging models and elucidating what is happening on the evalua-
tion pipeline. For example, ensemble algorithms such as Kappa
Updated Ensemble (KUE) or Adaptive Random Forest [24, 25] can
be implemented as Analysers combined by another ensemble al-
gorithms on Planner. This Planner can be an ensemble algorithm
or just get outside information from another KB as illustrated in
Fig. 5.

Data acquisition

There is an open dataset for EMG on UCI Machine Learning
Repository [51] with information on the activity of 8 muscles
during various exercises such as running, punching, or jump-
ing. For this article, we have chosen the punching activity file
with 9.637 instances, where each instance was considered as a
microsecond action potential of a muscle cell. This action po-
tential is registered in microvolts at each line of the CSV file.

Health Monitor Results

This section shows the architecture proposed for a health mon-
itor of muscle cells, followed by the implementation of the CDD
algorithm and the results of this algorithm on the UCI dataset to
validate the Driftage conception and architecture.

Architecture design

Health monitoring is a complicated task, and it is hard to know
the best time to send an alert about patient health changes be-
cause of the challenges involved in collecting the data, analysing
them for drifts, finding the best way to communicate the drift,
and really sending the communication. There needs to be >1 al-
teration in a muscular activity before it can indicate a muscular
disease or even a difference in a patient’s movement. For exam-
ple, a person doing exercises may slightly alter the direction of
movement, but it is not characterized as muscular fatigue. An
Analyser specialized for each muscle activity was developed to
understand each athletic activity data input and a Planner that
detects whether the Executor should send a concept drift alert.

The MAPE-K–based MAS framework proposed here makes it
simple to split each responsibility from the CDD. Each agent on
the architecture is responsible for a particular task: collecting
the data (Monitor), analysing the drift on the data (Analyser),
deciding what to do with the detected drifts (Planner), and es-
ending an alert when called for (Executor). Each agent can use
relevant Python tools to implement the best solution for each
case.

Many frameworks and tools already solve monitoring and
capturing data, so integrating with Apache Spark is the most



4 Driftage: a multi-agent system framework for concept drift detection

Table 1. Schema of data saved in Knowledge Base

Column Description Example

jid Name of the Analyser that predicts data as drift for each
collected piece of data

Custom drift analyser

data Data collected and sent to Analyser by Monitor in JSON
format

{”sensor”:429}

datetime monitored When the data were collected by Monitor 2020-07-21 14:36:00
datetime analysed When the data were analysed by Analyser 2020-07-21 14:37:00
identifier Identifier from data collected that identifies which data

are monitored
left thigh

predicted Boolean prediction of data by Analyser representing
whether a concept drift was detected

False

Figure 2 Monitor–Analyser flow. The Monitor agent collects data and sends them to the Analyser agent only if the Analyser is available, then the Analyser makes

predictions and saves on KB. The Analyser agent can consult KB for retraining of the researcher’s predictor. ML: machine learning.

straightforward approach for Python projects using PySpark.
Monitors were implemented by combining with PySpark using 1
Monitor for each kind of muscle. For each row in a CSV file, there
are 8 sensor signals for each type of muscle, and Spark execu-
tors send sensor data for the corresponding Monitor. Each Mon-
itor sends data to 1 Analyser but could send to others if needed.
In this project design, each Analyser covers 1 muscle, analysing
concept drifts on it.

As long as each Analyser knows only about an individual’s
muscle activity, the Planner is simple and predicts a concept
drift if ≥2 muscles have a drift detected. We chose 2 muscles
because the dataset has 4 muscles for arms and legs, 2 for each
side (left and right), so if the patient has a problem on 1 side of
the body, ≥2 muscles should be affected. To avoid some “cold
start” problems, the Planner also ignores the situation in which
all the muscles indicate a drift, so the rule is 2 ≥ ndrift < 8, where



Vieira et al. 5

Figure 3 Planner–Executor flow. The Planner agent communicates with KB to get new predictions while the Executor agent asks Planner for concept drift detection
results only if Sink is alive.

