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fIDPnn: Accurate intrinsic disorder prediction with
putative propensities of disorder functions
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Identification of intrinsic disorder in proteins relies in large part on computational predictors,
which demands that their accuracy should be high. Since intrinsic disorder carries out a broad
range of cellular functions, it is desirable to couple the disorder and disorder function pre-
dictions. We report a computational tool, fIDPnn, that provides accurate, fast and compre-
hensive disorder and disorder function predictions from protein sequences. The recent
Critical Assessment of protein Intrinsic Disorder prediction (CAID) experiment and results on
other test datasets demonstrate that fIDPnn offers accurate predictions of disorder, fully
disordered proteins and four common disorder functions. These predictions are substantially
better than the results of the existing disorder predictors and methods that predict functions
of disorder. Ablation tests reveal that the high predictive performance stems from innovative
ways used in fIDPnn to derive sequence profiles and encode inputs. fIDPnn's webserver is
available at http://biomine.cs.vcu.edu/servers/fIDPnn/
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ARTICLE

he intrinsically disorder regions (IDRs) in the protein

sequences lack a stable structure under physiological condi-

tions and carry out their functions often without fully
folding!~3. Recent bioinformatics studies suggest that IDRs are
abundant in nature, particularly in the eukaryotes where they are
found in over 30% of proteins®>. Moreover, proteins with IDRs are
associated with pathogenesis of many human diseases®, including
cancers’ and neurodegenerative disorders®, motivating interest in
utilizing these proteins as drug targets?~!1. Since so far only several
thousand IDRs were characterized experimentally!?, computational
methods that predict these regions directly from protein sequences
have emerged as a viable way to identify and functionally investigate
IDRs!3-16, These methods are applied to structurally and func-
tionally characterize specific proteins and protein families!”>!® and
to analyze prevalence and functions of disorder at the proteome
scale!9-23, Predictive quality of disorder predictors was evaluated in
several comparative surveys?4-26 and community-driven assess-
ments that include CASP (Critical Assessment of protein Structure
Prediction), where they were run as a sub-category of the protein
structure prediction, and more recently CAID (Critical Assessment
of protein Intrinsic Disorder). The first community assessment of
the intrinsic disorder predictions was in CASP5 and featured six
predictors2’. The disorder prediction evaluations were continued as
part of the CASP experiments until CASP10 that covered 28 dis-
order predictors?®. Following CASP10, the organization of the
assessment was shifted to the disorder prediction community. The
first CAID experiment was completed recently and featured a
record-breaking collection of 32 predictors?®. CAID has shown that
several current tools, such as AUCpreD30, ESpritz3!, RawMSA32,
SPOT-Disorder233, and SPOT-Disorder-Single34, produce accurate
disorder predictions with AUC (area under the ROC curve) of
about 0.75 when evaluated on the CAID’s test dataset?® that relies
on the experimental annotations from the popular DisProt
database!2. However, none of the current predictors has reached

AUC>0.78 in the CAID experiment and these methods predict
intrinsic disorder without explaining what it does. This is a sub-
stantial drawback since IDRs carry out a broad spectrum of cellular
functions. In particular, the inherent plasticity allows IDRs to
interact with a wide range of different partners>-38 and to serve as
linkers that facilitate and regulate inter- and intra-domain move-
ment and allosteric regulation340. While there are specialized
methods that predict specific functions of IDRs, nearly all of them

focus on the prediction of the protein-binding IDRs

16,41,42 and they

are decoupled from the disorder predictions, i.e., their predictions
could be misaligned with the outputs of the disorder predictors*3.
Besides the predictors of the protein-binding IDRSs, there are only
three methods that focus on other disorder functions including
APOD* and DFLpred*’ that predict linkers and DisoRDPbind that

predicts

protein-binding, DNA-binding and RNA-binding

IDRs#6:47,

Here, we developed a computational tool, IDPnn, that pro-

duced the most accurate predictions of disorder (AUC = 0.814)
and the fully disordered proteins (i.e., proteins for which disorder
covers at least 95% of their sequences) in CAID. Moreover,
fIDPnn generates putative functions for the predicted IDRs cov-
ering the four most commonly annotated functions, including
protein-binding, DNA-binding, RNA-binding, and linkers!241.

