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Abstract: The nervous system is the part of our body that plays critical roles in the coordination of
actions and sensory information as well as communication between different body parts through
electrical signal transmissions. Current studies have shown that patients are likely to experience
a functional loss if they have to go through a nerve repair for >15 mm lesion. The ideal treatment
methodology is autologous nerve transplant, but numerous problems lie in this treatment method,
such as lack of harvesting sites. Therefore, researchers are attempting to fabricate alternatives for nerve
regeneration, and nerve conduit is one of the potential alternatives for nerve regeneration. In this study,
we fabricated polyurethane/polydopamine/extracellular matrix (PU/PDA/ECM) nerve conduits using
digital light processing (DLP) technology and assessed for its physical properties, biodegradability,
cytocompatibility, neural related growth factor, and proteins secretion and expression and its potential
in allowing cellular adhesion and proliferation. It was reported that PU/PDA/ECM nerve conduits were
more hydrophilic and allowed enhanced cellular adhesion, proliferation, expression, and secretion of
neural-related proteins (collagen I and laminin) and also enhanced expression of neurogenic proteins,
such as nestin and microtubule-associated protein 2 (MAP2). In addition, PU/PDA/ECM nerve
conduits were reported to be non-cytotoxic, had sustained biodegradability, and had similar physical
characteristics as PU conduits. Therefore, we believed that PU/PDA/ECM nerve conduits could be a
potential candidate for future nerve-related research or clinical applications.

Keywords: nerve regeneration; polyurethane; extracellular matrix; dopamine; digital light processing

1. Introduction

The nervous system is the part of our body that plays critical roles in the coordination of actions
and sensory information as well as communication between different body parts through electrical
signal transmissions. It works by coordinating inputs from different origins and turn them into
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actions and autonomic outputs in response to environmental changes. Therefore, severe neurological
dysfunction or damage would lead to disabilities that cause major negative impacts on the quality of
a patient’s life [1]. The human nervous system can be categorized into two broad components, one
being the central nervous system (CNS) and the other being the peripheral nervous system (PNS). CNS
comprises the brain and the spinal cord, while the PNS encompasses the rest of the system other than
the brain and spinal cord [2]. Patients that are involved in major traumas often suffer from peripheral
nerve damages due to the extent of the impact, and such damages usually include nerve compression,
nerve lesions, or tear, or even ischemic injuries [3]. Other reasons that can cause peripheral nerve
damage include surgical procedures and other co-morbidities. These damages would subsequently
lead to various kinds of neurological dysfunction and diseases. Furthermore, studies have shown
that approximately 2.8% of the patients still claim to have peripheral nerve issues after receiving
treatment, some suffer from neuropathic pain and permanent dysfunction, and some patients even
experience permanent disability after years of recovery [4]. The rate of success of peripheral nerve
treatments has improved significantly with the advancement of medical technology and knowledge.
However, there remains a huge gap between such recoveries and complete recovery of neural functions
due to the limited regenerative capabilities of the nerves. To date, the incorporation of regenerative
medicine into peripheral nerve treatments remains a challenge due to major obstacles, including
lengthy regenerative duration, limited sources of nerves for autologous transplantations, as well as
the rejection of autologous transplantations [5]. Therefore, scientists are always in search for novel
solutions to overcome these challenges. Since the past decade, tissue engineering has been seen as a
potential substitute for nerve transplantations and it has since become an important research topic in
the field of nerve regeneration [6].

Clinically, it is a major challenge to attempt to regenerate or replace severe nerve damages.
Temporary loss of nerve functions is inevitable after any kind of nerve damages as the communications
between the nerves have been interrupted. Previous cases showed that patients who underwent repair
of >15 mm nerve defects often claimed to have functional loss even after recovery. In addition, neural
lesions involving distances of >15 mm may significantly decrease the regeneration capabilities of the
nerves due to the disruption of endo-neural contacts between proximal and distal ends [4]. Thus,
nerve conduits are commonly used in clinical settings to overcome this issue. Some of the most widely
used conduits include the autologous conduits, the non-polymer conduits (such as those that are
made up of stainless steel and silicon), and biodegradable conduits (such as those that are made up of
natural polymer) [7–9]. However, of all the options, autologous nerve transplantations are the current
mainstream treatment method for nerve injuries. Nerve grafts from the autologous origin are optimal
because they have been proved to not only protect the damaged nerve tissue but also aids in guiding
axonal regeneration and connection to one of the neural ends to the other. In recent years, the 3d
porous scaffold has been thought to be only providing cells with temporary support for cell growth [10].
However, modern scaffolds have evolved to be a critical factor in tissue engineering application, and
these scaffolds have been demonstrated to be more than a mere container or support [11]. Therefore,
they are also rich in growth factors, which would significantly enhance the regeneration of nerves [12].
Of which, Zhang conducted a 20-years study involving peripheral nerve defects, and the data collected
were used to establish guidelines for studies involving peripheral nerve conduits [7]. The studies
pointed out that neural lesions with a size of 9.7 ± 1.8 mm could successfully regenerate with the
application of nerve conduits. However, for the repair of rat sciatic nerves that are >10 mm, the
incorporation of several different proteins, such as laminin [13], fibronectin [14], and collagen [15], into
the neural conduits are required for optimal nerve regeneration.

