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ABSTRACT
Adjuvants produce complex, but often subtle, effects on vaccine-induced immune responses that,
nonetheless, play a critical role in vaccine efficacy. In-depth profiling of vaccine-induced cytokine,
cellular, and antibody responses (“immunoprofiling”) combined with machine-learning holds the pro-
mise of identifying adjuvant-specific immune response characteristics that can guide rational adjuvant
selection. Here, we profiled human immune responses induced by vaccines adjuvanted with two similar,
clinically relevant adjuvants, AS01B and AS02A, and identified key distinguishing characteristics, or
immune signatures, they imprint on vaccine-induced immunity. Samples for this side-by-side compar-
ison were from malaria-naïve individuals who had received a recombinant malaria subunit vaccine
(AMA-1) that targets the pre-erythrocytic stage of the parasite. Both adjuvant formulations contain the
same immunostimulatory components, QS21 and MPL, thus this study reveals the subtle impact that
adjuvant formulation has on immunogenicity. Adjuvant-mediated immune signatures were established
through a two-step approach: First, we generated a broad immunoprofile (serological, functional and
cellular characterization of vaccine-induced responses). Second, we integrated the immunoprofiling data
and identify what combination of immune features was most clearly able to distinguish vaccine-induced
responses by adjuvant using machine learning. The computational analysis revealed statistically sig-
nificant differences in cellular and antibody responses between cohorts and identified a combination of
immune features that was able to distinguish subjects by adjuvant with 71% accuracy. Moreover, the in-
depth characterization demonstrated an unexpected induction of CD8+ T cells by the recombinant
subunit vaccine, which is rare and highly relevant for future vaccine design.
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Introduction

The goal of adjuvant research is to characterize the type of
immune responses that different adjuvants and adjuvant formu-
lations generate to enable rationale vaccine design whereby
antigens are matched with optimal adjuvants. Comparisons,
especially in humans, between clinically relevant adjuvants that
are already in licensed products are rare. To gain useful insights
into the immune signatures induced by adjuvants, it is necessary
to perform immunoprofiling by collecting the broadest possible
range of immune measures. Vaccine evaluations have tradition-
ally been restricted to relatively simple readouts such as antibody
titers and basic T cell analyses such as cytokine-ELISpot or the
assessment of the presence and frequency of poly-functional
T cells producing IFN-γ, IL-2, and/or TNF-α. While a useful
starting point, these efforts have largely failed to predict vaccine
efficacy or assist in the down-selection of vaccine formulations.1-3

Surrogate markers or immune correlates of protection remain

elusive for most vaccines and diseases4 and uncovering these
parameters could greatly assist in vaccine design and develop-
ment. It is clear that a comprehensive understanding of vaccine-
induced immunity is necessary but collecting and analyzing com-
plex immune data sets poses a number of technical and analytical
challenges.

Previously, we combined immunoprofiling with multivariate
analysis to collect and analyze serological and functional antibody
data from the clinical evaluation of aCSP-basedmalaria vaccine.5,6

Using serum samples collected from vaccinees of the RTS,S
malaria vaccine, we used univariate analyses to identify
a negative association between antigen-specific phagocytic activity
andprotection.6We then carried out complex immunoprofiling of
serological measurements followed by linear regression analysis
which identified key serological determinants of phagocytic
activity,7,8 tying IgG4 antibody levels to phagocytic activity and
vaccine efficacy. A subsequent, even more comprehensive immu-
noprofiling study of cellular and antibody responses in a non-
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human primate (NHP) model was based on 120 antigen-specific
immune measurements (cellular and serological) across multiple
lymphoid organs (liver, spleen, and vaccination site draining
lymph nodes) in addition to peripheral blood.9 Because size and
complexity of the data set was beyond the scope of most regres-
sion-based methods, we turned to machine learning to identify
what combination of immune features most clearly distinguished
vaccinees by adjuvant formulation. We identified a combination
of immune features (an ‘immune signature’) capable of distin-
guishing between vaccine-induced responses by adjuvant with
92% accuracy, and which provided a basis for rational adjuvant
selection and formulation.

Our immunoprofiling studies with various vaccines and
adjuvants yielded two key observations: First, vaccines elicit
a wide range of immune responses that are often unexpected,
yet critical for efficacy. This suggests that a targeted approach
to assessing immunity based on a priori expectations of what
immune responses are essential is likely to miss important
correlates of protection and, thus, fail to provide insights into
immune mechanisms responsible for vaccine efficacy. Second,
immune correlates associated with adjuvant selection or pro-
tective status are often complex and multivariate, resulting
from the coordination of a wide array of antigen-induced
immune factors and cells. As such, the expectation of simple
univariate measures as a correlate of protection is often unrea-
listic. In short, effective assessment of vaccine-induced immu-
nity requires both an unbiased, comprehensive profile of
immune responses, and data analysis methods, such as
machine learning or regression analysis, that are able to
simultaneously capture the combinatorial effects of multiple
immune responses.