Selection of these functions is motivated by the sufficient amount

of the corresponding experimental data to train and test machine-
learning models'2. While CAID also benchmarked quality of the
prediction of disordered binding regions, fIDPnn did not parti-
cipate in this assessment since its modules for the prediction of
protein/DNA/RNA-binding and linkers were developed after the

CAID experiment was concluded.

Results
Architecture of fIDPnn. The fIDPnn’s architecture implements a
three-step prediction process (Fig. 1). First, the input sequence is
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Fig. 1 The architecture of the fIDPnn disorder predictor. Green highlights identify novel elements. Gray boxes denote the disorder prediction and the
disorder function prediction modules. DNN (deep neural network); RF (random forest). The example input and outputs correspond to the prediction for the

nucleoporin protein from S. cerevisiae (UniProt: P14907; DisProt: DP0O1077).
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processed by several tools to produce relevant putative structural
and functional information that forms the sequence profile.
Second, the profile is used to encode numerical features. Third,
the features are input into a machine-learning model that pro-
duces predictions. We introduced three key innovations into this
architecture that touch each of the three steps (green highlights in
Fig. 1). We extended the commonly used profiles to include
putative disorder functions produced by DisoRDPbind?/,
DFLpred*®, and fMoRFpred*®. This is driven by the fact that
intrinsic disorder carries a multitude of cellular functions that are
associated with different sequence patterns?, which calls for an
equally diverse profile. Next, we encoded the features by aggre-
gating the profile data at three levels: residue, window and protein
levels. While current disorder predictors use the residue level and/
or window-level encodings, we added the protein-level features
that express the overall bias of a given sequence to be disordered
or structured. Finally, we included a module for the function
prediction that focuses specifically on the disordered regions
generated by fIDPnn. This way the function predictions line up
with and complement the disorder predictions. We utilized a
deep neural network for the disorder prediction and a random
forest for the function prediction, motivated by the popularity of
these machine-learning models in the disorder prediction
field30,32-34,49,50,

This architecture produces high-quality disorder predictions
that are accompanied by the putative propensities for the four
disorder functions. Figure 1 illustrates predictions produced by
fIDPnn for one of the test proteins that we utilized to assess
fIDPnn’s performance, nucleoporin from S. cerevisiae (UniProt:
P14907; DisProt: DP01077). These predictions include numeric
disorder propensities, which quantify likelihood that a given
residue in the input protein chain is disordered and binary
prediction that categorizes each residue as either disordered or
ordered. Nucleoporin is known to harbor a long IDR between
positions 1 and 603 that interacts with protein partners®!->2,
fIDPnn predicts disorder between positions 1 and 623 (black lines
in the outputs shown in Fig. 1), however, the propensities at the
c-terminus of this segment are lower suggesting smaller like-
lihood for disorder. The function predictions (color-coded lines
in the outputs shown in Fig. 1, where intensity of color represent
likelihood for a given function) suggest high likelihood for
protein interactions (in blue), low likelihood for DNA interac-
tions (in green) and linkers (in violet), and high likelihood for the
RNA binding at the c-terminus of the putative IDRs. However,
the last prediction should be considered to have lower quality
given the relatively low likelihood for disorder in this region.

Prediction of intrinsic disorder. The fIDPnn predictor was
designed and trained before the CAID experiment on the data
extracted from the DisProt 7.0 database®3. We created a separate
test dataset of 176 proteins from DisProt 7.0 that share low, <25%
similarity to the training proteins that we used to develop our
predictor. flDPnn was submitted to the CAID experiment for
independent assessment. The CAID organizers collected and ran
code for each submitted predictor on their own hardware using a
community curated dataset of 646 proteins that were unknown to
the authors of the predictors?®. In CAID, the putative disorder
propensities were evaluated with AUC while the binary predic-
tions were assessed with F1 and MCC metrics. We detail the
datasets and metrics in the Methods section.