In recent years, the rapid development and advancement of additive manufacturing technology
have spurned off a wave of interest in related research and studies [16–19]. As compared to traditional
structures and processes, such as foamed polyurethane, stencil sheet molding, solvent casting, or
freeze-drying, 3D printing is a better solution to fabricate complex pore patterns and dimensions with
high precision [8]. Digital light processing (DLP) is one of the technologies available for 3D printing [20].
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DLP uses a photo-polymerization technique to cross-link photo-curable materials according to your
computer-aided design (CAD). When the photo-curable bio-ink absorbs the ultra-violet (UV) ray, it
generates active radicals or ionic groups, which in turn leads to the subsequent reaction of polymer
polymerization and cross-linking [21]. Three-dimensional structure stereoscopic scaffold within a
range of micrometers to nanometers can be prepared using DLP as it uses the light source as its curing
energy [22]. 3D printing is the recent trend as it can be seen in recent years that various studies
have utilized different 3D-printing techniques to fabricate bioscaffolds using various biomaterials,
such as collagen, poly-caprolactone, and gelatin [23–25]. Many studies have attempted to apply 3D
printing to fabricate and create alternatives to autologous implantations and biomimic model [26,27].
However, results from clinical trials and animal studies have not been promising enough to allow it to
replace autologous implantations [28,29]. Therefore, novel approaches had since emerged to attempt
to increase the feasibility of 3D printed conduits or scaffolds, and a recent novel approach was to
use decellularized extracellular matrix (dECM) of nerves and implement them into the development
of nerve bio-conduits for nerve regeneration [30–32]. The dECM was usually obtained by exposing
harvested nerves with chemical or physical methods to remove unnecessary cellular components, thus
only maintaining the structural proteins and several growth factors that were supposed to mimic the
microenvironment of normal tissues [33,34]. With this concept in mind, current research had focused
on developing a dECM-contained biomaterial that had both structural and biological behaviors, which
were very similar to the native environment [35]. It was hypothesized that dECM retained critical
structural components or motifs that are important to guide cellular differentiation and proliferation
into the intended tissues. Thus, dECM can be added into the material without the need for any
subsequent surface modification. However, the addition of dECM alone without any modification
would reduce the printability of light-curable material and thereby limiting the chance of producing
an ideal nerve conduit. Therefore, we chose polydopamine (PDA) because of its ideal oxidation
reaction with the resin, thus allowing the composite to have an additional light absorbing capability.
In recent years, PDA has been most commonly used for biomaterials modification due to its optimal
cell adhesion behaviors [36]. In addition, PDA is also an excellent adherence promoter that can greatly
improve the interface binding force of dECM and biomaterials, thereby preventing their segregation
that might affect the regeneration of nerves [37].

This study aimed to fabricate water-based light-cured polyurethane (PU) nerve conduits with
DLP technology. In order to improve the resolution and cytocompatibility of PU, homogenous
polydopamine (PDA) and dECM was mixed into the raw material. PU belongs to a group of compounds
termed as reaction polymers and is formed by exposing isocyanate and polyol to ultraviolet lights.
The characteristics of PU can, therefore, be controlled by regulating quantities of isocyanate and polyol,
making it an ideal material to be used for bioprinting. In addition, the novel idea of using PDA as a
modification method was inspired by mussel’s attachment onto walls. The initial PDA-contained PU
conduits functioned as a modified supportive material to allow efficient attachment and adhesion of
dECM onto conduits. Mechanical properties and chemical composition were analyzed using the EZ Test
machine (Shimadzu, Kyoto, Japan) and electron spectroscopy for chemical analysis (ESCA). In general,
PU/PDA/dECM conduits were able to influence and enhance stem cell adhesion, proliferation, and
neural differentiation.

2. Materials and Methods

2.1. ECM Extraction

ECM was harvested from rat sciatic nerves with appropriate and proven protocols [9]. The
decellularization method used in this study had been described elsewhere but with slight modifications.
Harvested nerves were minced into 1 mm thick pieces. The minced tissues were stirred in distilled
water for 24 h with water changing twice daily. This step was critical in ensuring that the tissues were
free of blood and debris. Step-up decellularization was done for the next 3 days. For the second day,
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tissues were stirred in 1% SDS with 1% Triton X-100 in PBS (1% PBS-T) for 24 h, and for the third
day, tissues were stirred in 2% PBS-T containing 2% SDS for 24 h. For the fourth day, tissues were
stirred in 3% PBS-T containing 3% SDS for 24 h. After this, the tissues were disinfected for 4 h with
0.1% peracetic acid in 4% ethanol. The tissues were then washed with distilled water for 1 h after
disinfection. After this, the tissues were lyophilized and stored in the freezer for future use.