The AS01 adjuvant system has a strong track record of gen-
erating efficacious vaccine responses. Most recently, the tubercu-
losis vaccineM72/AS01E has demonstrated, for the first time, that
a soluble protein vaccine can elicit a protective response against
TB.10 Similarly, AS01B has greatly increased the efficacy of the
malaria vaccine Mosquirix (RTS,S).11,12 A highly efficacious shin-
gles vaccine (Shingrix) that utilizes AS01 was licensed in the US in
2017. AS02 contains the same immunostimulatory components,
the saponinQS21 and the LPS-derived TLR4 agonist 3-O-desacyl-
4ʹ-monophosphory lipid A (MPL), but is formulated very differ-
ently: the same amounts of these molecules are delivered through
a liposome inAS01B, but as an oil-in-water formulation inAS02A.
The present study sought to establish the immunoprofile of
responses induced by a recombinant Plasmodium falciparum
Apical Membrane Antigen (AMA)-1 (3D7) vaccine (FMP2.1)
adjuvanted with either AS01B or AS02A in a clinical Phase I/IIa
trial.13 AMA-1 is expressed during pre-erythrocytic and erythro-
cytic stages of the malaria parasite and has, therefore, been eval-
uated for its potential to mediate protection against infection and
disease. Vaccinees were infected with malaria by mosquito bite
and, despite the lack of sustained sterile immunity, significant
differences in the parasite density were observed in the FMP2.1/
AS02A vaccinated study participants. Follow-up studies of the
vaccine focused on the FMP2.1/AS02A formulation in malaria-
endemic populations in Mali where it displayed strain-specific
efficacy.14-16 The vaccine induced strong cellular (CD4+ T cell)17

and humoral12,14,16 responses in both, malaria-naïve13 and
malaria-experienced12,14-17 vaccinees.

The availability of parasitological data and biological effects
made these trial samples a logical choice for establishing immu-
noprofiles and subsequent computationalmodeling. The objective
of this studywas to determinewhether computational analysis can
identify adjuvant-specific immune signatures for AS01B and/or
AS02A in humans, identify immune measures associated with
vaccine efficacy, and determine the effect of adjuvant formulation
on vaccine-induced immune responses.

Immunoprofiling was achieved by collecting 40 unique
immune measures that characterized the serological responses (i.
e., antibody titers and functional activity (i.e., growth- inhibition)
in immune sera) and cellular responses (i.e., frequency and phe-
notyping of antigen-specific B cells, CD4+ andCD8+T cell subsets,
antigen-specific cytokine profiles of ex vivo stimulated PBMC).
These parameters were then integrated with parasitological out-
comes (i.e., pre-patent period andparasite density) after sporozoite
challenge. The results revealed a large overlap in the immune
signatures of AS01B and AS02A, which was anticipated since the
two formulations contain the same immunostimulators.However,
they also uncovered several significant differences: AS01B med-
iates higher antibody responses at earlier time points while AS02A
promotes higher frequencies of antigen-specific CD8+T cell (espe-
cially within the CCR6+ subset) and TFH17 circulating follicular
T helper cells. Using machine learning, AS01B and AS02A data
sets were used to train the Random Forest Model to determine
whether unique immune signatures could be established for the
two adjuvants. Despite an overlap, a fairly accurate prediction of
which cohort samples came from could be achieved based on their
immune profile thus validating an approach that had previously
only been applied to preclinical sample sets.9 Moreover, immune
measures that had previously been considered to be associated
with vaccine efficacy, such as the parasite growth inhibition assay
(GIA), were surprisingly not associated with parasitological out-
come demonstrating the power of this approach for identifying
biomarkers of vaccination and/or protection. Most importantly,
insights into the interplay between antigen-specific CD4+ and
CD8+ T cell subsets were revealed.

Materials and methods

Study samples

Samples for this study, i.e., sera and PBMC, were collected
under a c l inica l protocol (www.c l inica l t r ia l s .gov
NCT00385047)13 from participants immunized with 50 µg/
ml AMA-1 adjuvanted with either AS01B (n = 14 subjects) or
AS02A (n = 14 subjects). The vaccine formulations as well as
the details on stability, ratio antigen-to-adjuvant have been
described previously.13 Briefly, 50 µg AMA-1 were formulated
in 0.5 ml of adjuvant system and injected intramuscularly.
Vaccinees received three doses in four-week intervals in alter-
nate arms.