We reproduced the results of the top 10 predictors from the
CAID experiment in Fig. 2A. fIDPnn secures AUC = 0.814, MCC
=0.370, and F1=0.483. The second-best predictor, fIDPIr, is a
derivative of the fIDPnn model that uses the same architecture

where the deep neural network is replaced with a simple logistic
regression model. The top-performers in CAID rely on more
sophisticated models including RawMSA32, ESpritz3!, DisoMine>4,
SPOT-Disorder233, AUCpreD3?, and SPOT-Disorder-Single3* that
utilize deep convolutional and/or recurrent neural networks. The
fact that fIDPIr’s results improve over the results of these models
reveals that the predictive performance primarily depends on the
quality of the input profile and features, not the sophistication of
the predictive model. This finding is in line with a recent study
similarly concludes that extraction of high-quality feature spaces
leads to better results than those provided by deep models that
automatically derive latent features spaces®”. The CAID experiment
also shows that the runtimes of the top 10 predictors differ by as
much as three orders of magnitude; these measurements are in
Fig. 2F in the CAID article?®. The fast predictors, which produce
results in under 1 min per protein, include fIDPnn (5 to 10s per
protein), fIDPIr (5 to 10s), ESpritz (1s), SPOT-Disorder-Single
(20 to 40s), DisoMine (1s) and AUCpredD-np (1s). The slower
methods, such as SPOT-Disorder2, RawMSA, AUCpredD and
Predisorder®®, take several to dozens of minutes to complete the
prediction.

Moreover, we compared fIDPnn with the similarly fast disorder
predictors on the test dataset (Fig. 2B). This group of the fast
methods includes SPOT-Disorder-Single and ESpritz-D that
performed well in CAID and two versions of the popular
IUPred2A method: IUPred2A-long and IUPred2A-short>’.
fIDPnn generates higher quality predictions with AUC = 0.839,
MCC = 0.491 and F1 = 0.626 when compared to the second-best
ESpritz-D with AUC = 0.799, MCC = 0.428, and F1 = 0.603. The
corresponding ROC curves reveal that the improvements are
consistent over the entire range of the false-positive rates
(Fig. 2C). Similar to the disorder assessment at CASP28, we
evaluated statistical significance of these differences by resam-
pling half the test dataset 10 times and comparing results for each
pair of the five disorder predictors. This evaluates whether the
improvements offered by the better of the two compared methods
are robust to different datasets. We used paired t-test if the
measured values were normal (we assessed normality with the
Anderson-Darling test at 0.05 significance); otherwise we applied
the Wilcoxon test. The resulting p-values are listed in
Supplementary Table 1 and show that the AUC and F1 scores
produced by fIDPnn are statistically significantly better than the
results of the other four methods (p-value < 0.05).

Prediction of fully disordered proteins. Figure 2D, E evaluate
predictions of the fully disordered proteins in the CAID experi-
ment and on the test dataset, respectively. Here, the task is to
differentiate between the non-fully disordered proteins and fully
disordered proteins, where the latter are defined as proteins with
over 95% of disordered residues. These proteins are of particular
interest since they are virtually impossible to solve structurally via
X-ray crystallography and were suggested to encode for a set of
specialized protein functions®®*. fIDPnn provides the most
accurate prediction of the fully disordered proteins, measured
with both MCC and F1, on the CAID dataset?® (Fig. 2D).