Figure 4 Driftage multi-agent ensemble abstraction and each stream being han-
dled by 2 base learners.

ndrift is the number of muscles with drift detected. Finally, the
Executor was built saving drifts on a file as CSV and validating if
the file system is available to write data.

Docker containers are used to support each agent, so each
Monitor, Analyser, Planner, and Executor implementation uses
Docker to enhance reproducibility and provide more effortless
scalability. TimescaleDB as KB also used Docker containers dur-
ing this experiment, but we recommend storing data in a better
way on production environments. All this architecture design is
illustrated in Fig. 6.

Drift detection algorithm

One of the most famous CDD algorithms is ADWIN (adaptive
sliding window algorithm) [52]. It efficiently keeps a variable-
length window of recent items, whose contents can be com-
pared to discern whether there has been any change in the data
distribution. This window is further divided into 2 subwindows
(W0, W1) used to determine whether a change has happened.
ADWIN compares the average of W0 and W1 to confirm that they
correspond to the same distribution. Concept drift is detected if
the distribution equality no longer holds. Upon detecting a drift,
W0 is replaced by W1 and a new W1 is initialized. ADWIN uses a

confidence value δ ∈ (0, 1) to determine whether the 2 subwin-
dows correspond to the same distribution and δ is a stateless
parameter in the algorithm that just contributes for CDD in the
moment of comparing the subwindows. ADWIN will be our base
learner on ensemble architecture.

Algorithm 1: ADWIN adaptive δ for each distribution.

Result: Best delta (δ) for a distribution
1 detector = ADWI N;
2 dri f t rate up = 0.1;
3 dri f t rate down = 0.0001;
4 last rate = 0;
5 delta = 1.0;
6 while getting data do
7 dri f t rate = detector.n detections ÷ detector.width;
8 if (last rate ≤ drift rate) ∧ (drift rate ≥ drift rate up) then
9 delta = detector.delta ÷ 10;

10 if delta ≥ drift rate down then
11 detector.delta = delta;
12 last rate = dri f t rate;

13 end

14 end
15 else if (last rate∼≥ drift rate) ∧ (drift rate ≤

drift rate down) then
16 delta = detector.delta × 10;
17 if delta ≤ drift rate up then
18 detector.delta = delta;
19 last rate = dri f t rate;

20 end

21 end

22 end

The δ-value in ADWIN controls how sensitive the algorithm
is, and we build a training step with δ optimization for each



6 Driftage: a multi-agent system framework for concept drift detection

Figure 5 Every base learner and ensemble method is registered alone, and the result can be interpretable without the influence of other algorithms.

Figure 6 Health Monitor implementation. CSV file is ingested by Monitors, then concept drifts are predicted by Analysers, then saved on KB. Planners get predictions
and vote on whether it is a concept drift, then the Executors save detected drifts on another CSV file.

streaming inspired by Ang et al. [53]. This training step simulates
the base learners training step on ensembles. Higher δ-values
admit less variation on time-series data and lower δ-values ad-
mit more variation on data, ignoring some possible drifts. Each
distribution will work better with different δ, so it should be reg-
ulated.

In this article, each Analyser holds δ for 1 muscle, resulting in
8 Analysers, 1 focused on each muscle type. But if ADWIN needs
to understand data and regulate δ, it has a cold start issue that
alerts a drift at the beginning of the monitoring step. This prob-
lem occurs not only with ADWIN but with all CDDs that need to
examine a time window to perform their analysis.

The δ is regulated using drift rate as a parameter. If the drift
rate is increasing, then δ decreases, dividing it by 10. If the drift
rate is decreasing, then δ increases, multiplying it by 10. There
are 2 boundaries defined for high and low δ-values, and δ always
starts at 1.0.

The architecture of this implementation is a simulation of
ensemble with multiple base learners implemented as ADWIN
and a voting system as ensemble algorithm to determine when
concept drift occurs.

