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A number of human autoinflammatory diseases manifest with
severe inflammatory bone destruction. Mouse models of these
diseases represent valuable tools that help us to understand mo-
lecular mechanisms triggering this bone autoinflammation. The
Pstpip2cmomouse strain is among the best characterized of these;
it harbors a mutation resulting in the loss of adaptor protein
PSTPIP2 and development of autoinflammatory osteomyelitis. In
Pstpip2cmo mice, overproduction of interleukin-1β (IL-1β) and
reactive oxygen species by neutrophil granulocytes leads to
spontaneous inflammation of the bones and surrounding soft
tissues. However, the upstream signaling events leading to this
overproduction are poorly characterized. Here, we show that
Pstpip2cmomice deficient inmajor regulator of Src-family kinases
(SFKs) receptor-type protein tyrosine phosphatase CD45 display
delayed onset and lower severity of the disease, while the devel-
opment of autoinflammation is not affected by deficiencies in
Toll-like receptor signaling. Our data also show deregulation of
pro-IL-1β production by Pstpip2cmo neutrophils that are attenu-
ated by CD45 deficiency. These data suggest a role for SFKs in
autoinflammation. Together with previously published work on
the involvement of protein tyrosine kinase spleen tyrosine kinase,
they point to the role of receptors containing immunoreceptor
tyrosine-based activation motifs, which after phosphorylation by
SFKs recruit spleen tyrosine kinase for further signal propagation.
We propose that this class of receptors triggers the events
resulting in increased pro-IL-1β synthesis and disease initiation
and/or progression.

Cytokine-driven inflammation is a critical component of the
immune system’s defense mechanisms. However, its dysregu-
lation can cause a severe harm to the host. To date, a number of
mutations compromising the regulation of proinflammatory
cytokine production have been identified. In extreme cases,
deregulated cytokine secretion caused by these mutations can
result in spontaneous inflammation and severe disease. One of
the frequently affected cytokines capable of driving pathological
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inflammation is interleukin-1β (IL-1β). Mutations to the genes
controlling the level of its secretion often lead to auto-
inflammatory disorders characterized by seemingly unprovoked
fever attacks and sterile inflammatory damage to various organs
and tissues (1). While it is clear that deregulated production of
IL-1β is key part of this pathological response, the initiating
events that trigger harmful inflammation remain unknown in
many cases. They may include excessive response to innocuous
endogenous ligands or microbiota or receptor-independent
activity of proinflammatory signaling pathways.

In order to understand the mechanisms of auto-
inflammatory diseases, mouse models proved highly valuable.
One of the best studied is the mouse strain known as
Pstpip2cmo (2). This strain harbors a point mutation in Pstpip2
gene resulting in complete absence of corresponding PSTPIP2
protein (3, 4). Its deficiency leads to chronic multifocal oste-
omyelitis (CMO), an autoinflammatory disease characterized
by inflammatory bone damage and soft tissue swelling local-
ized mainly to hind paws and tail area. The disease resembles
several human autoinflammatory disorders, including chronic
recurrent multifocal osteomyelitis and synovitis–acne–pustu-
losis–hyperostosis–osteitis syndrome (2, 5). CMO develop-
ment in Pstpip2cmo mouse strain can be prevented by
inactivation of the genes coding for IL-1β or its receptor (6–8),
demonstrating that IL-1β is critical for disease initiation. The
disease can also be prevented by inactivation of Myd88 gene
essential for signal transduction by IL-1 receptor (9). In
addition, increased production of active IL-1β was observed in
affected tissues and in Pstpip2cmo neutrophils (6–8, 10), a cell
type critical for triggering this disease (7, 9). These results
clearly demonstrated that IL-1β is a crucial element of the
mechanism driving spontaneous inflammation and bone
damage in Pstpip2cmo mouse strain. However, similar to a
number of other autoinflammatory diseases, the initial trig-
gering event remains unclear. Gut microbiota may play a role,
since it has been shown that their altered composition is
important for the disease development in Pstpip2cmo mice (7).
In addition, excessive reactive oxygen species (ROS) produc-
tion by Pstpip2cmo neutrophils has been observed in vivo in
tissues typically affected by the disease weeks before the first
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CD45 in autoinflammatory osteomyelitis
visible symptoms, suggesting that Pstpip2cmo neutrophils are
responding to a so far unknown stimulus in the affected tissues
early on during the disease development (9).

Since PSTPIP2 is an adaptor protein, its function is likely
dependent on its interaction partners. These include all members
of the PEST family of protein tyrosine phosphatases, phosphoi-
nositide phosphatase SHIP1, and inhibitory kinase Csk, key
negative regulator of Src-family kinases (SFKs) (10, 11). To what
extent each partner contributes to IL-1β regulation and CMO
development has not been studied so far. However, these in-
teractions suggest that PSTPIP2 regulates signaling pathways
dependent on protein tyrosine (and phosphoinositide) phos-
phorylation. Csk and PEST-family PTPswere shown to bind each
other and cooperate in the negative regulation of SFK (12–15).
SFKs are critical for initiation of signaling by a number of key
leukocyte receptors, including those expressed by neutrophils
(16). Moreover, there is a growing evidence about regulation of a
major activator of IL-1β processing, NLRP3 inflammasome, by
SFKs and downstream protein tyrosine kinases (17–23).