ELISA

Sera were collected from each study participant at Day 0, 14,
28, 42, 56, 70, 93, 114 and 156 and tested as described pre-
viously. Briefly, sera were tested against the vaccine antigen
(FMP2.1)18 in a standardized, qualified ELISA assay
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performed at the WRAIR Malaria Serology Laboratory, an
international reference center. The serological data used for
the multi-variant analyses and machine learning are the ori-
ginal data set.13

Growth inhibition assay

Sera from pre-immune and pre-challenge time points were
tested using a high-throughput method based on the detection
of parasitic lactate dehydrogenase (pLDH) as described
previously.19 The GIA data used for the multi-variant analyses
and machine learning are the original data set.13

B cell ELISpot

Human B cell responses were measured using ELISpot assay
kits (Mabtech Inc, Cincinnati, OH) following the manufac-
turer’s instructions. Thawed PBMCs were stimulated with
1 µg/mL R848 and 10 ng/ml recombinant human IL-2 in
culture medium (RPMI-1640 containing 10% fetal bovine
serum, Pen/Strep, L-glutamine, NEAA, Sodium Pyruvate,
2-mercaptoethanol) for 36 hrs. ELISpot plates were coated
with recombinant PfAMA-1 (3D7) or anti-IgG monoclonal
antibody MT91 (positive control to capture all secreted IgG).
Prior to plating, B cells were purified by magnetic enrichment
using CD19 microbeads (Miltenyi Biotec, San Diego, CA)
following the manufacturer’s instructions. Enriched cells
were plated at a concentration of 5 × 104 cells/well. ELISpot
plates were analyzed using the AID Autoimmun Diagnostika
GmbH ELISpot reader (Strassberg, Germany) and software.
The values of the positive assay control (MT91) (i.e. the
frequency of activated B cells in PBMC) confirmed that the
viability and functionality of the PBMC was not diminished
despite being stored in liquid nitrogen for 10 years.

Flow cytometric analysis

Cryopreserved PBMCs from the pre-immune and pre-challenge
(14 days post 3rd vaccination) time points were incubated with an
AMA-1 peptide pool (15-mer peptides overlapping by 11 AA
representing the AMA-1 (3D7) vaccine antigen) at 1.25 µg/mL
final concentration, or media alone (control stimulation). Cells
were cultured for 16 hours (37°C, 5% CO2) in complete medium
(RPMI-1640 (Life Technologies, Waltham, MA) containing 10%
human serum (Gemini Bio-Products, West Sacramento, CA)) at
a concentration of 5 × 106 cells/mL. Anti-human CCR6-APC
(REA190) and CD40 (HB14) were added to the culture at a 1:10
and 1:100 dilution, respectively. Following stimulation, cells were
washed and stained with anti-human CD154-biotin (5C8) for
15 minutes at 4°C in FACS solution (0.5% human serum and
0.1% sodium azide in PBS). Cells were further incubated with
anti-biotinmicrobeads (Ultrapure,Miltenyi Biotec) for 15minutes
at 4°C. After washing, an antibody cocktail with fluorochrome-
conjugated antibodies against CD3-VioBlue (BW264/56), CD4-
PerCPVio700 (M-T466), CD185-PEVio770 (REA103), CD183-
VioBrightFITC (REA232), CD154-PE (5C8) and Zombie Aqua
Fixable dye (BioLegend, San Diego, CA) was added and incubated
for 45 minutes at 4°C. All monoclonal antibodies for cell culture
and analysis were purchased from Miltenyi Biotec. Cells were

enriched and acquired on a MACSQuant Analyzer 10 as pre-
viously described.20,21 Cell viability of thawed PBMCwas > 92% as
measured by a Luna-FL™ Dual Fluorescence cell counter (fluores-
cence protocol with AO/PI to determine cell viability). Viability of
the cells after overnight stimulation and staining was >84% which
is the observed range, in our laboratory, for younger cryopre-
served as well as freshly acquired PBMC. Lymphocytes were first
gated by scatter, then for viability, and the lineage marker CD3
(Suppl. Figures 1 and 2). Enriched antigen-specific cells were
gated based on the co-expression of CD4 or CD8 with CD154.
Subsequent gating for CD4+CXCR5+ TFH subsets was done based
on the expression of CCR6 and CXCR3 to identify THF1, TFH2,
and TFH17 cells. Subsequent gating of CD8+CD154+ was also
done based on CCR6 (Tc17) and CXCR3 (Tc1) expression. Flow
cytometric data were analyzed using FlowJo V10 (Treestar,
Ashland, OR).

Mesoscale analysis

Cryopreserved PBMCs from each study subject from time
points Day 0 and Day 28 days post immunization were stimu-
lated with an AMA-1 peptide pool media, or anti-CD3. Cell
viability of thawed PBMC was > 92% as measured by a Luna-
FL™ Dual Fluorescence cell counter (fluorescence protocol with
AO/PI to determine cell viability). The Mesoscale Discovery’s
10-plex human pro-inflammatory panel kit (IL-1β, IL-8, IL-2,
IL-4, IL-6, IL-10, IL-12p70, IL-13, IFN-γ, TNF-α) was used to
analyze culture supernatants according to the manufacturer’s
protocol. Plates were read on a QuickPlex SQ120 (Mesoscale,
Gaithersburg, MD). Cytokine levels induced by anti-CD3 sti-
mulation fell within the range of younger cryopreserved as well
as freshly obtained PBMC indicating that long-term storage did
not impact the functionality of the cells.