We show in Algorithm 1 how the ADWIN training step was
implemented. The first line of the algorithm is defined CDD al-
gorithm as ADWIN, followed by lines 2 and 3 that are initialized
upper and lower boundaries for δ, respectively. Line 4 initializes
the drift rate with zero indicating no changes, and line 5 assigns
δ with ultrasensitive value to be regularized during the training
step. During lines 6–22 δ is optimized for each streaming and
”getting data” is a function that retrieves training data; training
stops when the data end. In this work the training step is built

continuously for each 2 seconds of streaming data. Line 7 de-
fines how drift rate is calculated with the accumulated number
of drift detections made by ADWIN over the number of data anal-
ysed by the detector. From lines 8 to 14 the algorithm validates
boundaries, and if drift rate is increasing, δ is decreased in line
11. The same happens during lines 15–21, but validating whether
drift rate is decreasing, and δ is increased in line 18 if boundaries
permit. ”last rate” in lines 12 and 19 is simply updated when δ

changes to avoid noise.

Experimental results

The left leg is monitored on the results of Fig. 7, illustrating a
drift detection on both hamstring and thigh muscles. It shows
how even this simple Planner implementation is essential to fil-
ter some drifts at the start and during other analysis phases.
Initially, no drift was detected because all muscles were adapt-
ing the δ ADWIN parameter and registering the initial distribu-
tion. The red dots indicate CDD using the ADWIN algorithm, and
the black rectangle indicates when concept drift was sent to Ex-
ecutors because the Planner waits a 1-second time window to
decide whether to fire the drift by applying its rules. So, a CDD
was sent only 1 time instead of 61 times on the left leg, elimi-
nating 60 false-positive CDDs. Starting between 7,500 and 8,000
ms, the variance of the distribution increased and ADWIN inter-
preted this as a drift ∼1 second later, sending an alert at 9,000
ms. It took <2 seconds to discern that probably the patient ex-
perienced muscular fatigue or moving the leg during punching
exercises when this drift was detected.



Vieira et al. 7

Figure 7 Concept drift detection of potential activity during 9,637 ms on muscles from left leg. Only 1 concept drift was detected instead of 61 by taking into account 2

muscles’ signals instead of just 1.

Figure 8 Concept drift detection related to variance. ADWIN takes variance into
account when making predictions.

Using Driftage it is possible to understand its results by val-
idating the Analysers’ output and inspecting the algorithm to
detect the major contributor for that result. ADWIN is very in-
fluenced by the variance of the distribution, and Fig. 8 illustrates
the effect of variance on drift detection. EMG is a good applica-
tion for ADWIN because the changes in variance are important
for detecting changes in EMG [54]. The variance was measured
for each 1-second window (blue dots), and red dots indicate de-
tected drifts.

With the Driftage framework, the Analyser training phase
implementation is built asynchronously by default. It is impor-
tant to decouple the training phase from the prediction phase,
and with Driftage it is easy to illustrate that the algorithm is scal-
able. Our results are illustrated in Fig. 9, where the prediction
times were collected from the ADWIN Analyser with and with-
out training phase and compared with a mimic of training and
prediction code together in Jupyter Notebook: with train async,
no train, and with train sync, respectively. The median of pre-
diction time in milliseconds for this experiment is reported in
Table 2, illustrating that the training phase is not influencing
prediction phase time.

Figure 9 Box plot illustrating time difference when predictions are made with
and without training coupled to prediction method. Green lines are the median
of execution time for each experiment.

Table 2. Median time in milliseconds for prediction with and without
retraining

Status
Median time

(milliseconds)

With asynchronous training 0.0110 (IQR: 0.0061)
No training 0.0109 (IQR: 0.0057)
With synchronous training 1.0442 (IQR: 0.0394)

Conclusions

In this article, a multi-agent system framework, Driftage, was
proposed based on MAPE-K to support CDD in distributed and
scalable environments and applied to an example of health
monitoring. Health monitoring was simulated by tracking the
potential activity of 8 muscles but can be easily extended to
other sensors. The results show the importance of concept drift
in health monitoring and how 2-step validation with a Planner
solves many false-positive drift detections.