The assessment on the test dataset similarly reveals that fIDPnn
outperforms the four fast predictors (Fig. 2E). fIDPnn predicts the
fully disordered proteins with MCC = 0.63 and F1 = 0.67 when
compared to the second-best SPOT-Disorder-Single that secures
MCC =0.58 and F1 =0.57. The results of the resampling tests
that evaluate significance of the differences are given in
Supplementary Table 1. They demonstrate that the improvements
on the test dataset offered by fIDPnn are statistically significant
when compared to the other four predictors (p-value > 0.05), with
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Fig. 2 Comparson of predictive performance between fIDPnn and other disorder predictors. Assessment of the disorder predictions in the CAID
experiment (A) and on the test dataset (B and €) and the predictions of the fully disordered proteins in the CAID experiment (D) and on the test dataset
(E). AUC (area under the ROC curve); MCC (Matthews correlation coefficient). The predictive quality of the putative disorder propensities is quantified
with AUC (green lines) and ROC curves (C). The ROC curves are color-coded where fIDPnn is shown in red, ESpritz in violet, SPOT-Disorder-Single in dark
green, IUPred2A-short in light green, IUPred2A-long in blue and random predictor in gray. The quality of the binary disorder predictions is assessed with
MCC and F1 scores (blue bars). Panels A and D are reproduced from Fig. 2, Table 1, and Supplementary Table 5 from the CAID publication2®.
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Fig. 3 Ablation analysis of the fIDPnn predictor on the test dataset. Black bars show results for the fIDPnn model. Green bars quantify predictive quality
where one of the two major innovations (disorder functions predictions in the profile and protein-level feature encoding) is excluded. Gray bars show the
performance where one of the architectural elements that are often utilized by the current predictors (residue-level and window-level feature encoding) is
excluded. AUC (area under the ROC curve); MCC (Matthews correlation coefficient).

the exception of MCC when compared to SPOT-Disorder-Single
(p-value = 0.16).

Ablation analysis. The favorable predictive quality of IDPnn can
be traced to its architecture. The main determinants of the pre-
dictive performance are the scope and formulation of the
sequence profile and the feature encodings (Fig. 1). We per-
formed ablation analysis where we observed the impact of the
exclusion of the key elements of the profile and feature encodings
on the results on the test dataset (Fig. 3). This covers exclusion of
the two novel components, disorder functions predictions in the
sequence profile and protein-level feature encodings (green bars
in Fig. 3). We also considered elimination of the window-level
and the residue-level encodings (gray bars in Fig. 3) and the PSI-
BLAST and IUPred generated inputs that are often utilized by
current predictive tools. We omit each of these elements sepa-
rately to measure their individual contribution to the fIDPnn
model. We detail the corresponding six ablation configurations in
Supplementary Table 2. Results in Fig. 3 reveal that the biggest

drop in performance is associated with the removal of the
protein-level feature encodings, from 0.839 to 0.791 in AUC and
from 0.490 to 0.412 in MCC. Moreover, exclusion of each of the
six elements results in a lower predictive quality. Based on
resampling the test dataset, we found that the reductions in the
AUC when comparing fIDPnn with the six ablation experiments
are statistically significant (p-value <0.05). Moreover, the
decreases in F1 and MCC scores are also statistically significant
(p-value < 0.05), except when comparing fIDPnn to the setup
where IUPred generated features are excluded (p-value = 0.14 for
F1 and 0.09 for MCC). The latter suggests that deletion of IUPred
may sometimes not result in worsening the predictive perfor-
mance. The complete set of p-values is available in the Supple-
mentary Table 3. Overall, these results suggest that the two
innovations that we introduced substantially contribute to the
high accuracy of the fIDPnn’s predictions.

