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Abstract
Motivated by the ongoing COVID-19 pandemic, this article introduces Bayesian

dynamic network actor models for the analysis of infected individuals’ movements

in South Korea during the first three months of 2020. The relational event data

modelling framework makes use of network statistics capturing the structure of

movement events from and to several country’s municipalities. The fully proba-

bilistic Bayesian approach allows to quantify the uncertainty associated to the

relational tendencies explaining where and when movement events are established

and where they are directed. The observed patient movements’ patterns at an early

stage of the pandemic can provide interesting insights about the spread of the

disease in the Asian country.

Keywords COVID-19 patient movements � Relational events � Dynamic

network actor models � Bayesian inference

1 Introduction

The first case of COVID-19 infection in South Korea was reported on January 20,

2020 and was followed by a steady increase in the number of cases over the

following month which made South Korea one of the first hardest-hit countries by

the virus. By the end of March 2020, South Korea was successfully able to control

the epidemic wave which reached its peak on March 11, 2020.

This paper is motivated by the recent publication of COVID-19 infected patient

movement dataset collected from January 20, 2020, to May 31, 2020 by the Korean

Center for Disease Control and Prevention (KCDC). The COVID-19 patient

movement events are directly observable and do not need to be aggregated into
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valued network structures. This facilitates the use of statistical models that can

reflect their data-generating process. Advanced statistical network analysis methods

provide with the possibility of characterising mobility patterns by evaluating

different scenarios in the evolution of the pandemic and potential countermeasures

to mitigate the impact of future infection waves.

The dynamic network actor model (DyNAM) framework Stadtfeld et al (2017)

for relational event data allows to investigate the main network effects that describe

the origin, time and direction of the movement events by differentiating between

two sub-models modelling the waiting times until an event is initiated and the

choice of its destination. The network embeddedness and the role played by large

Korean municipalities in this dataset are examples of how frequent connections may

explain the spread of the disease across the entire country.

A dynamic network can be represented via a time-indexed graph YðtÞ ¼
ðNðtÞ;XðtÞÞ with t varying, where N(t) is the node set present in the network at time

t and X(t) represents the set of values indicating the presence (and potentially the

value) of the edges connecting nodes at a certain time point. More formally, we

defined the binary dyadic variable:

xijðtÞ ¼
1; if there is an edge between node i and node j at time t;
0; otherwise:

�

Dynamic networks change over time either in terms of covariates (nodal or dyadic)

or tie formation. In the first case, we are interested in modelling a dynamic changes

of the network. In the second case we are interested in modelling the dynamic

changes on a network (Kolaczyk 2017).

Dynamic networks can be either in the form of panel data i.e., consisting of

network snapshots observed at discrete time points or instantaneous data i.e.,

consisting of fine-grained network changes. The two core statistical models that

study longitudinal network data are temporal exponential random graph models

(TERGMs) (Hanneke et al 2010) and stochastic actor-oriented models (SAOMs)

(Snijders et al 2010). TERGMs are natural mathematical extension of the family of

exponential random graph models (ERGMs) (Holland and Leinhardt 1981; Frank

and Strauss 1986). By jointly modelling network states at multiple time points,

TERGMs consider the probability of observing a network at time t as a function of

networks formed up to a previous time and to the network statistics usually

accounted for in ERGMs (for a list of such statistics see Morris et al (2008)).

SAOMs are special cases of the continuous-time Markov modeling framework of

Holland and Leinhardt (1977) modelling tie changes between network states at

consecutive time points by assuming that these states are repeated snapshots of a

Markov process evolving in continuous time defined by transition probabilities

determined by an unobserved sequence of mini-steps involving tie changes.

Longitudinal ERGMs (Koskinen and Snijders 2007; Koskinen et al 2015) represent

another important family of network models for dynamic network data that assume

the existence of a continuous-time Markov ERGM process describing the evolution

of relational data.
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Panel data are often easier to collect. Observing a full graph at discrete points in

time is not rare, whereas, collecting the information about the exact time point a

node gets active is not easy. However, the latter type of data sources brought the

attention to model for relational events or counting processes (Hunter 2019) which

are extensions of survival models applied to network data. More precisely, a

relational event is a discrete directed tie generated by a node (sender) and directed

towards another node (receiver), the sender set can either equal the receiver set or

not (Butts 2008). By building on event history analysis, the goal of such models is to

combine relational dependencies and temporal dynamics to find meaningful

network mechanisms (Brandenberger 2020).