2.2. Preparation of Water-Based PU

Water-based PU resin (Alberdingk Boley, Krefeld, Germany) was stirred at 180 ◦C to allow
dehydration. Specified amounts of 1.5% 2,4,6-trimethylbenzoyl-diphenyl-phosphineoxide (TPO, Ciba
Specialty Chemicals Inc., Basel, Switzerland), 0.1% 2-hydroxy-4-methoxybenzophenone-5-sulfonic
acid hydrate (HMBS, Tokyo Chemical Industry Co., Ltd. Tokyo, Japan), and 0.01% 4-hydroxy-
2,2,6,6-tetramethyl-piperidinooxy (TEMPO, Sigma-Aldrich, St. Louis, MO, USA) were dissolved in
30% 2-Hydroxylethyl methacrylate (HEMA, Sigma-Aldrich) before being added to PU and stirred for
10 min to ensure homogeneity. In addition, 2 mg/mL dopamine (Acros Organics, Morris Plains, NJ,
USA) was mixed with 1.2 mg/mL ammonium persulfate (Sigma-Aldrich, St. Louis, MO, USA) in pH 7
distilled water, added to the photocurable PU, and further dehydrated.

2.3. Preparation of PU/PDA/ECM Matrix

The powdered dECM was enzymatically digested using 1 mg/mL of porcine pepsin in 0.01 N
HCl solution. The mixture was then placed under a constant stir rate for 72 h. Neutralization was
accomplished with the addition of 0.1 N NaOH. The dECM solution was added into the PDA/PU
solution with a final concentration of 10 mg/mL.

2.4. Conduit Fabrication

All 3d-printed conduits were drafted using SolidWorks (Dassault Systemes SolidWorks Corp.,
Waltham, MA, USA) and fabricated with MiiCraft high-resolution home DLP 3D printer (Young Optics
Inc., Hsinchu, Taiwan). Each layer was designed to be at 100 µm per layer and exposed to 20 s of blue
light digital stereolithography for curing. The characteristics of the water-based light-cured PDA/PU
nerve conduits were set at 12 mm length, an outer diameter of 2.5 mm, and an inner diameter of 2 mm
(Figure 1). The remaining materials were rinsed off by EtOH and exposed to UV light for post-curing to
obtain the final conduits. After this, the conduits were rinsed and sterilized for in vivo implantations.
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Figure 1. Schematic drawing of (A) the conduit and (B) the dumbbell-shaped sample used in the
mechanical testing. (C) The top-view photograph of 3D-printed PU-based conduits. PU, polyurethane;
PDA, polydopamine; ECM, extracellular matrix.
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2.5. Physical Properties of 3D-Printed Conduits

The water contact angle test of each conduit was conducted at room temperature. In brief, the
samples were situated on a platform, and 5 µL of MilliQ water was then pipetted onto the surface of
each sample. A camera was used to capture images of the water droplet after 20 s. After this, ImageJ
software from the National Institutes of Health was used to analyze and to measure the water contact
angle. In addition, the mechanical stress-strain tests were done in dry environments and analyzed
using a universal tensile tester. For this test, the samples were printed into a dumb-bell shape and
subsequently stretched from both ends at a rate of 1 mm/min. Six assays were conducted for each
sample, and the average was recorded. Fourier transform infrared spectroscopic analysis (FTIR) assay
of the PU/PDA/ECM conduits was performed using an optical spectrometer in reflection absorption
mode and within the wavenumber region of 600–2000 cm−1. In addition, 1 cm−1 of the spectral
resolution was employed to measure the different functional groups on these conduits. Furthermore,
electron spectroscopy was used to analyze the chemical compositions and elemental compositions of
all specimens (ESCA, PHI 5000 VersaProbe, ULVAC-PHI, Kanagawa, Japan). The concentrations of the
analyzed compositions were presented in the atomic percentage.

2.6. Biodegradation

To test for degradation, the conduits were immersed into simulated body fluid (SBF) at 37 ◦C
for different durations. SBF used in this study was prepared with methods from our previously
reported studies [25]. After soaking for various periods, the conduits were removed from SBF, washed,
and dried for a day. Then, the dried conduits were weighed using the analytical balance (TE214S,
Sartorius, Goettingen, Germany) and recorded to determine in vitro degradation behavior. Six tests
were conducted for each time-point, with the average value tabulated. The SBF solution was similar to
human blood plasma and consisted of 7.9949 g of NaCl, 0.2235 g of KCl, 0.147 g of K2HPO4, 0.3528 g of
NaHCO3, 0.071 of g Na2SO4, 0.2775 g of CaCl2, and 0.305 g of MgCl2·6H2O in 1000 mL of distilled
H2O with the pH adjusted to 7.4 using hydrochloric acid and trishydroxymethyl aminomethane.