Crossbreeding of Pstpip2cmo mice with strains lacking
components of IL-1β pathway proved a useful strategy in
determining the roles of these molecules in disease develop-
ment (6–8, 24, 25). However, it is not possible to use this
strategy for SFK. Neutrophils express almost all Src family
members, which are to a significant extent redundant with
each other (26). It is not technically feasible to genetically
inactivate all these kinases simultaneously. Therefore, to
analyze the role of SFKs in CMO disease outcome, we decided
to crossbreed Pstpip2cmo mice with mice lacking receptor-like
protein tyrosine phosphatase CD45 encoded by Ptprc gene.
CD45 is an abundantly expressed surface glycoprotein in the
cells of hematopoietic origin. One of the major roles of CD45
phosphatase is in allowing the activation of SFK by dephos-
phorylation of their C-terminal inhibitory tyrosine (27). It
counterbalances the effect of Csk kinase, which is the main
negative regulator of SFKs and binding partner of PSTPIP2
(10, 28). By inactivating Ptprc gene in Pstpip2cmo mice, we
aimed at reducing SFK activity in leukocytes of these mice by
increasing the phosphorylation of their inhibitory tyrosines to
obtain evidence supporting the involvement of SFK-dependent
signaling in CMO development. We show that while de-
ficiencies in components of Toll-like receptor signaling path-
ways do not affect CMO development, deficiency in CD45
phosphatase lowers IL-1β levels in Pstpip2cmo mice leading to
mitigation of osteomyelitis and tissue inflammation. These
data suggest an important role of CD45 phosphatase in the
regulation of the signaling pathways leading to enhanced IL-1β
production and imply SFK-dependent receptors in the devel-
opment of autoinflammatory osteomyelitis. At the same time,
they bring evidence against the major role of TLRs.
Results

MYD88- and TRIF-mediated signaling are dispensable for
CMO development while CD45 plays an important role

First, we compared the effects of MyD88-/TRIF-dependent
Toll-like receptor signaling and signaling dependent mainly
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on protein tyrosine phosphorylation in the development of
autoinflammatory osteomyelitis. To do this, we crossbred
Pstpip2cmo mouse strain with strains deficient in key com-
ponents of these pathways, including adaptor proteins
MyD88 (29) and TRIF (30) and receptor protein tyrosine
phosphatase CD45 (encoded by Ptprc gene) (31). As a result,
we obtained three double-mutant strains Pstpip2cmo/
Myd88−/−, Pstpip2cmo/TrifLps2/Lps2, and Pstpip2cmo/Ptprc−/−.
We have shown previously that Pstpip2cmo/Myd88−/− mice
do not develop any symptoms of the disease, demonstrating
the key role of this adapter in CMO development (9). It can
be likely explained by its involvement in IL-1 receptor
signaling, which is required for the disease development in
Pstpip2cmo mice. Importantly, expression of IL-1 receptor on
nonhematopoietic (radioresistant) cells is required while its
expression on radiosensitive hematopoietic cells does not
appear to play a role in CMO (24). This allowed us to analyze
the contribution of leukocyte-expressed TLR/MyD88 to the
disease development using bone marrow chimeras. We per-
formed bone marrow transplantation from young asymp-
tomatic Pstpip2cmo or Pstpip2cmo/Myd88−/− donors into
lethally irradiated WT recipients. Unexpectedly, we observed
complete disease development without any delay in disease
progression, regardless of the donor cell origin (Fig. 1A).
Since TRIF is not critical for IL-1 receptor signaling, we
could analyze the role of TRIF directly in Pstpip2cmo/
TrifLps2/Lps2 mice without the transplantation. Pstpip2cmo/
TrifLps2/Lps2 mice developed the CMO disease with identical
kinetics as Pstpip2cmo mice (Fig. 1B). These data suggest that
priming of leukocytes through TLR/MyD88 or TLR/TRIF
signaling does not play any major role in CMO development
since Pstpip2cmo hematopoietic cells without functional
MyD88 or TRIF adaptors were fully capable of driving the
autoinflammation. This result also confirmed the earlier
finding that IL-1 receptor on hematopoietic cells is
dispensable for CMO development (24). In contrast, moni-
toring of Pstpip2cmo/Ptprc−/− mice revealed that the disease
development in these mice was significantly delayed with
part of the mice remaining healthy throughout the experi-
ment (Fig. 1C). These results suggested that protein tyrosine
phosphorylation regulated by CD45 contributes to CMO
development.
Symptoms of autoinflammation in Pstpip2cmo mice are milder
in the absence of CD45

To better understand the effects of CD45, we performed
more careful analysis of Pstpip2cmo/Ptprc−/− mice. Symptom
evaluation revealed that the severity of the disease was sub-
stantially milder than in Pstpip2cmo strain (Fig. 2A). Micro-
computerized tomography (μCT) scans of hind paws
demonstrated that bone damage was significantly
lower than in Pstpip2cmo mice, though still present (Fig. 2, B
and C). Soft tissue swelling was also detected by μCT in
some animals, although for the entire group as the whole
it did not reach the level of statistical significance
because of the presence of a number of animals where