8 Driftage: a multi-agent system framework for concept drift detection

All the prediction pipeline phases can be explainable and
easily modularized for better predictions of concept drift or sen-
sitivity calibration of CDDs. We can interpret the results for each
step of the pipeline, as well, to measure the performance of each
algorithm. One can combine ensembles of ensembles or base
learners to build predictions on streams even in distributed sys-
tems because of the multi-agent system nature.

We release Driftage as an open-source framework that min-
imizes friction to applying new concept drift algorithms using
multi-agent architecture to learn with the environment. With
Driftage, data engineers and data scientists can work together
with Python as a common language. Data engineers will spend
most of the time with Monitors and Executors. In contrast, data
scientists can build new Analysers and Planners with the re-
searcher’s custom code-building algorithms to prevent possible
performance impacts during the training phase. The entire envi-
ronment works well with Docker, enabling a simple adaptation
and infrastructure orchestration.

This framework can be integrated with other tools for big
data and streaming processing for future works, adding new
Sinks and Monitors to check interoperability with more sys-
tems. Our framework works well with CDD, but we could also
use it in other scenarios such as anomaly detection or on-
line learning. Now that the framework is well defined and im-
plemented, another future work may compare our MAS algo-
rithms build on top of Driftage with state-of-the-art algorithms
for CDD.

Availability of Source Code and Requirements
� Project name: Driftage
� Project home page: https://github.com/dmvieira/driftage
� Operating system(s): Platform independent
� Programming language: Python
� Other requirements: Python 3.7 or higher, Ejabberd 20.04 or

higher, TimescaleDB 1.7.4 or higher. Example runnable with
Docker-compose 2 or higher.

� Reproducible example: https://driftage.readthedocs.io/exam
ple.html

� License: Apache License 2.0. Any restrictions to use by non-
academics: No restrictions.

� Scicrunch: Driftage; RRID:SCR 021031
� BiotoolsID: https://bio.tools/driftage

Data Availability

Other data further supporting this work, including snapshots of
our code, are openly available in the GigaScience repository, Gi-
gaDB [55].

Editors Note

A CODECHECK certificate for this article is available confirming
that Figs 7 and 8 in the article could be independently repro-
duced [56]. Driftage is also available as a updateable and repro-
ducible project in Gigantum [57].

Abbreviations

ADWIN: adaptive sliding window algorithm; API: Application
Programming Interface; CDD: concept drift detection; CSV:
comma-separated values; EMG: electromyography; KB: Knowl-
edge Base; KUE: Kappa Adaptive Ensemble; MAPE-K: Monitor-

Analyse-Plan-Execute over shared Knowledge; MAS: multi-
agent systems.

Competing Interests

The authors declare that they have no competing interests.

Funding

The authors are partially supported by grants from CNPq and
CAPES, Brazilian Public Funding Agencies.

Authors’ Contributions

D.M.V., C.F., and C.L. conceived the research study. D.M.V. and
S.L. performed and evaluated the experiments and prepared the
final version after first reviewers’ comments. All authors wrote
and approved the manuscript.

Acknowledgements

My sincere thanks to the PUC-Rio, for the support which made
this work possible.

References

1. Moore MA, Hutton RS. Electromyographic investigation
of muscle stretching techniques. Med Sci Sports Exerc
1980;12(5):322–29.

2. Rahnama N, Lees A, Reilly T. Electromyography of selected
lower-limb muscles fatigued by exercise at the intensity of
soccer match-play. J Electromyogr Kinesiol 2006;16(3):257–
263.

3. Williams JM. Electromyography in the horse: A useful tech-
nology?. J Equine Vet Sci 2018;60:43–58.

4. Guo Y, Naik GR, Huang S, et al. Nonlinear multiscale Maximal
Lyapunov Exponent for accurate myoelectric signal classifi-
cation. Appl Soft Comput 2015;36:633–40.

5. Shi WT, Lyu ZJ, Tang ST, et al. A bionic hand controlled by
hand gesture recognition based on surface EMG signals: A
preliminary study. Biocybern Biomed Eng 2018;38(1):126–35.