2.7. Cytocompatibility of PU-Based Conduits Extracts

The indirect cytocompatibility was analyzed using a revised version of ISO10993-12. Briefly, the
printed PU-based conduits were washed with PBS thrice and were disinfected in 75% ethanol for 1 h
at room settings. After this, the different conduits were immersed in Dulbecco′s modified Eagle′s
Medium (DMEM) and placed in a 37 ◦C incubator for 24 h with a pre-determined set of 75% humidity
and 5% CO2. The DMEM was then used as extracts to test for cytocompatibility. Concurrently, cell
culture of L929 cells, with a cell count of 104 cells, was seeded in a 96-well at 37 ◦C for 24 h. Following
this, the growth medium from the 96-well was removed and replaced with 200 µL of the various
extracts. After different periods of cell culture, the extract solution was then removed and replaced with
100 µL of MTT solution (5 mg/mL) in each well. Following this, the culture was then left to be incubated
for 3 h in the dark. Then, the MTT solution was removed and replaced with 100 µL of dimethyl
sulphoxide for the dissolution of formed formazan, which was formed from the addition of MTT
solution. A microplate reader (Infinite 200®PRO microplate reader, Tecan, Männedorf, Switzerland)
was used to analyze the absorbances of each well.

2.8. Enzyme-Linked Immunosorbent Assay

Enzyme-linked immunosorbent assay (ELISA, Invitrogen, Grand Island, NY, USA) was used to
analyze the concentrations of type I collagen (Col I) and laminin in the conduit extracts. ELISA was
conducted in accordance with the manufacturer′s instructions. Subsequently, the levels of Col I and
laminin in the conduit extracts were considered with correlation to the standards and standard curve.
Six independent experimental analyses were performed for each specimen.
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2.9. Cell Proliferation

All 3D-printed conduits were concurrently sterilized using 75% ethanol and ultraviolet light
exposure for 30 min. The primary human Schwann cells (HSCs) used in this study were obtained
from ScienCell Research Laboratories (Sciencell, San Diego, CA, USA) and cultured in Schwann cells
medium (#1701, Sciencell) to cell passage 3–8. A density of 105 cells per specimens was directly
seeded onto the specimens and placed in a 37 ◦C, 5% CO2 incubator for various durations. After
1, 3, and 7 days of culture, Prestoblue®(Invitrogen, Grand Island, NY, USA) reagent was used to
evaluate and analyze cell quantities. Briefly, the culture medium was removed, and the specimens
were rinsed several times with cold PBS. Following this, a ratio of 1:9 PrestoBlue®and a fresh medium
was used to fill each specimen. Subsequently, the reaction solution was incubated for 90 min at 37 ◦C
before the analysis of PrestoBlue®absorbance. In brief, the reaction solutions were removed from the
specimen and placed on a new 96-well plate. Absorbance was measured by using a Tecan Infinite
200®PRO microplate reader at 570 nm with a reference wavelength of 600 nm. Data for this study
were done in triplicates from three different cultures, and HSCs cultured on culture plates without any
specimens were used as a control (Ctl). In addition, F-actin staining was conducted for cell morphology
observations. After 7 days of culture, the conduits were rinsed thrice with PBS before being fixated
with 4% paraformaldehyde for 20 min. Following this, the conduits were placed into 0.1% Triton
X-100 at room temperature for 15 min to permeate the cells. Then, the specimens were incubated with
AlexaFluor-488-conjugated phalloidin for 1 h, and DAPI (4′,6-diamidino-2-phenylindole, dilactate)
was used to stain for the nucleus. For DAPI, the fixated cells were placed in DAPI for 20 min in the
dark at room temperature. The images were then photographed using Leica TCS SP8 X white light
laser confocal microscope (Leica Microsystems GmbH, Wetzlar, Germany).

2.10. Cell Differentiation

For neurogenic-related protein assays, the seeded HSCs were lysed with NP40 buffer
(ThermoFisher, Waltham, MA, USA) after 7 days of cell culture. A BCA protein assay kit was used to
analyze total protein concentrations. Briefly, cell lysates (40 µg protein/sample) were segregated using
sodium dodecyl sulfate-polyacrylamide-polyacrylamide gel electrophoresis before being transferred
over to PVDF membranes (Millipore, Billerica, MA, USA). A 2% bovine serum albumin (Invitrogen,
Carlsbad, CA, USA) in tris-buffered saline with 0.1% Tween 20 was used to fixate the proteins on the
membranes before immunoblotting with primary Nestin, MAP2 (microtubule-associated protein 2),
and β-actin (Abcam, Cambridge, MA, USA) antibodies for 2 h. Following the immunoblotting, the
membranes were incubated with horseradish peroxidase (HRP)-conjugated secondary antibodies to
allow chemiluminescence and physical visualization of bands using an ECL detection kit (Invitrogen).
For each protein, their expression levels were normalized to β-actin. Finally, we also used ELISA to
determine the concentration of Nestin and MAP2 protein production.