Computational analysis

We integrated the data across assays by subject and carried
out a univariate analysis, comparing each immune response to
its pre-immune reference point, at the group level, to identify
the subset of immune responses that are vaccine-induced.
With those data, we carried out a univariate analysis between
subjects from the AS01B and AS02A cohorts to identify adju-
vant-level differences at the cohort-level. Finally, we used
machine learning to determine how well we could distinguish
between subjects from the cohorts, and what multi-factorial
combination of immune factors was most responsible for
making this distinction. We also used machine learning to
determine if the immune data could be used to distinguish
subjects by parasitological outcome (delayed parasitemia vs.
normal parasitemia). An overview of all measurements and
time points is in Supplementary Table 1.

Univariate analysis
To determine which immune responses showed vaccine-
induced changes, univariate analysis for each immune measure
was carried out, comparing pre-immune vs. post-immune
responses with both adjuvant groups pooled together. If nor-
mally distributed, as determined by Shapiro-Wilks tests, paired
Student’s t-tests were used to calculate statistical significance. If
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not normally distributed, the Wilcoxon signed-rank test was
applied. After calculating p-values for immune parameters in
the data sets, a correction for multiple comparisons was made
(resulting in a corrected p-value) using the Benjamini-Hochberg
correction.22 Immune measures in which comparison to the
pre-immune data showed a significant difference at p < .05
and a false discovery rate of q < 0.20 were classified as vaccine-
induced immune responses.

To determine group-level differences with respect to adju-
vant, we carried out Student’s t-tests or Wilcoxon signed-rank
tests between the two adjuvant groups (AS01B vs. AS02A), for
all immune measures that were determined to be vaccine-
induced. After calculating p-values for each vaccine-induced
immune parameter, we accounted for multiple comparisons
by using the Benjamini-Hochberg correction. Vaccine-
induced immune measures that showed a significant differ-
ence between AS01B and AS02A subjects at p < .05 and
q < 0.20 were classified as adjuvant-specific differences.

ELISA data were collected at eight time points for each
subject and we used a linear mixed model to model them
(response variable) as a function of time point and adjuvant
(explanatory variables with fixed effects), and subject (expla-
natory variable with random effects) allowing for an interac-
tion between time point and adjuvant. We used the lmer
function within the lme4 package in R with the following
formula: log(ELISA) = Time Point * Cohort + (1 | Subject).
Fixed effects were evaluated with respect to Time point 0 (pre-
immune) as the reference group. Planned contrasts were
made across all time points and between cohorts within
each time point. We used the lmerTest package in R to gen-
erate p-values for the linear mixed model analysis.

Multivariate analysis and machine learning
Correlation matrices for the data set were generated by calculat-
ing the Spearman correlation coefficient between all immune
measures. Spearman’s ρ statistic was used to calculate p-values
for each correlation estimate. Only correlation coefficients with
p < .05 were retained for further analysis to ensure that only
high-confidence correlations were used in subsequent analyses;
all others were set to ‘0ʹ. Hierarchical clustering (R package hclust
function) was used to group correlated immune measures and to
define immune clusters based on a cutoff criterion of having
a correlation coefficient of at least 0.40, using the cutree function.
A dendrogram of the hierarchical cluster was generated using
the A2Rplot function in R package addicted.

Representative immune measures from the 11 largest clus-
ters (representing 92% of all vaccine-induced immune
responses) containing at least one vaccine-induced immune
measure were used for additional analyses. Principal compo-
nent analysis (PCA) was performed on these representative
immune measures, using the R function ir.pca to separate
subjects with respect to adjuvant (AS01B, AS02A) or parasi-
tological outcome (delayed parasitemia vs. normal parasite-
mia). Using the R package ggbiplot, the first two principal
components were visualized as two- dimensional PCA plots.

For the random forest model (based on the R caret pack-
age) we used all vaccine-induced immune responses (26 para-
meters) to predict adjuvant status (AS01B vs. AS02A) for all
subjects in the study (n = 28). The model was trained using

the repeated cv method, subsampling the data set by 5-fold
and resampling ten times. To test the predictive accuracy of
the random forest modeling approach, a leave-one-out analy-
sis was carried out, where one subject was removed from the
data set, after which the model was trained on the remaining
subjects and then used to predict the adjuvant condition of
the excluded subject based on its immune data. This analysis
was performed for all subjects in the data set, and calculated
both the accuracy and kappa value of the prediction model.
The varImp function was used to determine the variable
importance for each generated model, and the average vari-
able importance across all models was reported to assess the
relative importance of each vaccine-induced immune measure
to predicting the adjuvant condition.