6. Klinkenberg R, Rüping S. Concept drift and the importance of
examples. In: Text Mining – Theoretical Aspects and Applica-
tions. Physica-Verlag; 2002:55–77.

7. Gama J, Zliobaite I, Bifet A, et al. A survey on con-
cept drift adaptation. ACM Comput Surv 2014;46(4),
doi:10.1145/2523813.

8. Webb GI, Hyde R, Cao H, et al. Characterizing concept drift.
Data Min Knowl Discov 2016;30(4):964–94.

9. Lemaire V, Salperwyck C, Bondu A. A survey on supervised
classification on data streams. In: Zimányi E, Kutsche RD ,
eds. Business Intelligence. Cham: Springer; 2015:88–125.

10.Lu J, Liu A, Dong F, et al. Learning under concept drift: A re-
view. IEEE Trans Knowl Data Eng 2019;31(12):2346–63.

11.Vezina MJ, Hubley-Kozey CL. Muscle activation in therapeutic
exercises to improve trunk stability. Arch Phys Med Rehabil
2000;81(10):1370–9.

12.Flint MM, Gudgell J. Electromyographic study of abdominal
muscular activity during exercise. Res Q Am Assoc Health
Phys Educ Recreation 1965;36(1):29–37.

13.Cohen L, Avrahami G, Last M, et al. Info-fuzzy algo-
rithms for mining dynamic data streams. Appl Soft Comput
2008;8(4):1283–94.

https://github.com/dmvieira/driftage
https://driftage.readthedocs.io/example.html
https://bio.tools/driftage


Vieira et al. 9

14.Salperwyck C, Boullé M, Lemaire V. Concept drift detection
using supervised bivariate grids. In: 2015 International Joint
Conference on Neural Networks (IJCNN), Killarney, Ireland.
2015, doi:10.1109/IJCNN.2015.7280460.

15.Ahmadi Z, Beigy H. Semi-supervised ensemble learning of
data streams in the presence of concept drift. In: Corchado
E, Snášel V, Abraham A , et al., eds. Hybrid Artificial Intelli-
gent Systems. Berlin, Heidelberg: Springer; 2012:526–37.

16.de Mello RF, Vaz Y, Grossi CH, et al. On learning guarantees to
unsupervised concept drift detection on data streams. Expert
Syst Appl 2019;117:90–102.

17.Moulton RH, Viktor HL, Japkowicz N, et al. Clustering in the
presence of concept drift. In: Berlingerio M, Bonchi F, Gärtner
T , et al., eds. Machine Learning and Knowledge Discovery in
Databases. Cham: Springer; 2019:339–55.

18.Gözüaçı́k O, Bonab H, Büyükçakı́r A, et al. Unsupervised con-
cept drift detection with a discriminative classifier. In: Inter-
national Conference on Information and Knowledge Manage-
ment, Proceedings. New York: ACM; 2019:2365–8.

19.L Lobo J, Del Ser J, Bilbao MN, et al. DRED: An evolutionary di-
versity generation method for concept drift adaptation in on-
line learning environments. Appl Soft Comput J 2018;68:693–
709.

20.Escovedo T, Koshiyama A, da Cruz AA, et al. DetectA: Abrupt
concept drift detection in non-stationary environments. Appl
Soft Comput J 2018;62:119–33.

21.Ghomeshi H, Gaber MM, Kovalchuk Y. EACD: Evolutionary
adaptation to concept drifts in data streams. Data Min Knowl
Discov 2019;33(3):663–94.

22.Krawczyk B, Cano A. Online ensemble learning with abstain-
ing classifiers for drifting and noisy data streams. Appl Soft
Comput J 2018;68:677–92.

23.Liao J, Dai B. An ensemble learning approach for concept drift.
In: 2014 International Conference on Information Science Ap-
plications (ICISA); 2014, doi:10.1109/ICISA.2014.6847357.