Figure 1. CD45 deficiency but not deficiencies in Toll-like receptor signaling adaptors attenuate autoinflammatory osteomyelitis progression in
Pstpip2cmomice. A, WTmicewere lethally irradiated and transplantedwith bonemarrow from Pstpip2cmo or Pstpip2cmo/Myd88−/−mice. Appearance of diseases
symptoms was followed for 120 days (n = 29). B and C, time of disease symptom appearance in Pstpip2cmo, Pstpip2cmo/Trif-Lps2/Lps2, and Pstpip2cmo/Ptprc−/−

mice (n> 18). In (B) Pstpip2cmo and Pstpip2cmo/Trif-Lps2/Lps2mice are compared, whereas in (C), the same Pstpip2cmomice are comparedwith Pstpip2cmo/Ptprc−/−.
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the swelling was only mild or not observed at all (Fig. 2D).
These data demonstrate that CMO disease is clearly
present in CD45-deficient Pstpip2cmo mice. However, its
severity is significantly lower than in Pstpip2cmo mice
expressing CD45.
Figure 2. Milder disease symptoms in CD45-deficient Pstpip2cmo mice. A,
collected over the course of this study (scale from 0 to 8). Each point is a me
generated using linear regression. B, representative X-ray μCT scans of hind
quantification of bone damage from X-ray μCT scans obtained from multiple m
ratio of bone surface and volume. D, volume of soft tissue in hind paws calcula
from a total paw volume (total paw volume is the volume of the paw recons
Phosphorylation of SFK inhibitory tyrosine is increased in the
absence of CD45, while the loss of PSTPIP2 does not have any
effect

CD45 is a major activator of SFKs, since it dephosphorylates
their C-terminal inhibitory tyrosine (27). In addition, PSTPIP2
disease severity scored by visual inspection of the hind paw photographs
an value representing the mice of the same age and genotype. Lines were
paw bones from 20-week-old mice. The scale bar represents 1 mm. C,
ice. Two different parameters were calculated, bone fragmentation and the
ted from X-ray μCT data. Values were obtained by subtracting bone volume
tructed from μCT scans, including all soft tissues and the bone).
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CD45 in autoinflammatory osteomyelitis
via binding to Csk, a kinase phosphorylating this tyrosine, is
expected to inhibit SFK activity (10, 32, 33). To assess the
effects of the loss of CD45 and PSTPIP2 on SFK phosphory-
lation at their inhibitory tyrosines, we prepared lysates from
bone marrow cells and purified neutrophils of mice carrying
these mutations and probed for phosphorylation of these sites.
We focused on the three most important myeloid cell SFKs
LYN, HCK, and FGR. As expected, in both, bone marrow cells
and purified neutrophils, CD45 deficiency resulted in a sub-
stantial increase in phosphorylation detected by antibody to
inhibitory tyrosine of SFK LYN (Fig. 3, A and B). For HCK
inhibitory tyrosine, we only obtained reliable signal from pu-
rified neutrophils. There, the pattern of phosphorylation was
similar to Lyn (Fig. 3C). To further verify these results, we
immunoprecipitated LYN from bone marrow cell lysates fol-
lowed by staining with antibody to LYN inhibitory tyrosine.
Similar to the whole cell lysates, LYN was hyper-
phosphorylated on inhibitory tyrosine in both samples lacking
CD45 (Fig. 3D). Unfortunately, three different antibodies to
HCK we tested did not immunoprecipitate murine HCK, and
so for HCK, we could not perform this experiment. To our
knowledge, there are no reliable phosphospecific antibodies to
Fgr inhibitory tyrosine. However, we found that after immu-
noprecipitation with FGR-specific antibody, it is recognized by
antibody to inhibitory tyrosine of SFK LCK, C terminus of
which shows sequence homology to FGR. Surprisingly, CD45
deficiency did not have any effect on FGR phosphorylation
detected by this antibody (Fig. 3E). The absence of CD45 only
mildly affected phosphorylation of the SFK activating tyrosine
(Fig. 3, D–G). Interestingly, the presence or the absence of
PSTPIP2 did not alter phosphorylation of any of these SFK
(Fig. 3, A–G).

CD45 deficiency does not affect generation of ROS

So far, two important processes dysregulated in Pstpip2cmo

mice have been shown to contribute to CMO disease severity.
These are generation of ROS by phagocyte NADPH oxidase and
production of IL-1β mediated by NLRP3 inflammasome,
caspase-8, and neutrophil proteases (6–9, 24, 25). Our mea-
surements of ROS production in bonemarrow cells after silica or
fMLP exposure confirmed previous observations of substantially
increased superoxide levels generated by Pstpip2cmo cells.
Surprisingly, superoxide production by Pstpip2cmo/Ptprc−/− cells
was increased to a similar extent, and no significant difference
between Pstpip2cmo and Pstpip2cmo/Ptprc−/−was detected (Fig. 4,
A and B).