2.11. Immunofluorescence Staining

The HSCs were grown on different conduits for 7 days. Then, the conduits with cells were rinsed
using PBS and subsequently fixed by placing them in 4% paraformaldehyde (Sigma-Aldrich) for 20 min
at normal room temperature. After this, the cells were permeabilized using 0.1% PBS-T, immune-stained
with anti-β-tubulin III (Abcam), and then with anti-mouse conjugated tetramethylrhodamine (TRITC,
Invitrogen). The phalloidin affixed with Alexa Fluor 488 (1:300 dilution in PBS, Invitrogen) was used
to stain the intracellular F-actin filaments. The immunofluorescence staining results of the HSCs on
the conduits were observed under a Leica TCS SP8 X white light laser confocal microscope (Leica
Microsystems GmbH, Wetzlar, Hessen, Germany).
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2.12. Statistical Analyses

All data are presented as mean ± standard deviation (SD) and were compared by a one-way
analysis with Scheffe′s multiple comparison post hoc test. In all cases, the results were considered to
be statistically significant with a p-value <0.05.

3. Results and Discussion

3.1. Characterizations of PU/PDA/ECM Conduits

The hydrophilicity of a conduit has a critical role to play in influencing cellular adhesion and
proliferation, which would further enhance downstream cellular behaviors. Reports had been made
stating the positive effects of hydrophilicity on cellular activities. Hydrophilicity can be determined by
measuring the static water contact angle between the water droplet and the surface of the different
conduits, as shown in Figure 2. PU had the highest water contact angle of 60.1 ± 2.9◦ as compared to
PU/PDA (49.0 ± 1.5◦) and PU/PDA/ECM conduit (42.9 ± 1.8◦). Due to the addition of PDA to the PU
matrix, the contact angle was reduced by 18% in comparison with the PU material (p < 0.05). Also, the
incorporation of dECM reduced the contact angle by 12% compared to PU/PDA (p < 0.05), and thus, the
contact angle of PU/PDA/dECM group was in the range of contact angles for maximal cell adhesion [38].
These results indicated that the addition of PDA and ECM was able to enhance hydrophilicity as
demarcated with a lower contact angle. It was important to note that hydrophilicity was enhanced
with PDA alone and further improved with the addition of ECM. This result was consistent with our
previous studies and also in agreement with various reports, indicating that the addition of PDA and
ECM enhanced hydrophilicity [39]. It was hypothesized that the introduction of ECM provided many
hydrophilic amines and hydroxyl groups onto the surface, thus increasing the hydrophilicity of the
conduit. In general, the hydrophilicity of the conduits was increased with the addition of ECM, and
enhanced hydrophilicity was reported to promote cellular adhesion and other cellular behaviors [40].
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Figure 3 shows the tensile stress-strain curves of the various conduits. The strain rates were fixed
for all three conduits. Upon reaching their maximal stress-strains, all the conduits were torn in the
middle of the conduits without much differences in tearing locations. The maximal tensile strength
achieved for each of the conduits were as follows: PU (42.0 ± 2.1 MPa), PU/PDA (43.1 ± 1.8 MPa),
PU/PDA/ECM (38.8 ± 1.6 MPa), and there were no significant differences between these three nerve
conduits. From the results collected, PU/PDA conduit exhibited the highest maximal tensile strength,
followed by the PU conduit, while the PU/PDA/ECM conduit exhibited the lowest maximal tensile
strength with approximately 10% lower tensile strength as compared to the rest. However, even though
PU/PDA/ECM displayed the lowest maximal tensile strength amongst all the conduits, this difference
was insignificant as it still meets the optimal requirement of a nerve conduit for proper surgical
handlings and implantations. In previous studies, it was demonstrated that the elastic modulus of the
human nerve was similar to the stress-strain behavior of rat nerves (13.8 ± 5.4 MPa) [41,42]. Therefore,
the above data indicated that the PU/PDA/ECM conduit had sufficient mechanical strength to undergo
surgical manipulations and implantations.
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Figure 3. The tensile stress-strain curve of 3D-printed PU-based specimens.