24.Arya M, Choudhary C. Improving the efficiency of ensemble
classifier adaptive random forest with meta level learning for
real-time data streams. In: Bhateja V, Satapathy S, Zhang YD
, et al.., eds. Intelligent Computing and Communication. Sin-
gapore: Springer; 2020, doi:10.1007/978-981-15-1084-7˙2.

25.Cano A, Krawczyk B. Kappa Updated Ensemble for drifting
data stream mining. Mach Learn 2020;109(1):175–218.

26.de Barros RSM, de Carvalho Santos SGT. An overview and
comprehensive comparison of ensembles for concept drift.
Inf Fusion 2019;52:213–44.

27.Qasim A, Kazmi SAR. MAPE-K interfaces for formal modeling
of real-time self-adaptive multi-agent systems. IEEE Access
2016;4:4946–58.

28.Arcaini P, Riccobene E, Scandurra P. Modeling and analyz-
ing MAPE-K feedback loops for self-adaptation. In: Proceed-
ings - 10th International Symposium on Software Engineer-
ing for Adaptive and Self-Managing Systems, Florence, Italy.
SEAMS 2015 Institute of Electrical and Electronics Engineers
Inc.; 2015, doi:10.1109/SEAMS.2015.10.

29.de la Iglesia DG, Weyns D. MAPE-K formal templates to rigor-
ously design behaviors for self-adaptive systems. ACM Trans
Autonomous Adapt Syst 2015;10(3), doi:10.1145/2724719.

30.Arcaini P, Riccobene E, Scandurra P. Formal design and
verification of self-adaptive systems with decentralized
control. ACM Trans Autonomous Adapt Syst 2017;11(4),
doi:10.1145/3019598.

31.Petrovska A, Quijano S, Pretschner A. Knowledge aggrega-
tion with subjective logic in multi-agent self-adaptive cyber-
physical systems. In: IEEE/ACM 15th International Sym-

posium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS ’20). New York, NY: ACM; 2020,
doi:10.1145/3387939.3391600.

32.Qasim A, Aziz Z, Kazmi SAR, et al. Intelligent agent for formal
modelling of temporal multi-agent systems. Int J Smart Sens
Intell Syst 2020;13(1), doi:10.21307/ijssis-2020-003.

33.Seddari N, Redjimi M. Multi-agent modeling of a complex sys-
tem. In: 2013 3rd International Conference on Information
Technology and e-Services (ICITeS), Sousse, Tunisia. IEEE;
2013, doi:10.1109/ICITeS.2013.6624072.

34.Lopes Silva MA, de Souza SR, Freitas Souza MJ, et al. Hy-
brid metaheuristics and multi-agent systems for solving op-
timization problems: A review of frameworks and a compar-
ative analysis. Appl Soft Comput J 2018;71:433–59.

35.Nascimento N, Alencar P, Lucena C, et al. A metadata-driven
approach for testing self-organizing multiagent systems. IEEE
Access 2020;8:204256–67.

36.Zhang N, Niu W, Li T. Consistency control of multi - agent sys-
tem based on unknown input observer. IFAC-PapersOnLine
2018;51(31):566–71.

37.Belghache E, Georgé J, Gleizes M. Towards an adaptive
multi-agent system for dynamic big data analytics. In:
2016 Intl IEEE Conferences on Ubiquitous Intelligence &
Computing, Advanced and Trusted Computing, Scalable
Computing and Communications, Cloud and Big Data
Computing, Internet of People, and Smart World Congress
(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), Toulouse,
France. IEEE; 2016:753–8.

38.Twardowski B, Ryzko D. Multi-agent architecture for real-
time big data processing. In: 2014 IEEE/WIC/ACM Interna-
tional Joint Conferences on Web Intelligence (WI) and In-
telligent Agent Technologies (IAT), Warsaw, Poland. IEEE;
2014:333–7.

39.Golzadeh M, Hadavandi E, Chelgani SC. A new ensemble
based multi-agent system for prediction problems: Case
study of modeling coal free swelling index. Appl Soft Com-
put J 2018;64:109–25.

40.Ghosh S, Laguna S, Lim SH, et al. A deep ensemble multi-
agent reinforcement learning approach for air traffic control.
arXiv 2020:2004.01387.