Reduced IL-1β production in CD45-deficient mice

In contrast to the ROSproduction, exacerbated production of
processed IL-1β p17 observed after activation of inflammasome
by silica particles in Pstpip2cmo bone marrow cells was signifi-
cantly reduced in Pstpip2cmo/Ptprc−/− cells (Fig. 5, A and B). In
addition, we also observed substantially reduced IL-1β levels
in vivo in the footpads of Pstpip2cmo/Ptprc−/− mice when
compared with Pstpip2cmo (Fig. 5C). Neutrophils are the most
critical cell type indispensable for disease development in
4 J. Biol. Chem. (2021) 297(4) 101131
Pstpip2cmo mice (7, 9). However, we did not observe any p17 in
neutrophil lysates after induction of pro-IL-1β production by
lipopolysaccharide (LPS) followed by inflammasome activation
by silica (Fig. 5D). Nor could we detect any inflammasome-
generated caspase-1 p20 or any significant differences in gas-
dermin D cleavage between Pstpip2cmo and Pstpip2cmo/Ptprc−/−

cells that could help explain differences in disease severity
between these two strains (Fig. S1). On the other hand, we could
observe IL-1β p21 thought to be generated via cleavage of pro-
IL-1β by neutrophil proteases (34) with the highest levels in
Pstpip2cmo neutrophils that were significantly reduced in
Pstpip2cmo/Ptprc−/− cells (Fig. 5, D and E).

Published observations demonstrating the roles of multiple
caspases and neutrophil proteases in CMO disease develop-
ment (7, 24) suggested that there might be a step upstream of
all these factors that is dysregulated in Pstpip2cmo mice. This
notion prompted us to investigate the production of IL-1β
precursor—pro-IL-1β. Our previous observations suggested
that LPS-induced pro-IL-1β production is not altered in
Pstpip2cmo bone marrow cells and neutrophils (10). However,
relatively high LPS doses were used in those experiments.
When we used lower dose of 10 ng/ml LPS, we detected a
significantly higher pro-IL-1β production in Pstpip2cmo bone
marrow cells when compared with WT cells (Fig. 6A). In
addition, we also detected deregulated LPS-induced produc-
tion of pro-IL-1β in purified Pstpip2cmo neutrophils (Fig. 6B).
Importantly, CD45 deficiency significantly attenuated this
production. Given the dependence of LPS-triggered signaling
on MYD88, our data in Figure 1A make LPS an unlikely
candidate for CMO triggering factor in Pstpip2cmo mice
in vivo. On the other hand, published data on the critical
importance of spleen tyrosine kinase (SYK) (35), as well as the
data presented in this article, suggest an involvement of an
immunoreceptor tyrosine-based activation motif (ITAM)-
containing receptor. As a model of these receptors we selected
Fc receptors, where the signaling is dependent on the ITAM
motif in the receptor gamma chain. First, we tested if Fc re-
ceptor crosslinking results in any production of pro-IL-1β in
bone marrow cells. This experiment demonstrated that Fc
receptor activation is capable of triggering pro-IL-1β synthesis
in these cells. Importantly, its production was significantly
higher in bone marrow cells from Pstpip2cmo mice (Fig. 6C).
Next, we performed a similar experiment on purified neutro-
phils from mice of all four genotypes. This experiment again
showed enhanced production of pro-IL-1β by Pstpip2cmo

neutrophils, which was significantly attenuated in CD45-
deficient Pstpip2cmo/Ptprc−/− cells (Fig. 6D). This experiment
suggested an involvement of ITAM-containing receptors in
disease initiation in Pstpip2cmo mice and a role of pro-IL-1β
generation in this process.
Discussion

In mice, PSTPIP2 deficiency results in CMO, an auto-
inflammatory disease driven by deregulated IL-1β and ROS
production by neutrophils (6–9, 24, 25). The signaling event
that triggers the disease onset in vivo is currently unknown.



Figure 3. Inhibitory tyrosine of Src-family kinases LYN and HCK is hyperphosphorylated in Ptprc−/− and Pstpip2cmo/Ptprc−/− cells. A, lysates of bone
marrow cells from mice of indicated genotypes were subjected to immunoblotting with antibody to inhibitory phosphotyrosine of LYN (P-LYN Y507). B,
similar experiment as in (A) on purified neutrophils. C, lysates of purified neutrophils from mice of indicated genotypes were subjected to immunoblotting
with antibody to inhibitory phosphotyrosine of HCK (P-HCK Y521). D and E, LYN (D) or FGR (E) was immunoprecipitated from the lysates of bone marrow
cells obtained from mice of indicated genotypes, followed by immunoblotting with antibodies to their inhibitory and activating phosphotyrosines. In case
of FGR, inhibitory phosphorylation was detected with antibody to similar phosphotyrosine of LCK (P-LCK Y505). For detection of activating phosphorylation,
antibody to P-SRC Y416 crossreacting with multiple Src-family members was used in both (D) and (E). F, lysates of bone marrow cells from mice of indicated
genotypes were subjected to immunoblotting with antibody to activating phosphotyrosine of multiple SFK (P-SRC Y416). G, similar experiment as in (F) on
purified neutrophils. For each experiment, representative immunoblot and quantification of multiple experiments is shown. A–E, phospho-SFK signals were
normalized to total SFK. F and G, because of the crossreactivity of P-SRC Y416 antibody with multiple Src family members, the signal was normalized to
GAPDH. To allow better comparison of multiple experiments in (F) the obtained values were further normalized to experiment average. A.U., arbitrary units;
IP, immunoprecipitation.