Results

Immunoprofiling of vaccine-induced responses reveals
distinct response patterns

The interactions between various immune measures induced by
vaccination were determined through a correlation matrix
(Figure 1). As expected, all serological measurements correlated
positively with each other at all time points. Pre-challenge (T5),
the magnitude of the serological response correlated significantly
with the functional activity measured in growth-inhibition assays
(GIA). The correlations between serological responses and cyto-
kines revealed previously unknown associations: the magnitude
of the serological response correlated with TNF-α and IFN-γ
only at early time points, but pre-challenge, the serological
response correlated with IL-10. The positive correlations
between the frequency of antigen-specific B cells and TFH17 T
cells as well as the correlation between TNF-α and IFN-γ indi-
cate a bias toward a Th1-type immune response. Additional
positive correlations between cytokine secretion patterns were
found between IL-2 and IL-13 suggesting that the T cell response
is accompanied by the presence of an anti-inflammatory
response23 as well as between IFN-γ, TNF-α, and IL1β, suggest-
ing support for the expansion and differentiation of Th2-cells.24

Similarly, the negative correlations we identified indicate
polarizing immune interactions: (1) the frequency of antigen-
specific TFH17 vs. TFH2 cells; (2) the frequency of antigen-
specific CD4+ CCR6+CXCR3+ T cells vs. TFH2 cells; (3) the
frequency of antigen-specific CD8+ CCR6+25 vs. CD8+

CXCR3+ cells;26 (4) the frequency of antigen-specific TFH1
with IL-13 and the magnitude of the serological response at
the pre-challenge time point; (5) the frequency of antigen-
specific TFH17 cells with TNF-α produced by PBMC in
response to antigenic stimulation; and (6) the magnitude of
the IL1β response vs. IL-2 response by PBMC in response to
antigenic stimulation. The latter suggests that the T cell
response occurs in the absence of strong inflammation.

Hierarchical clustering of vaccine-induced responses to
decipher vaccine- vs. adjuvant-affected immune
responses

Vaccine-induced immune responses were identified through
univariate analyses of all immune measures (Figure 2). The
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Figure 1. Correlation matrix of all collected immune measures. Serological (Sero), cytokine (Cyto), B cell ELISPOT (BELI), and T cell flow cytometry (TFC) measures are
shown. Pearson correlation coefficient is shown from −1 (red) to 1 (blue). Only correlations with statistical significance of p < .05 are shown. Notable correlation
clusters are highlight for positive (red) and negative (blue) interactions.

Figure 2. Hierarchical clustering of all immune measurements. Clusters were defined by a cutoff of a Pearson correlation coefficient of 0.60 and are color-coded. Immune
measures that are classified as ‘vaccine-induced’ are highlighted with light, medium, and dark gray, corresponding to statistical significance (vs. pre-immune). Immune
measures that are classified as showing adjuvant-specific differences are shown in light, medium, and dark blue based on its statistical significance (AS01B vs. AS01A).
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main vaccine-induced clusters are the serological (“ELISA”)
responses and cytokine clusters (i.e., IL-13, IL-2 and IFN-γ,
TNF-α). Only TNF-α responses after antigenic stimulation of
PBMC reached borderline statistical significance when com-
paring the two adjuvant groups (p = .09, paired T-test;
AS01B>AS02A). The evaluation of the clusters regarding dif-
ferences in the responses based on the adjuvant formulation
showed that the differences between AS01B and AS02A were
at the level of serological responses, the frequency of antigen-
specific CD8+ T cells, and antigen-specific CD4+ TFH17 cells.

Vaccine-induced cytokine responses

Cytokine responses were profiled using the Mesoscale
Diagnostics assay platform (Figure 3). Culture supernatants
of PBMC were tested after ex vivo stimulation with allele
specific AMA-1 peptide pools or controls. Comparing the
two different AMA-1 pools revealed a strong cross-reactivity
between two alleles of the AMA-1, namely 3D7 and HB3 at
the T cell level. The profile of vaccine-induced responses was
comprised of IFN-γ, IL-13, IL-2, and TNF-α for both, the
homologous (3D7) as well as the heterologous response
(HB3). There was no significant difference in the cytokine
profile induced by AS01B vs. AS02A.

Differences in the adjuvant groups at the level of CD4+

T cells

Antigen-specific CD4+ T cells were identified by the expression
of CD154 after antigen stimulation.27,28 We focused on measur-
ing the frequencies of TFH subsets based on their role in indu-
cing and maintaining humoral responses (reviewed in29). In
humans, circulating TFH cells have been described as reliable
surrogates of lymphoid organ-resident TFH.30 These CD4+

CXCR5+ cTFH are classified based on the expression of addi-
tional cell surface markers as TFH1 (CXCR3+), TFH2
(CXCR3−CCR6−), or TFH17 (CCR6+). While the role of TFH2
and TFH17 cells is to support the activation of antigen-specific
B cells and germinal center reactions,30,31 the role of TFH1 cells
has been more elusive: one study suggests that the frequency of
antigen-specific TFH1 was associated with Influenza-specific
neutralizing antibody titers and, hence, vaccine efficacy,32

while in vitro co-culture experiments showed that TFH1 do
not support B cell activation and differentiation.30