In Figure 4A, all specimens show the presence of absorption peaks assigned to C–H bending
vibration (1453 cm−1) and C–N stretching vibrations (1244 cm−1). In addition, PU-based materials
also displayed one strong peak at 1732 cm−1 that was associated with non-H-bonded urethane
carbonyls [43]. In addition, PU/PDA/ECM presented protein-related functional groups (amide II bands)
at 1595 cm−1 [44]. Figure 4 displays the XPS spectra obtained from different conduits, and the results
showed that PDA and dECM could be successfully fused with PU. From Figure 4B, it can be seen
that there was an increment in photoelectron peaks of C1s (Figure 4C), N1s (Figure 4D), and O1s
(Figure 4E), thus further indicating the successful incorporation of PDA and dECM to the PU. The
successful fusion of PDA onto PU was indicated with the higher nitrogen peaks, and successful fusion
of maleimide and dECM was indicated by the increase of N–C=O component at a binding energy of
289 eV. The XPS spectra showed little differences in their overall structure of binding energy waves,
thus indicating that the original compositions of PU were preserved despite the additions of PDA and
dECM (Figure 4A). The increase of the N–C=O component at 289 eV indicated the introduction of
maleimide and ECM bonds on the surface [45]. This was important to note as it indicated that the
printability of PU remained unaffected despite the addition of PDA and dECM. Overall, these data
showed that PDA and dECM were able to be successfully implemented onto PU and most critically,
not affecting the original structural compositions of PU.
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The degradability of material must be taken into consideration when developing nerve conduits
as it plays a critical role in biodegradation, and thus affecting the overall efficacy. A suitable nerve
conduit should have a biodegradation rate that matches the rate of neural regeneration that allows
proper and efficient nerve repair. Thus, the degradation rates of each conduit immersed in SBF were
recorded from different time points, as shown in Figure 5. All specimens showed increased degradation
with increased immersion time. The steepest degradation rates for all specimens were seen during
the first 4 weeks of immersion with a maximal weight loss of 2–4% depending on the different types
of conduits. The degradation rates of all specimens slowed down after week 4 and had gradual
degradation rates until week 12. At the end of the immersion tests (week 12), the PU, PU/PDA, and
PU/PDA/ECM conduits had weight losses of 4.23%, 5.86%, and 7.08%, respectively. As seen from this
study, PU/PDA/ECM conduit had the highest degradation, followed by PU/PDA and PU conduits.
According to studies, the time taken for nerve regeneration is approximately 6 to 12 weeks depending
on the severity; therefore, logically, a nerve conduit should be able to last at least 12 weeks to allow
complete regeneration. A detailed report on the MRI results of nerve degeneration and regeneration
mentioned that nerve functions were fully restored 12 weeks after the onset of nerve damage [46].
Our data showed that our conduits had 93%–96% of residual weights by the end of week 12, thus
demonstrating that three conduits maintained structure until the complete regeneration of nerve tissue.
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Figure 5. The degradation rate of various 3d-printed PU-based conduits after immersion in SBF
(simulated body fluid) for different time-points.

3.2. Cytotoxicity of PU/PDA/ECM Conduits

Direct and indirect cytotoxic tests exist to test for cytotoxicity of biomaterials. Indirect testing
was used in this study, and it was especially a critical method to assess the toxicity of degrading
biomaterials and its released byproducts. ISO 10993-12 cytotoxicity test was used in this study. The
results were presented as the percentage of viable L929 cells in the PU, PU/PDA, and PU/PDA/ECM
conduits extracts, which represent a pure cell culture of L929 cells (Figure 6). Cells cultured on culture
dish with the normal medium were used as controls. No significant cytotoxicity was noticed amongst
all three groups. It should be noted that the 3D-printed PU-based conduits can provide a favorable
microenvironment for cell cytocompatibility [47]. Furthermore, it was hypothesized that the addition
of PDA and dECM, which were both natural compounds, led to decreased immunogenicity of PU,
thus making it a more suitable candidate for in vivo implantations [48].
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conduits relative to controls on L929 cells for different time-points.

3.3. The Nerve-Regeneration-Promoting Growth Factor of Different Conduits

Laminin is a component of ECM that can be found in the nervous system and is critical in neural
development, such as neuronal migration, myelination, the formation of the neuromuscular junction,
as well as peripheral nerve regenerations. The other critical component, collagen, which functions
as anchoring points for various proteins and enzymes, also has an important role to play in nerve
regenerations. Laminin and Col I were quantified using ELISA protein assays, as shown in Figure 7.
As seen, the amount of both Col I and laminin were significantly higher in PU/PDA/ECM conduit as
compared to PU and PU/PDA conduits. The Col I amount from each of the groups (Ctl, PU, PU/PDA,
PU/PDA/ECM) were as follows: 46.9 ± 2.9 pg/mL, 49.4 ± 3.9 pg/mL, 61.8 ± 3.5 pg/mL, 295.2 ± 15.3
pg/mL, respectively. On the other hand, the amounts of laminin from each of the groups (Ctl, PU,
PU/PDA, PU/PDA/ECM) were as follows: 0.25 ± 0.05 ng/mL, 0.28 ± 0.05 ng/mL, 0.32 ± 0.03 ng/mL,
3.04 ± 0.26 ng/mL, respectively. It was worthy to note that PU/PDA/ECM had approximately 11-times
higher laminin and 6-times higher Col I as compared to PU. PDA had been shown, and proven by
others, to act as an efficient adherence promoter, allowing enhanced dECM adherence onto PU conduits
and other biomaterials [49]. Of which, laminins are the most significant class of ECM proteins in the
nervous systems, and they have been reported to have critical roles in supporting various functions,
such as neuronal migration, myelination, and formation of neuromuscular junctions [50]. On the other
hand, Col is the most abundant and critical ECM protein that mainly functions as structural anchoring
points for various enzymes or proteins. These results showed that PU/PDA/ECM nerve conduits
could release factors that would promote nerve regeneration, and subsequent evaluation would be
conducted to further determine the feasibility of this material in the differentiation and regeneration of
the nerve cells.
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3.4. Cell Proliferation and Morphology