CD45 in autoinflammatory osteomyelitis
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Figure 4. Similar dysregulation of ROS production in Pstpip2cmo and Pstpip2cmo/Ptprc−/− mice. A and B, representative time course and area under the
curve quantification of multiple time-course measurements of superoxide production by bone marrow cells from mice of indicated genotypes. The cells
were activated by silica particles in (A) and by fMLP in (B). A.L.I., arbitrary luminescence intensity; A.U.C., area under the curve.

CD45 in autoinflammatory osteomyelitis
Because of the strong effect of microbiota on the disease
course (7), we have suspected that one or more TLRs might be
involved in its initiation. However, our analysis of Pstpip2cmo

mice with deficiencies in essential TLR signaling adaptors
MYD88 in hematopoietic cells or TRIF in the whole body
demonstrated that the disease development is triggered with
unchanged kinetics even when they are inactivated. It should
be noted that there may be a certain level of redundancy be-
tween MYD88 and TRIF, and so their role still cannot be
completely excluded. On the other hand, the loss of CD45,
which results in downregulation of the activity of SFK-
dependent pathways, resulted in delayed kinetics and allevia-
tion of the disease symptoms. Apart from SFK, CD45 has been
reported to dephosphorylate other substrates, including TCRζ,
SKAP55, DAP12, JAK kinases, and PAG/Cbp (36–39). How-
ever, to our knowledge, SFKs are the only enzymes where
CD45 has positive regulatory function (either direct or via
some of the aforementioned substrates). Reduced disease
severity observed in Pstpip2cmo/Ptprc−/− mice is consistent
with the loss of activating effect of CD45, rather than lack of
inhibitory function associated with substrates other than SFK.
These observations strongly support the hypothesis that
symptom alleviation is caused by reduced activity of SFK.
Importantly, Dasari et al. (35) recently demonstrated that
another protein tyrosine kinase, SYK, is also essential for
triggering the disease in Pstpip2cmo mice. Both SFK and SYK
are key components of ITAM signaling pathways (40). Hence,
these results suggest that the exaggerated signaling leading to
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CMO disease may be initiated by an ITAM-containing re-
ceptor. There are number of these receptors in neutrophils,
including Fc receptors, dectins, integrins, paired
immunoglobulin-like receptors/leukocyte immunoglobin-like
receptors, TARM1, TREM-1/2, and other FcRγ chain or
DAP12-associated receptors, number of which have endoge-
nous ligands (16, 41–44). We have shown previously that Fc
receptor signaling is deregulated in Pstpip2cmo mice. However,
it is possible that other ITAM-dependent receptors could be
similarly affected by PSTPIP2 deficiency, since they share the
same basic signaling mechanisms.

Interestingly, we have not observed any changes in SFK
phosphorylation in Pstpip2cmo mice. These results favor the
interpretation that the dysregulation of signaling caused by the
absence of PSTPIP2 is not at the level of SFK activity or ITAM
phosphorylation by SFK but rather further downstream in this
pathway. In such case, ITAM-containing receptors themselves
still could be essential for disease development, yet not directly
deregulated in the absence of PSTPIP2. This interpretation
would also be consistent with a rather generalized hypersen-
sitivity of Pstpip2cmo neutrophils to a broad range of different
stimuli observed previously (9, 10). However, precisely which
part of the ITAM-dependent signaling cascade is affected by
PSTPIP2 deficiency remains still unclear.

We have observed increased production of active IL-1β p17,
typically generated by inflammasome, in nonseparated
Pstpip2cmo bone marrow cells. On the other hand, in purified
neutrophils, we were unable to detect this protein.



Figure 5. CD45 deficiency results in a significant reduction of active IL-1β production in Pstpip2cmo mice. A and B, IL-1β processing to active IL-1β p17
was analyzed by immunoblotting of bone marrow cells activated by LPS and silica. Representative Western blot (A) and quantification of multiple ex-
periments (normalized to ERK and reference sample loaded on each gel) (B) are shown. C, IL-1β in the footpad homogenates from 20-week-old mice of
indicated genotypes was quantified by ELISA. D and E, IL-1β processing in purified neutrophils activated by LPS and silica was analyzed by immunoblotting
of the whole cell lysates. Representative Western blot (D) and quantification of p21 signal from multiple experiments normalized to GAPDH signal (E) are
shown. Vertical line in (A) separates samples that were at different positions on the same immunoblot membrane. A.U., arbitrary units.