41.Oliveira E, Pereira G, Gomes C. Reliable framework architec-
ture for multi-agent systems interaction. In: The 7th Interna-
tional Conference on Computer Supported Cooperative Work
in Design, Rio de Janeiro, Brazil. IEEE; 2002:276–81.

42.Lakshminarayanan V, Rajashekara K, Zhu B. Multi-
agent system architecture for enhanced resiliency in
autonomous microgrids. In: 2017 IEEE Power & Energy
Society General Meeting, Chicago, IL, USA. IEEE; 2017,
doi:10.1109/PESGM.2017.8274039.

43.Li D, Ma J, Zhu H, et al. The consensus of multi-agent systems
with uncertainties and randomly occurring nonlinearities via
impulsive control. Int J Control Automat Syst 2016;14(4):1005–
11.

44.Sousa COE, Custódio L. Dealing with errors in a coopera-
tive multi-agent learning system. In: Tuyls K, Hoen PJ, Ver-
beeck K , et al., eds. Learning and Adaption in Multi-Agent
Systems. LAMAS 2005. Berlin, Heidelberg: Springer; 2006:
139–54.

45.Gomes HM, Read J, Bifet A, et al. Machine learning for stream-
ing data: state of the art, challenges, and opportunities. ACM
SIGKDD Explor Newsl 2019;21(2):6–22.

46.Küster T, Heβler A, Albayrak S. Process-oriented modelling,
creation, and interpretation of multi-agent systems. Int J
Agent-Oriented Softw Eng 2016;5(2/3):108–33.



10 Driftage: a multi-agent system framework for concept drift detection

47.Nunes I, Kulesza U, Nunes C, et al. A domain engineering pro-
cess for developing multi-agent systems product lines. In: 8th
International Conference on Autonomous Agents and Multi-
agent Systems, Budapest, Hungary. 2009:1200–1.

48.Arrieta AB, Rodrı́guez ND, Ser JD, et al. Explainable Artificial
Intelligence (XAI): Concepts, taxonomies, opportunities and
challenges toward responsible AI. Inf Fusion 2020;58:82–115.

49.Spade. https://spade-mas.readthedocs.io/en/latest/.
50.SQLAlchemy. https://www.sqlalchemy.org/.
51.Open dataset for EMG on UCI Machine Learning Repository.

https://archive.ics.uci.edu/ml/datasets/EMG+Physical+Actio
n+Data+Set.

52.Bifet A, Gavaldà R. Learning from time-changing data with
adaptive windowing. In: Apte C, Skillicorn D, Liu B , eds. Pro-
ceedings of the 7th SIAM International Conference on Data
Mining. 2007:443–8.

53.Ang HH, Gopalkrishnan V, Zliobaite I, et al. Predictive
handling of asynchronous concept drifts in distributed
environments. IEEE Trans Knowl Data Eng 2013;25(10):
2343–55.

54.Hayashi H, Furui A, Kurita Y, et al. A variance distribution
model of surface EMG signals based on inverse gamma dis-
tribution. IEEE Trans Biomedic Eng 2017;64(11):2672–81.

55.Vieira DM, Fernandes C, Lucena C, et al. Supporting data for
”Driftage: A multi-agent system framework for concept drift
detection”. GigaScience Database 2021; http://gigadb.org/dat
aset/100882.

56.Eglen SJ. CODECHECK certificate 2020-024; 2020. https://zeno
do.org/record/4310025.

57 Diogo MV, Chrystinne F, Carlos L, Sergio L, Driftage Exam-
ple: A Multi-agent Drift Detection Framework, Gigantum, Inc.
2021, https://doi.org/10.34747/mp7n-3487.

https://spade-mas.readthedocs.io/en/latest/
https://www.sqlalchemy.org/
https://archive.ics.uci.edu/ml/datasets/EMG+Physical+Action+Data+Set
http://gigadb.org/dataset/100882
https://zenodo.org/record/4310025
https://doi.org/10.34747/mp7n-3487