Prediction of disorder functions. fIDPnn is the only predictor
that provides putative functions for the predicted IDRs. While the
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recently released DEPICTER resource facilitates combining pre-
dictions of the disorder and disorder functions*3, these results are
produced by several different methods resulting in potentially
conflicting predictions. For instance, putative protein-binding
IDRs produced by one of the disorder function predictors could
be predicted as structured by the disorder predictor. In contrast,
fIDPnn utilizes random forest models to predict the putative
functions for the IDRs generated by the deep network model,
ensuring that the predicted functions align with the putative IDRs
(Fig. 1). We assessed the predictive performance for the four
disorder functions predicted by fIDPnn on the test dataset
(Fig. 4). We compared the fIDPnn’s predictions against the state-
of-the-art disorder function predictors: DisoRDPbind?’,
ANCHOR?2*’,  MoRFChibiLight®®, =~ fMoRFpred*%,  and
MoRFChibi® for the prediction of the protein-binding IDRs;
DisoRDPbind, the sole predictor of the DNA and RNA-binding
IDRs; and DFLpred® for the prediction of linkers. This group of
methods includes the top three methods based on the CAID
results concerning predictions of the disordered binding regions:
ANCHOR?2, DisoRDPbind and MoRFChibiLight. The quality of
the fIDPnn’s function predictions on the test dataset quantified by
AUC, F1 and MCC metrics is better than the quality of the
predictions by the current tools. fIDPnn secures AUC of 0.79,
0.87, 0.86 and 0.71 for the prediction of the protein-binding,
DNA-binding, RNA-binding and linkers, respectively. The ROC
curves for fIDPnn and the second-best predictor, selected
according to the AUC scores in Fig. 4, are compared in Supple-
mentary Fig. 1. Similar to the assessment of the disorder pre-
dictions, ROC curves show that fIDPnn maintains higher levels of
predictive performance over the entire spectrum of the false-
positive rates. Moreover, based on the resampling analysis,
fIDPnn offers statistically significant improvements in AUC when
compared to the results of DFLpred, DisoRDPbind and the five
predictors of the disordered protein-binding IDRs (p-value <
0.05). The fIDPnn’s F1 scores are also significantly better for the
prediction of the protein-binding and linker regions (p-value <
0.05), while the differences in F1 for the prediction of the nucleic-
acid binding regions are not statistically significant; p-value =
0.12 for DNA binding and 0.08 for RNA-binding when fIDPnn is
compared to DisoRDPbind. The complete list of the p-values is in
Supplementary Table 4.

Discussion

We developed fIDPnn, state-of-the-art predictor of disorder and
disorder functions from protein sequences. Extensive empirical
assessment in the CAID experiment and on an independent and
low-similarity test dataset show that fIDPnn offers accurate pre-
dictions of disorder, fully disordered proteins and four common

disorder functions. Ablation analysis suggests that the high pre-
dictive quality stems from the innovations applied to the pre-
dictive inputs, including extended sequences profile and protein-
level feature encoding. This finding is supported by the fact that
the difference between the results of IDPnn and fIDPIr models in
CAID is not very large?®. These models use the same inputs and
differ only in the predictive model that they utilize, i.e., deep
neural network in fIDPnn vs. logistic regression in fIDPIr. This
suggests that the type of the model used has relatively modest
influence on the predictive performance. Another key advantage
of fIDPnn is the use of runtime-efficient tools to derive the inputs.
In particular, we used PSI-BLAST search on the small SwissProt
database and fast IUPred and the single-sequence version of
PSIPRED to achieve a good compromise between speed and
accuracy. Consequently, the entire prediction process that pro-
duces disorder and disorder function predictions takes only about
5 to 10 s per protein, making fIDPnn one of the fastest disorder
predictors?®, This fact was highlighted in the recent article that
summarizes CAID results where the authors noted fIDPnn is at
least an order of magnitude faster than its close competitors®!. In
the nutshell, fIDPnn has pushed beyond the limits of the current
disorder and disorder function predictors to provide accurate, fast
and comprehensive collection of disorder and disorder function
predictions.

We provide standalone code for flDPnn at https://gitlab.com/
sina.ghadermarzi/fldpnn and a docker container at https://gitlab.
com/sina.ghadermarzi/fldpnn_docker. Moreover, we also offer a
convenient webserver version of fIDPnn at http://biomine.cs.vcu.
edu/servers/fIDPnn/. We plan to further extend the scope to other
disorder functions, such as lipid, metal and small molecule
interactions, when the amount of the experimental data becomes
sufficient to train and test these models.