CD45 in autoinflammatory osteomyelitis
Nevertheless, neutrophils were shown to be absolutely
required for CMO disease development in Pstpip2cmo mice
(7, 9). It is possible that deregulated activity of Pstpip2cmo

neutrophils promotes production of active IL-1β by monocytes
present in the same bone marrow cell samples or that neu-
trophil’s own production is below Western blot detection limit
but still present and compensated for by large neutrophil
numbers in vivo. There are multiple pathways of pro-IL-1β
processing and production of active protein involved in CMO
development in mice, including NLRP3 inflammasome/
caspase-1, additional mechanism involving caspase-8, and
neutrophil proteases (multiple have been tested in Pstpip2cmo

mice, including elastase, proteinase 3, cathepsins B, C, G)
(7, 24). Genes for all these proteins have been individually
inactivated in Pstpip2cmo mice without any effect on disease
development (with the exception of limited but significant
disease alleviation in case of cathepsin C, which is known to be
an essential upstream activator of the other neutrophil pro-
teases) (7, 8, 24, 45). Importantly, combined deficiency of the
individual inflammasome components and caspase-8 almost
completely prevented disease development (7, 24). These data
suggested that any of the two pathways, (i.e., NLRP3 inflam-
masome or caspase-8) can drive the disease on its own with
some contribution from neutrophil proteases, whereas none of
these pathways alone is critical because of their mutual
redundancy. There may be more efficient activators of these
pathways in neutrophils than silica. Silica has been frequently
used as a model inflammasome activator in studies of
Pstpip2cmo mice (7–10), but it is unlikely to be responsible for
the CMO disease initiation in vivo. There are many other
inflammasome activators of both endogenous and exogenous
origin (46), some of which may be more potent activators in
neutrophils and also more important in vivo. Inflammasome
activation triggered by these activators does not have to be
dysregulated in Pstpip2cmo neutrophils for the disease to
develop. The dysregulation at the level of synthesis of pro-IL-
1β, a precursor of active IL-1β, would likely be sufficient to
drive the disease development in Pstpip2cmo mice. Dysregula-
tion at this upstream step could explain the redundancy of
multiple downstream pathways of pro-IL-1β processing into
active protein.

Increased pro-IL-1β production by Pstpip2cmo neutrophils
can be triggered not only by LPS exposure but also by Fc re-
ceptor stimulation. Consistent with ITAM/SFK role in the
disease development discussed previously, it is likely that Fc or
other ITAM-dependent receptor is involved in disease initia-
tion in vivo. Fc receptor signaling pathway is well defined, and
CD45 and SFK are both important players in Fc receptor
J. Biol. Chem. (2021) 297(4) 101131 7



Figure 6. Enhanced production of pro-IL-1β in Pstpip2cmo mice and its attenuation by CD45 deficiency. A, lysates of bone marrow cells from WT and
Pstpip2cmo mice activated with a low dose of LPS (10 ng/ml) were subjected to immunoblotting with antibody to pro-IL-1β. B, similar experiment as in (A) on
lysates of purified neutrophils from mice of indicated genotypes. C, lysates of Fc receptor–activated bone marrow cells from WT and Pstpip2cmo mice were
subjected to immunoblotting with antibody to pro-IL-1β. D, similar experiment as in (C) on lysates of purified neutrophils from mice of indicated genotypes.
For each experiment, representative immunoblot and quantification of multiple experiments after normalization to GAPDH signal are shown. Vertical line in
(A) and (C) separates samples that were at different positions on the same immunoblot membrane. A.U., arbitrary units.
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signaling in myeloid cells (28, 40, 47). Thus, our current
knowledge leads to a conclusion that the reduced SFK activity
in CD45-deficient Pstpip2cmo cells results in attenuated Fc
receptor signaling and diminished Fc receptor-dependent pro-
IL-1β production. Given the universality of the basic principles
of ITAM-mediated signaling, similar mechanism, potentially
involving other ITAM-bearing receptors, is also likely at play
in vivo.

In summary, based on our findings and previously published
data, we propose a hypothesis where PSTPIP2 negatively
regulates a step common to multiple signaling pathways in
neutrophils, among which ITAM-dependent signaling plays a
key role. A so far unknown endogenous ligand/ligands or,
perhaps, even tonic signals in the absence of any ligand trigger
ITAM-dependent signaling, which after reaching the step
regulated by PSTPIP2, becomes exacerbated and drives
increased pro-IL-1β production making more of this precursor
available for inflammasome, caspase-8, and neutrophil prote-
ase cleavage. Increased IL-1β generation then leads to disease
development. In the absence of CD45, SFKs become hyper-
phosphorylated on their inhibitory tyrosines, which results in
their reduced activity, reduced ITAM signaling, and pro-IL-1β
production, ultimately resulting in disease alleviation. The
identity of the pathway step directly regulated by PSTPIP2 still
remains unclear. Available data nevertheless suggest that in-
hibition of ITAM-mediated signaling by pharmacological
8 J. Biol. Chem. (2021) 297(4) 101131
inhibitors should be considered as therapeutic approach in
similar diseases in humans.