Figure 8A shows the quantification of the primary human Schwann cells (HSCs) proliferation after
1, 3, and 7 days of culture on the various conduits. PU displayed approximately similar proliferation
rates as compared to Ctl, while PU/PDA was shown to have higher proliferation rates as compared to
both Ctl and PU groups. In this case, only the PU/PDA/ECM group exhibited significantly higher cellular
proliferation rates at all time-points as compared to the rest of the groups (p < 0.05). PU/PDA/ECM
conduits had approximately 20%, 19%, and 15% higher proliferation as compared to Ctl, PU, and
PU/PDA groups, respectively. The morphology of the adhered cells was also shown in Figure 8B.
It can be observed that cells cultured on the PU conduits exhibited a more clustered and shrouded
appearance as compared to the other groups. There were not many cellular protrusions and spreading,
thus indicating that the cells were not properly adhered to the surfaces of the conduits. On the other
hand, HSCs on PU/PDA/ECM showed evidence of cytoplasmic spreading via its processes. Cells were
flattened and well spread as compared to the other groups. In addition, areas covered with cells were
evidently increased, thus indicating increased proliferation, which was in good agreement with the
quantified results from Figure 8B. It was hypothesized that enhanced hydrophilicity caused by the
addition of ECM could contribute to the enhanced adhesion and proliferation, as studies have shown
that hydrophilicity enhances cellular adhesion, thus leading to increased cellular proliferation [40].
Furthermore, the addition of ECM, a major component of native tissue, could also up-regulate adhesion
and proliferation by providing native moieties for cells to adhere to. Interestingly, these results were
consistent with the observations made by others, whereby the combination of natural proteins or
polysaccharides with synthetic polymers were able to enhance cell adhesion [51]. In fact, HSCs had a
rapid response to axonal injury, with an estimated time of response prior to the beginning of axonal
degeneration. They recruit macrophages by releasing chemokines and cytokines to aid in improving
the rate of myelin clearance. Our results support that the 3d-printed PU/PDA/ECM nerve conduits act
as a bridge and shorten the gaps between two blunt nerve fiber endings [8].
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Figure 8. (A) Proliferation of HSCs (human Schwann cells) cultured on PU, PU/PDA, and PU/PDA/ECM
conduits for 1, 3, and 7 days. * indicates a significant difference (p < 0.05) compared to Ctl. (B) F-actin
staining of HSCs seeding on PU, PU/PDA, and PU/PDA/ECM conduits for 3 days.
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3.5. Neurogenic-Related Protein Expression