Methods

Datasets. The fIDPnn predictor was designed, trained and tested before CAID on
the 745 experimentally annotated proteins from the DisProt 7.0 database®3. We
divided these proteins at random into three disjoint datasets: the training dataset
(445 proteins) to train the machine-learning models, the validation dataset (100
proteins) to set hyper-parameters of the trained models, and the test dataset (200
proteins) to compare performance with the current disorder and disorder function
predictors. Next, we clustered the combined set of 200 test and 445 training pro-
teins using the CD-HIT algorithm with 25% sequence similarity®2. We removed
the test proteins that are in clusters that include any of the training proteins. The
resulting test dataset includes the remaining 176 test proteins that consequently
share <25% sequence similarity to the training proteins. This was motivated by a
recent study that shows that lack of the sequence similarity reduction results in
overestimation of the predictive performance due to the potential overfitting?4.
fIDPnn participated in the CAID experiment where 32 disorder predictors were
evaluated on a blind set of 646 proteins. Experimental data for these proteins is
consistent with the DisProt format and was unavailable to the developers of these
predictors. However, these proteins were not filtered for their similarity to the
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training datasets of the participating disorder predictors. Similar to CAID and
other comparative assessments?>2%, amino acids in these test proteins were labeled
as structured unless they were experimentally annotated as disordered. Disorder
function annotations were extracted from DisProt!2°3. The CAID dataset is
available on the DisProt website at https://www.disprot.org/. The training, vali-
dation and test datasets are available at http://biomine.cs.vcu.edu/servers/fIDPnn/.

Assessment of predictive performance. Disorder and disorder function pre-
dictors produce two outputs: real-valued propensity that quantifies likelihood that
a given amino acid is disordered or has a given disorder function and a corre-
sponding binary classification (disordered vs. structured/does vs. does not have a
given disorder function). Typically, the binary predictions are generated from the
propensities such that residues with propensities greater than a given threshold are
predicted as disordered/functional, and otherwise they are predicted as structured/
non-functional. We evaluate the predictive performance of the binary predictions
with the two metrics and thresholds that are consistent with the CAID
experiment?®: F1 and MCC (Matthews correlation coefficient). MCC ranges
between -1 and 1, where -1 denotes an inverted prediction (all predictions are
flipped compared to the experimental values), 0 denotes a random result and 1
denotes a perfect prediction. F1 ranges between 0 and 1 where higher value denotes
more accurate prediction. Consistent with other assessments including
CAID!42526.28,29 e used the area under the receiver-operating characteristic
curve (ROC-AUC) to evaluate predictive quality of the propensities. The ROC
curve is a relation between true-positive rates (TPRs) and false-positive rates
(FPRs) that is computed by thresholding the propensities where the thresholds are
the set of all unique propensities produced by a given predictor. ROC-AUC ranges
between 0.5 (equivalent to a random prediction) and 1 (perfect prediction). F1,
MCC, TPR and FPR are defined in the Supplementary Table 5.

Design and training of fIDPnn. fIDPnn generates predictions in three steps
(Fig. 1): sequence profile, feature encoding and prediction using a machine-
learning model. The profile covers putative structural and functional information
relevant to the disorder and disorder function predictions. We extracted this
information from the input protein chains utilizing popular and fast bioinformatics
tools. The profile includes commonly used in the disorder prediction field sec-
ondary structure predicted with the single-sequence version of PSIPRED®3, dis-
order predicted with TUPred®4, positions specific scoring matrix (PSSM) generated
with PSI-BLAST® from the SwissProt database, and the entropy-based conserva-
tion scores computed from PSSM. We utilized the putative disorder produced by
IUPred, one of the most popular disorder predictors, as a baseline that we refine
with the help of the other inputs and the deep network model. We also introduced
innovative elements into the profile including the putative disordered DNA and
RNA binding generated with DisoRDPbind#’, putative disordered protein binding
produced by DisoRDPbind and fMoRFpred*$, and disordered linkers predicted by
DFLpred®.