Experimental procedures

Antibodies

Rabbit polyclonal antibodies to phospho-LYN Y507 (#2731),
phospho-LCK Y505 (#2751), and phospho-Src Family Y416
(#2101), and rabbit monoclonal antibodies to IL-1β (clone
D3H1Z; #12507) and gasdermin D (clone E9S1X; #39754)
were from Cell Signaling Technology; rabbit polyclonal anti-
body to phospho-HCK Y521 (PA5-37592) was from Invi-
trogen, Thermo Fisher Scientific; rabbit polyclonal antibody to
GAPDH (G9545) and mouse monoclonal antibody to β-actin
(clone AC-74) were from Sigma–Aldrich; rabbit polyclonal
antibody to ERK (C-14, sc-154), and mouse monoclonal an-
tibodies to HCK (clone 3D12E10) and FGR (D-6) were from
Santa Cruz Biotechnology; mouse monoclonal antibody to
caspase-1 (p20, Casper-1) was from AdipoGen Life Sciences.
Mouse monoclonal antibody to LYN was a kind gift of Petr
Draber, Institute of Molecular Genetics of the Czech Academy
of Sciences.

Mice

Pstpip2cmo mice on C57Bl/6J genetic background carrying
the c.293T→C mutation in the Pstpip2 gene, which results in a
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loss of PSTPIP2 protein, were described earlier (9). They were
generated from C.Cg-Pstpip2cmo/J mouse strain on Balb/C
genetic background (2, 3) obtained from The Jackson Labo-
ratory, by backcrossing for more than ten generations to
C57Bl/6J. All Pstpip2cmo mice and their derivatives used in this
study were on C57Bl/6J background. Ptprc−/− mouse strain
backcrossed to C57Bl/6J (B6;129–Ptprctm1Holm/H), lacking the
expression of CD45 because of exon 9 deletion (31) was ob-
tained from European Mouse Mutant Archive (48).
Pstpip2cmo/MyD88−/− mouse strain was described earlier (9)
and was generated with the use of B6.129P2(SJL)-
Myd88tm1.1Defr/J mouse strain (29) obtained from The Jackson
Laboratory. TRIF-deficient mouse strain TrifLps2/Lps2 (30) was a
kind gift from B. Beutler. C57Bl/6J inbred strain was obtained
from the animal facility of Institute of Molecular Genetics,
Academy of Sciences of the Czech Republic. Experiments in
this work that were conducted on animals were approved by
the Expert Committee on the Welfare of Experimental Ani-
mals of the Institute of Molecular Genetics and by the Acad-
emy of Sciences of the Czech Republic and were in agreement
with local legal requirements and ethical guidelines.
Cell activation, ROS, and IL-1β detection

Bone marrow cells were isolated from mice (sacrificed by
cervical dislocation) by flushing femurs and tibias, cut at the
extremities, with PBS containing 2% fetal bovine serum (FBS).
Erythrocytes were removed by lysis in ACK buffer (150 mM
NH4Cl, 0.1 mM EDTA [disodium salt], 1 mM KHCO3).
Neutrophils were isolated from bone marrow cells using
Neutrophil Isolation Kit (Miltenyi Biotec; #130-097-658) ac-
cording to the manufacturer’s instructions followed by sepa-
ration on Miltenyi AutoMACS magnetic cell sorter (negative
selection). Purity of isolated neutrophils was verified by flow
cytometry using CD11b, Ly6C, and Ly6G markers. For mea-
surement of ROS (superoxide) production by luminol-based
assay (49, 50), bone marrow cells were plated in a black 96-
well plate (SPL Life Sciences) at 106 cells per well in IMDM
supplemented with 0.2% FBS and rested for 30 min at 37 �C
and 5% CO2. Then 100 μM luminol and 50 μg/cm2 silica or
100 μM luminol and 1 μg/ml fMLP (all from Sigma–Aldrich)
were added, and the luminescence was immediately measured
on EnVison plate reader (PerkinElmer) every minute for
70 min. For detection of IL-1β p17 and p21 by immunoblot-
ting, cells were plated in 96-well tissue culture plate at 2 × 106

per well in IMDM containing 0.1% FBS and 100 ng/ml LPS.
After 3 h at 37 �C and 5% CO2, silica at 50 μg/cm2 was added
for additional 30 min. Then the cells were lysed by adding
equal volume of 2× concentrated SDS-PAGE sample buffer
followed by 15-s sonication and subjected to immunoblotting
with IL-1β antibodies. For detection of pro-IL-1β, 2 × 106 cells
in 700 μl IMDM containing 0.1% FBS and 10 ng/ml LPS were
placed in low protein-binding microcentrifuge tubes (Thermo
Fisher Scientific) and incubated 3 h at 37 �C and 5% CO2.
Next, the cells were centrifuged, resuspended in 100 μl IMDM
containing 0.1% FBS, and lysed by adding equal volume of 2×
concentrated SDS-PAGE sample buffer followed by 15-s
sonication and immunoblotting with IL-1β antibodies. For Fc
receptor activation, the cells were incubated with 50× diluted
culture supernatant from 2.4G2 rat hybridoma (51) (American
Type Culture Collection) producing antimouse Fc receptor
(CD16/CD32) antibodies (30 min on ice, low protein-
binding microcentrifuge tubes). Then, the cells were centri-
fuged, resuspended in 700 μl IMDM containing 0.1% FBS and
5 μg/ml F(ab0)2 Mouse Anti-Rat antibody (Jackson Immu-
noResearch), and incubated for 3 h at 37 �C and 5% CO2. The
lysis and immunoblotting procedures were the same as for the
aforementioned LPS activation. For measurement of IL-1β
concentrations in vivo, footpads from mice sacrificed by cer-
vical dislocation were homogenized using Avans AHM1 Ho-
mogenizer (30 s, speed 25) in 1 ml radioimmunoprecipitation
lysis buffer (20 mM Tris, pH 7.5, 150 mM NaCl, 1% NP-40, 1%
sodium deoxycholate, and 0.1% SDS) supplemented with
5 mM iodoacetamide (Sigma) and 100× diluted Protease
Inhibitor Cocktail Set III (Calbiochem, Merck). Insoluble
material was removed by centrifugation (20,000g, 5 min, 2 �C).
Protein concentration in the supernatants was determined
using Bradford solution (AppliChem) and adjusted to equal
level. Concentrations of IL-1β were then determined by Ready-
SET-Go! ELISA kit from eBioscience (Thermo Fisher Scien-
tific) according to the manufacturer’s instructions.