The most important models apt to analyse relational event data are relational

event models (REMs) (Butts 2008) and dynamic network actor models (DyNAMs)

Stadtfeld et al (2017), whose difference lies in their ‘orientation’. REMs formulate

the probability of observing a tie at a specific time given a set of tie-oriented

statistics. DyNAMs assume conditional independence between two separable

processes given the observed data: the activity rate sub-model of the sender of the

event and the choice sub-model of the receiver of the event given a set of actor-

oriented network statistics. The aim of the researcher while using them is, but not

limited to, explain the temporal order of ties within a connected environment. Why

do two countries start to sign a treaty (Stadtfeld and Block 2017)? What drives the

inter-hospital patient movements within a certain region (Vu et al 2017)? Why do

conflict or cooperation events occur over water consumption (Hollway 2020)?

In this paper, we focus on the implementation of Bayesian DyNAMs for the

analysis of South Korea COVID-19 patient movement relational event data.

Although it has not been explored yet, a Bayesian treatment of this family of models

is appropriate as it allows to quantify the uncertainty of the parameters associated to

the network effects by building a fully probabilistic inferential framework.

Furthermore, expert knowledge evaluation and validation can be incorporated by

specifying adequate priors before collecting the data.

The paper is organized as follows. In Sect. 2, we give a description of the South

Korea COVID-19 patient movement dataset. In Sect. 3, we describe the main

statistical properties of DyNAMs. In Sect. 4 we give a brief overview of the

network statistics and covariates that will help us describe the dynamics of

relational event data. In Sect. 5, we present the Bayesian simulation procedure for

estimating DyNAM posterior parameter distribution via a Metropolis-Hastings

algorithm (Hastings 1970; Metropolis et al 1953). In Sect. 6, we demonstrate the

Monte Carlo inferential procedure by analysing the well-known Social Evolution

dataset. This example is meant to detail the use of prior specification in a context

where previous information about the main network effects characterising the event

dynamics is available from previous literature. In Sect. 7, we carry out the COVID-

19 patient movement data analysis. Lastly, in the final section, we draw some

conclusions.
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2 South Korea COVID-19 patient movement data

South Korea was one of the first countries to experience a COVID-19 disease

outbreak, caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-

CoV-2). Its first case, imported from Wuhan, China, was reported on January 20,

2020. The daily number of confirmed cases varied from 0 to 2 per day for the first

month of the outbreak, until a cluster was identified in the Daegu metropolitan area.

The cluster originated from a patient who traveled around the cities of Daegu and

Seoul before her diagnosis. Since then, daily infected patient numbers grew rapidly

reaching a peak on February 29 at 909. Thereafter, the number of daily infections

stabilised below 200, with 100 individuals on 25 March 2020.1

South Korea did not put into force strong lockdown strategies as other developed

countries did. They operated by setting up a system of screening and diagnosis –

two weeks from the first confirmed case, they shipped up to 100, 000 diagnosis kits

per day2 – and of contact tracing – special hired officers were allowed to track and

isolate infected individuals and their contacts by means of GPS data, credit card

information and medical facility visits.3

Our analysis of this dataset will be designed to build a fully probabilistic

relational event modelling approach capable of describing the propensity of

COVID-19 patient movement event sequences among Korean municipalities based

on some geographic covariate data.

3 Dynamic network actor models for relational events

Dynamic actor network models (DyNAMs) are probabilistic models for relational

event data - i.e., vectors formed by tuples of the form a ¼ ði; j; tÞ where i; j and t
represent, respectively, the event sender, receiver and time of the event. The

collection of such tuples constitutes the time-ordered sequence At up to time t.
The goal of DyNAMs is to explain the tendency of nodes to create events which

may depend on global or local covariates, past events or current network

configurations at given times. Stadtfeld et al (2017) define a time dependant

process state as:

yðtÞ ¼ ðxð1ÞðtÞ; xð2ÞðtÞ; :::; zð1ÞðtÞ; zð2ÞðtÞ; :::;Nð1ÞðtÞ;Nð2ÞðtÞ; :::Þ ð1Þ

where x(t) denotes the network (endogenous) information, z(t) denotes the

1 Fleming S. South Korea’s Foreign Minister explains how the country contained COVID-19. World

Economic Forum COVID Action Platform. March 31, 2020. https://www.weforum.org/agenda/2020/03/

south-korea-COVID-19-containment-testing/. Accessed June 11, 2020.
2 Fisher M, Sang-Hun C. How South Korea Flattened the Curve. New York Times. Published March 23,

2020. Updated April 10, 2020. https://www.nytimes.com/2020/03/23/world/asia/coronavirus-south-

korea-flatten-curve.html. Accessed June 11, 2020.
3 COVID-19 National Emergency Response Center, Epidemiology & Case Management Team, Korea

Centers for Disease Control & Prevention. Contact transmission of COVID-19 in South Korea: Novel

investigation techniques for tracing contacts. Osong Public Health and Research Perspectives.