The secretion levels of Nestin, MAP2, and actin were examined using western blot to further
assess the status of cellular adhesion (Figure 9A). Nestin is a type of intermediate filament protein and
is highly expressed during neural development that could be considered as an HSC specific marker [52].
From Figure 9B, it could be seen that PU/PDA/ECM induced higher expression of Nestin and MAP2
as compared to PU and PU/PDA (p < 0.05). The result from ELISA in Figure 9C was also similar to
those in Figure 9B. The ECM-containing nerve conduit was more effective in promoting the secretion
of neural differentiation proteins. The results of ELISA showed that the performance of Nestin and
MAP2 in PU/PDA/ECM was 2.8 and 2.9-times higher than that of PU, respectively. Moreover, the
immunofluorescence staining results with β-tubulin III nerve proteins (Figure 10) also demonstrated
that the 3D-printed PU-based conduits supported neural differentiation, with the neurite extension
higher in PU/PDA/ECM conduits than PU conduits. Its expression is usually transient and is only
expressed during tissue development or during pathological injuries to promote regeneration. On
the other hand, MAP2 is a protein that aids in microtubule assembly, which is critical in neurogenesis
as it allows the formation of new neurites, which would eventually develop to become axons and
dendrites. The secretion levels of Nestin and MAP2 of HSCs were similar between PU and PU/PDA
conduits. In contrast, HSCs cultured on PU/PDA/ECM conduits had significantly higher secretions of
Nestin and MAP2 as compared to the other groups, indicating that PU/PDA/ECM conduits were able
to enhance neural development and regeneration. Both Nestin and MAP2 are commonly classified as
neuronal differentiation markers whereby their level of expression would be greatly down-regulated
after neuronal differentiation and maturation [53]. On the other hand, MAP2 is a protein found only in
the cytoskeleton of mature neural cell, and thus HSCs usually has a low expression of MAP2 during
early stages of differentiation. A gradual increment of MAP2 can be seen as neuronal cell mature and
progress along the neuronal development process.
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Figure 9. (A) The western blot pattern of neurogenic-related protein, Nestin, and MAP2 in HSCs
cultured with 3D-printed nerve conduits for 7 days. The quantification of neurogenic-related protein
from (B) western blot and (C) ELISA, respectively. Data presented as mean ± SEM, n = 3 for each group.
“*” indicates a significant difference (p < 0.05) when compared to PU conduit.
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similar to those in Figure 9B. The ECM-containing nerve conduit was more effective in promoting 
the secretion of neural differentiation proteins. The results of ELISA showed that the performance of 
Nestin and MAP2 in PU/PDA/ECM was 2.8 and 2.9-times higher than that of PU, respectively. 
Moreover, the immunofluorescence staining results with β-tubulin III nerve proteins (Figure 10) also 
demonstrated that the 3D-printed PU-based conduits supported neural differentiation, with the 
neurite extension higher in PU/PDA/ECM conduits than PU conduits. Its expression is usually 
transient and is only expressed during tissue development or during pathological injuries to promote 
regeneration. On the other hand, MAP2 is a protein that aids in microtubule assembly, which is 
critical in neurogenesis as it allows the formation of new neurites, which would eventually develop 
to become axons and dendrites. The secretion levels of Nestin and MAP2 of HSCs were similar 
between PU and PU/PDA conduits. In contrast, HSCs cultured on PU/PDA/ECM conduits had 
significantly higher secretions of Nestin and MAP2 as compared to the other groups, indicating that 
PU/PDA/ECM conduits were able to enhance neural development and regeneration. Both Nestin and 
MAP2 are commonly classified as neuronal differentiation markers whereby their level of expression 
would be greatly down-regulated after neuronal differentiation and maturation [53]. On the other 
hand, MAP2 is a protein found only in the cytoskeleton of mature neural cell, and thus HSCs usually 
has a low expression of MAP2 during early stages of differentiation. A gradual increment of MAP2 
can be seen as neuronal cell mature and progress along the neuronal development process. 

 
Figure 9. (A) The western blot pattern of neurogenic-related protein, Nestin, and MAP2 in HSCs 
cultured with 3D-printed nerve conduits for 7 days. The quantification of neurogenic-related protein 
from (B) western blot and (C) ELISA, respectively. Data presented as mean ± SEM, n = 3 for each 
group. “*” indicates a significant difference (p < 0.05) when compared to PU conduit.  

 
Figure 10. The immunofluorescence staining of β-tubulin III (red) and F-actin (green) of HSC cells 
grown on PU, PU/PDA, and PU/PDA/ECM conduits after cultured for 7 days. 

Figure 10. The immunofluorescence staining of β-tubulin III (red) and F-actin (green) of HSC cells
grown on PU, PU/PDA, and PU/PDA/ECM conduits after cultured for 7 days.
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4. Conclusions

In summary, we successfully fabricated a PU/PDA/ECM nerve conduit in this study. Our initial
studies had attempted to print PU/ECM directly, but we failed to produce nerve conduits using this
way. However, for the subsequent trial, the printability of PU-resin was significantly improved with
the addition of PDA into PU. In addition, it was critical to note that the addition of PDA/ECM did
not inhibit the original mechanical properties of PU, thus allowing us to retain the advantages of
PU. PU/PDA/ECM conduits and their degraded byproducts were found to be non-cytotoxic to L1929
cells, thus making it a suitable candidate for implantations. It was also found that even though
PU/PDA/ECM conduits had slightly lower mechanical properties as compared to their counterparts,
the difference was insignificant as the mechanical properties were still well within the range of surgical
manipulations and implantations. Furthermore, PU/PDA/ECM conduits were reported to be more
hydrophilic as compared to PU or PU/PDA conduits, thus allowing enhanced cellular adhesion as
seen from the F-actin stains. Numerous studies have reported that the quality of cellular adhesion is
directly proportionate to downstream cellular behavior and activities, such as adhesion, proliferation,
and differentiation. Similarly, we were able to see the significant increment in HSC proliferation on
PU/PDA/ECM conduits as compared to the rest of the groups. Furthermore, PU/PDA/ECM conduits
were able to significantly increase the secretions of neural-related proteins (Col I and laminin) and
also enhance the expression of neurogenic proteins (Nestin and MAP2). Therefore, we hypothesized
that PU/PDA/ECM conduits were able to efficiently support neural regeneration, thus making them a
potential applicant in future nerve-related studies or clinical applications.
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