Immunoprecipitation of SFKs

About 8 × 107 bone marrow cells were resuspended in 1 ml
lysis buffer (50 mM Tris–HCl, pH 7.5, 150 mM NaCl, 1%
n-dodecyl β-D-maltoside, 100× diluted Protease Inhibitor
Cocktail Set III [Calbiochem, Merck], 1000× diluted Diiso-
propylfluorophosphate [Sigma, Merck] and 50× diluted
PhosStop solution made by dissolving 1 PhosStop pellet
[Roche] in 200 μl water) and incubated for 30 min on ice. Next
the lysates were centrifuged at 25,000g for 10 min. About 2 μg
antibody per sample were added followed by 1-h incubation on
ice. Next, 30 μl of protein A/G agarose resin (Santa Cruz
Biotechnology) was added followed by incubation at 4 to 8 �C
with rotation for 90 min (in case of LYN, the antibody was first
incubated with protein A/G agarose and then added to the
lysates). The resin was washed two times (50 mM Tris–HCl,
pH 7.5, 150 mM NaCl, 0.1% n-dodecyl β-D-maltoside, 100×
diluted Protease Inhibitor Cocktail Set III, and 200× diluted
PhosStop), and the proteins were eluted using 2× concentrated
SDS-PAGE sample buffer.

Bone marrow transplantations

In bone marrow transplantation experiments, recipient mice
were lethally irradiated with a single dose of 7 Gy. After 6 h,
mice were injected with 2 × 106 bone marrow cells from
Pstpip2cmo or Pstpip2cmo/MyD88−/− mice into tail vein. Mice
were monitored for the presence of paw swelling and inflam-
mation twice a week.

X-ray μCT

Hind paws were scanned in vivo in X-ray μCT Skyscan 1176
(Bruker) using the following parameters: voltage: 50 kV,
J. Biol. Chem. (2021) 297(4) 101131 9
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current: 250 μA, filter: 0.5 mm aluminium, voxel size: 8.67 μm,
exposure time: 2 s, rotation step: 0.3� for 180� total, object to
source distance: 119.271 mm, camera to source distance:
171.987 mm, and time of scanning: 30 min. Virtual sections
were reconstructed in NRecon software 1.7.1.0 (Bruker) with
the following parameters: smoothing = 3, ring artifact
correction = 4, and beam hardening correction = 36%. In-
tensities of interest for reconstruction were in the range from
0.0045 to 0.0900 attenuation units. Same orientation of virtual
sections was achieved with the use of the DataViewer 1.5.4
software (Bruker). μCT data analysis was performed using
CT Analyser 1.18.4.0 (Bruker). Scans affected by technical
artifacts caused by spontaneous movements of animals were
excluded from the analysis. Only distal half of the paws (from
the half of the length of the longest metatarsal bone to
fingertips) were analyzed. Bone fragmentation (Fig. 2C) is
represented by the average number of bony objects per section.
Total object (i.e., distal paw) volume, total bone volume, and
total bone surface were computed to compute bone surface/
bone volume ratio (Fig. 2C) as the second parameter corre-
sponding to bone fragmentation, and volume of the soft tissue
(as total volume minus total bone volume—Fig. 2D).

Statistical analysis

The p values were calculated with GraphPad Prism soft-
ware, version 5.04 (Graphpad Software, Inc), using Gehan–
Breslow–Wilcoxon test for Figure 1; Kruskal–Wallis test
with Dunn’s multiple comparison test for Figures 2, C and D,
4, A and B, and 5C; repeated-measures ANOVA and Bon-
ferroni’s multiple comparison post-test for Figures 3, 5E, and
6, B and D; one-way ANOVA and Bonferroni’s multiple
comparison post-test for Figure 5B; paired t test, two-tailed,
for Figure 6, A and C. The asterisks represent p values as
follows: *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001,
n.s.—not significant. Error bars in the figures represent
mean ± standard deviation.

Data availability

Representative experiments are shown in the figures. For
any additional information, please contact the corresponding
author.
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