We encoded the profile into three feature sets that focus on the residue-level,
window-level and protein-level information. The residue-level and window-level
information is extracted with the popular sliding window approach, where the
residue in the middle of a small sequence segments is predicted based on the
information from all residues in that segment. The residue-level features cover the
profile values for individual residues in a small window of five residues for the
disorder prediction and one residue for the disorder function prediction. The
window-level features aggregate the profile information by computing average over
a larger window of 15 residues for the disorder prediction and 11 residues for the
disorder function prediction. We also introduce new protein-level encoding, which
quantifies the overall bias of a given sequence to be disordered or to have functional
regions. The protein-level features include the sequence-average of the profile
values, sequence length, and the distance to each sequence terminus.

We used deep feedforward neural network to predict disorder. Selection of this
machine-learning algorithm was motivated by its popularity in the disorder
prediction field3%32-34, The input layer of 318 nodes (which equals to the number
of features) is followed by a dropout layer with 0.2 dropout rate, hidden layer with
64 nodes, dropout layer with 0.2 dropout rate, second hidden layer with 8 nodes,
and the output layer with one node that produces the disorder propensities. The
gradually smaller layers simulate progressive reduction of the latent feature spaces
that eventually condense to the propensity score. We included the dropout layers to
prevent overfitting into the training dataset®’. We used ReLU activation functions
for all nodes except for the output node where we applied the sigmoid function to
properly scale the propensities. We empirically selected the hyper-parameters
including number of layers and the number of nodes in the hidden layer by a grid
search where the networks trained on the training were optimized to maximize
AUC on the validation dataset. We also experimented with a popular shallow
machine-learning algorithm, logistic regression. The corresponding fIDPIr model,
which uses the same profile and features as the deep neural network-based flDPnn,
was evaluated in CAID and provided lower quality predictions: AUC = 0.814 for
the deep network vs. 0.793 for logistic regression?”.

We used the random forest (RF) algorithm to predict disorder functions. The
amount of the training data (which cover the putative IDRs generated by the deep
network) was too small to train deep networks. The choice of RF was motivated by

its success in related disorder function predictors*>>). We used grid search to
empirically optimize RF hyper-parameters including number of trees and tree
depth to maximize AUC computed based on the 3-fold cross-validation on the
training dataset. We opted to perform cross-validation rather than using the
validation dataset since this test protocol is more robust to overfitting and training
of RF is sufficiently fast. We repeated this parametrization for each of the four
disorder functions. These results are in Supplementary Fig. 2. The training,
validation and deployment of the predictive models were implemented with
Python 3 (3.8.5) including the following packages: scikit-learn (0.23.2), keras
(2.4.3), tensorflow (2.4.1) and pandas (1.2.2).

Webserver. fIDPnn is available as a webserver at http://biomine.cs.vcu.edu/
servers/fIDPnn/. The webserver supports batch predictions of up to 20 FASTA-
formatted protein sequences per request. The requests are placed into a queue that
services multiple webservers and ensures load balancing between users. The pre-
diction process is automated and performed on the server side. The server outputs
numeric propensities for disorder and disorder functions together with corre-
sponding binary predictions for each residue in the input protein chain(s). These
results are delivered in the browser window via a unique URL. The users are
informed by email (if an email address was provided) when the prediction com-
pletes. The results are available in three formats: (1) a parsable csv-formatted file;
(2) an interactive graphical format that we developed with plotly (4.14.3); and (3) a
png image file generated from the graphic. The graphical format allows the users to
select/deselect specific predictions, identify propensity scores, residue type and
position on mouse hover, and zoom on a specific sequence region.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Source data are provided with this paper. Its was collected by parsing the publicly
available DisProt repository (https://www.disprot.org/). This includes the training,
validation, test and CAID datasets. Other data are available from the corresponding
author upon reasonable request. In particular, the parsed datasets (including raw data
and identifiers) are freely available (no restrictions) at http://biomine.cs.vcu.edu/servers/
fIDPnn/. We also utilize the publicly available SwissProt dataset (https://www.uniprot.
org/statistics/Swiss-Prot) to produce PSSM. Source data are provided with this paper.

Code availability

We release code for fIDPnn at https://gitlab.com/sina.ghadermarzi/fldpnn. We also
provide a docker container that simplifies local installation at https://gitlab.com/sina.
ghadermarzi/fldpnn_docker.
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