While all changes in the frequencies of antigen-specific
CD4+ T cells and, in particular, CD4+CXCR5+ T cells are
vaccine-induced in our study, the only difference between
the two adjuvant formulations was in the TFH17 (CD4+

CXCR5+CCR6+) cell subset (Figure 4a). The trend toward
higher TFH1 and CXCR3+CCR6+ T cells in the AS02A
group was not statistically significant. Notably, we observed

Figure 3. Cytokine concentration following ex vivo stimulation by allele-specific AMA-1 peptide pools. Cytokine concentrations following stimulation by AMA1 (3D7)
peptide pool (a) and AMA1 (HB3) peptide pool (b) for pre-immune (gray) samples and AS01B and AS02A vaccinees (red and blue, respectively) collected at the pre-
challenge time point. Vaccine-induced differences (vs. pre-immune) are shown in black, adjuvant-specific differences (AS01B vs. AS02A) are shown in magenta
(* p < .05, ** p < .01, *** p < .001).

HUMAN VACCINES & IMMUNOTHERAPEUTICS 405



a significant correlation between the frequency of AMA-1
specific B cells and AMA-1 specific TFH17 (p < .05).

Differences in the frequency of antigen-specific CD8+

T cells between the adjuvant groups

Antigen-specific CD8+ T cell were characterized based on the
expression of the activation marker CD154.33,34 CD8+ effector
and memory cells were identified based on the expression of
CXCR3 and CCR6.35,36 Both markers are associated with
memory T cells; CXCR3+ CD8+ T cells have been described
as long-lived effector and memory T cells.37 The co-
expression of both markers is associated with short-lived
effector memory T cells26 migrating to tissues, including
homing to the liver,38,39 which may be represent an important
immune defense strategy against liver-resident malaria para-
site when antibodies failed to neutralize the parasite. While all
responses in the various CD8+ T cell subsets were vaccine-
induced, the only significant difference between the two adju-
vants groups was observed in the overall frequency of antigen-
specific CD8+CD154+ T cells (Figure 4b).

Adjuvant-induced differences in the magnitude of the
humoral immune response

Antibody-mediated growth inhibition pre-challenge was not
significantly different between the AS01B and AS02A cohorts
(Figure 5a). A linear mixed model analysis of the repeated
ELISA measures across eight time points in the study revealed
a significant effect of the time point on the ELISA data
(p < 10–5) and a significant interaction between adjuvant

and time point T3 and T4 (p < .1). Using planned compar-
isons between time points and between cohorts within each
time point we observed that antibody titers increase mono-
tonically from T0 to T3 (p < 10–3), decreased from T3 to T4
(p < .01), and then increased following Dose 3 (T5), before
leveling off (T6 and T7). AS01B induced higher antibody
responses than AS02A (p < .05) following Dose 2 (T3 and
T4), but both adjuvants showed similar Ab titers following
Dose 3 (T5, T6, and T7). These results provide two findings: 1)
the AS01B adjuvant is able to mount Ab responses at post-
Dose 2 that the AS02A adjuvant does not reach until after
Dose 3. 2) for both adjuvants, while the peak Ab response
following Dose 2 and Dose 3 is comparable, the post-Dose 2
Ab response is characterized by a decay in Ab titers at 4-weeks
post-Dose 2, while post-Dose 3 Ab responses are maintained
beyond four weeks and persist through the post-challenge
period.

Principal component analysis of vaccine induced immune
responses to establish adjuvant-specific immune
signatures

To detect any systematic difference in vaccine-induced
immune responses in the AS01B- and AS02A-cohorts, we
carried out principal component analysis (PCA) using repre-
sentative immune measures from each immune cluster iden-
tified from hierarchical clustering (Figure 2). These 11
representative parameters (Table 1) collectively represent
92% of all the immune measures that were classified as vac-
cine-induced based on the univariate analysis.

Figure 4. Vaccine-induced and adjuvant-specific immune responses for Tfh CD4+ and CD8+ cells. (a) Relative frequency of activated Tfh cells (CD154+ CXCR5+) and
the relative frequency of TFH1, TFH2, TFH17 subsets of the TFH population. (b) Relative frequency of activated CD8+ T cells and the relative frequency of naïve,
effector, and memory subsets of the activated CD8+ T cell population. Vaccine-induced differences (vs. pre-immune) are shown in black; adjuvant-specific differences
(AS01B vs. AS02A) are shown in magenta (* p < .05, ** p < .01, *** p < .001).
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Comparing the 11 representative parameters for the two
cohorts using PCA (Figure 6a) shows that the adjuvants
induce largely overlapping immune responses. Although uni-
variate analyses identified several adjuvant-specific differences
in vaccine-induced immune responses, such as higher anti-
body levels at earlier time points (AS01A), and higher fre-
quencies of antigen-specific CD8+ T cells (AS02A), these
differences were exceptions.

Overall, there was little systematic difference between the two
adjuvants, meaning that variations in immune responses
between individuals was substantially greater than the systematic
difference in immune responses mediated by AS01B vs. AS02A.
This finding highlights the major challenge in assessing adjuvant
specific-effects – that these effects, while sometimes critical for
vaccine efficacy,14,16 often manifest themselves as subtle differ-
ences in vaccine-induced immune responses that are not readily
apparent from group-level analyses.

Multivariate analysis using all vaccine-induced parameters
to generate a predictive model for adjuvant use

Given the limitations of identifying adjuvant-specific effects from
group-level analyses of vaccine-induced immune responses, we
usedmachine learning to carry out an individualized assessment of

adjuvant-specific effects. With the Random Forest Model, we
made individualized predictions of whether vaccinees received
AS01B or AS02A adjuvanted vaccine based on 26 immune para-
meters that were classified as vaccine-induced in the univariate
analysis, and trained the model with 28 subjects. We assessed
model accuracy using the leave-one-out method, whereby
a training set is created using all but one subject, and then the
model predicts the adjuvant condition for the excluded subject.
Despite the large overlap in immune responses, themodelwas able
to predict cohort-membership with 71% accuracy
(κ = 0.42, p = .02).

Next, we determined what parameters in the model were
most responsible for model accuracy with a variable impor-
tance analysis. Four parameters were mainly responsible for
predictive accuracy: antigen-specific antibody titers at two
time points, frequency of antigen-specific TFH17 cells, and
activated antigen-specific CD8+ cells (Table 2). PCA analysis
with these four parameters (Figure 6b) showed that vaccinees
were clearly distinguishable by adjuvant when using this sub-
set of parameters. Furthermore, two components alone were
able to capture over 70% of the variation in the data set,
suggesting that despite the large overlap in vaccine-induced
immune responses, this machine learning approach was able
to isolate a subset of adjuvant-specific immune responses.

Figure 5. Vaccine-induced and adjuvant-specific immune responses in antibody responses. (a) Growth inhibition assay for AS01B and AS02A adjuvanted vaccine-
induced antibody responses. (b) ELISA assay using recombinant AMA1 antigen across time points from pre-immune (T0) to post-challenge (T7). Linear mixed model
was used to assess time point-specific (black) and adjuvant-specific (magenta) effects. Selected pair-wise comparisons between time points and adjuvant conditions
are shown using curved lines with corresponding p-values (* p < .05; ** p < .01; *** p < 10−3 ***).

Table 1. Representative parameters for PCA.

Cluster name Assay Time point Phenotype Representative parameter

BELI.Ag.Sp B Cell ELISPOT Pre-challenge Ag-specific
B cell

BELI.Ag.Sp.BELI.AMA.T5

Meso.IFNy/TNFa Mesoscale IFN-y, TNF-α CYTO.IFNy.HB3.T5
Meso.IL2/IL13 IL2, IL13 CYTO.IL13.HB3.T5
TFC.CD4.CD154 T cell Flow Cytometry CD4 CD154 TFC.CD4.CD154.T5
TFC.Tfh17 Tfh17 TFC.TFH17.T5
TFC.Tfh1 Tfh1 TFC.TFH1.T5
TFC.Tfh2 Tfh2 TFC.TFH2.T5
TFC.CD8.CD154 CD8 CD154 TFC.CD8.CD154.T5
TFC.CD8.CCR6 CD8 CCR6 TFC.CD8.CCR6.T5
TFC.CD8.CXCR3-.CCR6- CD8 CXCR3- CCR6- TFC.CD8.CXCR3.CCR6.T5
SERO.ELISA ELISA Post-Dose 2 Ag-specific SERO.ELISA.AMA1.T2

Pre-challenge SERO.ELISA.AMA1.T6
Post-challenge SERO.ELISA.AMA1.T7
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Relationship between parasitological outcomes and
immunological responses

Measures of parasitological outcomes (i.e., pre-patent period
between challenge and parasite detection using blood smears)
of the Phase IIa trial samples were analyzed to determine
differences between unvaccinated challenge controls and vac-
cinees receiving either vaccine formulation (Suppl. Figure S3).
There was a notable anti-parasite response in vaccinated study
participants, and it was stronger in recipients of the FMP2.1/
AS02A formulation. Next, the 26 immune measures were
integrated with the parasitological data and used to train the
algorithm to predict the protective status of the vaccine reci-
pients. The resulting computer model was not able to predict
the protective status with sufficient accuracy (accuracy: 56%;
κ = 0.12, p = .60). Thus, we conclude that for this vaccine the
reported immune measures should be considered immuno-
genicity markers rather than immune correlates of protection.

Discussion

Comparative studies of human immunoprofiles induced by
adjuvants are rare, mainly because of the proprietary nature of
late-stage adjuvants. Thus, insights into adjuvant-mediated
immune responses are mostly derived from clinical studies
in which adjuvants were used for different vaccines, and
which differed in schedule and readout methods. These dif-
ferences make it virtually impossible to determine the differ-
ential contribution of adjuvants to vaccine-immunogenicity
and efficacy. Furthermore, in many vaccine trials, a limited

number of immunological parameters is collected.
Establishing immune signatures for adjuvants in comparative
trials will greatly enhance our understanding of adjuvants and
guide their selection. Here, we describe the immune signa-
tures of two adjuvant formulations containing the same
amount of the same immunostimulatory components, but
formulated differently: in AS02A, MPL and QS21 are deliv-
ered through an oil-in-water emulsion, while AS01B is
a liposomal formulation. Differences in the immune signa-
tures induced by the same antigen delivered with the same
immunostimulatory molecules would thus be the result of
formulation, here an emulsion versus liposomes. Adjuvant
formulation represents one of the least appreciated and inves-
tigated aspect of vaccine development and our study high-
lights how this seemingly minor difference in formulations
can affect a vaccine’s immune profile.

We utilized samples and data from a clinical adjuvant-
comparison trial involving AMA-1, a promising malaria vaccine
candidate that showed parasitological efficacy in challenged,
previously malaria-naïve individuals13 when formulated with
AS02A. In a subsequent field trial, FMP2.1 reduced parasite
burden in adults and children in a malaria-endemic area in
Mali,14-16 although efficacy was limited to parasites with geneti-
cally similar AMA-1 as the allele in the vaccine.

The present study yielded several key observations in addi-
tion to producing a computational model that characterizes
the immune signature of emulsions vs. liposomal adjuvants
containing MPL and QS21:

(1) AMA-1 antibody titers at early vaccination time
points correlated with TNF-α and IFN-γ secretion
by antigen specific T cells demonstrating a bias
toward Th1 type responses and the induction of
cytophilic antibodies; Ig-titers at later time points
(pre- and post-challenge) correlated with functional

Figure 6. Principal component analysis (PCA) for vaccine-induced responses. (a) PCA plot for representative parameters for all vaccine-induced responses,
summarized in Table 1. Vectors corresponding to each measure are shown. Points are labeled for AS01B vaccinees (pink) and AS02A vaccinees (blue). (b) PCA
plot for parameters identified using machine learning to have predictive value in distinguishing AS01B and AS02A vaccinees.

Table 2. Predictive parameters for modeling adjuvant effects.

Assay Phenotype Parameter Weight

SERO AMA1-specific ELISA.AMA1.T3 100
ELISA.AMA1.T4 75.44

TFC Tfh17 TFH17.T5 88.16
CD8 CD154 CD8.CD154.T5 60.18
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anti-parasite activity (measured by GIA) and IL-10.
IL-10 has been shown to act as a growth and
differentiation factor for B cells in humans,40,41

but could also indicate immunomodulation.42,43

(2) Both adjuvants mediate a strong bias of the vaccine-
induced immune response toward a Th1/Th17 type pro-
file and are able to induceAMA-1 specific CD8+T cells as
well as AMA-1 specific TFH1 and TFH17 CD4+ T cells.
The presence of CD8+T cells was surprising since recom-
binant proteins are inherently poor inducers of this T cell
subset, particularly in humans. We also found
a correlation between the frequencies of AMA-1 specific
B cells and TFH17 cells (Figure 2). Further indication of
a bias toward cellular responses is the negative correlation
between TFH17 and TFH2 (Figure 1).

(3) AS01B and AS02A have a largely overlapping
immune signature, which is not surprising consider-
ing that they contain the same immunostimulatory
molecules. However, AS01B induces higher antibody
titers while AS02A promotes higher frequencies of
TFH17 and CD154+CD8+ T cells (Figure 6), contra-
dicting the highly simplistic hypothesis that AS02A
would support a stronger antibody response, presum-
ably more important for the AMA-1 vaccine, while
AS01B would support stronger cellular responses.

Although univariate analysis was able to identify several
group-level differences between AS01B and AS02A, multi-
variate PCA confirmed that, overall, there was little systematic
difference in vaccine-induced immune responses. This indi-
cated that variation in immune responses between individuals
was significantly greater than differences in immune
responses elicited by the adjuvant. However, we were able to
use a machine learning approach to make an individualized
prediction about which adjuvant a particular subject had
received based on immune data selected by the algorithm.

Comparing comprehensive immune profiles induced by
a novel malaria vaccine, delivered with two different, but related,
adjuvants, has provided novel and unique insights into the
important effects of adjuvant formulation on vaccine immuno-
genicity. The study also highlights the significant impact adju-
vant formulation, beyond simply the nature of the
immunostimulatory components, has on vaccine-induced anti-
gen-specific responses. A limitation of the present study is its
inability to identify biomarkers of reactogenicity, which would
require a significantly larger dataset. The BIOVACSAFE project
was the first of its kind that aimed to integrate available safety
data as well as “omics” data from a wide range of preclinical and
clinical vaccine trials to determine such biomarkers through
system vaccinology.44 When provided with an appropriate data
set, the approach described here can also be used to gain insights
into what immune profiles are associated with reactogenicity in
an attempt to further improve the safety of vaccines.
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