2020;11(1):60-63. http://doi.org/10.24171/j.phrp.2020.11.1.09. Accessed June 11, 2020.
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(exogenous) information represented by the covariates at a global or nodal level and

N is the set of the nodes of the network.

DyNAMs are actor-oriented in nature: changes in the network ties creation are

modelled as node characteristics (e.g., the presence of a covariate, the past activity

of the node).

DyNAMs consist of two steps. In the first step, the waiting time until a sender

gets involved is modeled. In the second step, the selection of a receiver is modelled

conditionally on the selection of the sender. A significant assumption is the

conditionally independence between the two steps given all the relevant informa-

tion. More formally, DyNAMs treat the waiting time between one event to the next

to be conditionally exponentially distributed via a composite Poisson rate

/ijðy; b; hÞ ¼ liðy; bÞ � pði ! j; y j hÞ: ð2Þ

The first term on the right side is the exponential hazard of the i-th node to become

active – the waiting time of the sender to get active depends on a set of parameters

b :

liðy; bÞ ¼ exp b>rði; yÞ
� �

; ð3Þ

where the first element of the parameter vector b is the intercept b0 which measures

the baseline tendency of the i-th node to send a connection, and rð�Þ is the statistic

vector capturing the relational structure of the nodes in the network. In the first step

of the modelling process, the node i with the highest rate liðy; bÞ at a certain time

t is the node with the highest probability of getting active at that time point and it is

therefore selected as a sender of the directed event.

Based on this assumption, we can then construct the likelihood of timings and

senders of a specific event sequence At, considering the cumulative number of

events to be M. The likelihood is the product of the individual event likelihoods

which are defined as the product of the sender’s hazard function and the survival

functions of all the other senders over the time period between two consecutive

events:

LðbÞ ¼
YM
m¼1

limðym; bÞ
Y
i2Nm

exp �liðym; bÞðtm � tm�1Þf g: ð4Þ

The second step of the modelling process focus on identifying the receiver j of the

action created by the sender i. The probability of j being a receiver of the event is

based on a multinomial probability distribution depending on all the relevant

information – the exogenous/endogenous process state defined in Equation 1 – and

on a set of parameters h:

pði ! j; y j hÞ ¼
exp h>sði; j; yÞ

� �
P

j2Nnfig exp h>sði; j; yÞ
� � ; ð5Þ

where s(i, j, y) are the network statistics that characterise the connection i ! j
whose knowledge is inherited from the actor-level structure of the statistics used to

123

Bayesian dynamic network actor models with application... 1469



capture the network dependence within the SAOM framework. In fact, dependence

between ties is modeled by allowing the actors’ choices concerning tie changes to

be influenced by local relational configurations. These statistics are similar to the

ERGM ones but take the perspective of an actor-oriented formulation (Block et al

2019).

Again, it is possible to obtain the likelihood function of an event sequence At as:

LðhÞ ¼
YM
m¼1

exp h>sðim; jm; ymÞ
� �

P
j2Nmnfig exp h>sðim; j; ymÞ

� � : ð6Þ

4 Dynam specification

The multiple relational mechanisms associated to different aspects of the network

dependence structure are captured by network statistics. Their importance stems

from the fact that they convey all the information about the relational structure of

the data. Stadtfeld and Block (2017) and Stadtfeld et al (2017) provide an overview

of the statistics that can be used in both directed and undirected DyNAMs. The main

feature of DyNAM statistics is their time-dependence as opposed to those employed

in SAOMs (Fritz et al 2020).

Generally speaking, we can classify these statistics into three main classes:

1. statistics defined at the node level - e.g., out-degree;

2. statistics defined at the dyadic (event) level - e.g., inertia;

3. statistics defined at the extra-dyadic statistics - e.g., transitive triads.

In this paper, the covariate information that we will be using in our data analysis is

fixed and not changing over time therefore we explicitly model endogenous

processes of the data (Stadtfeld and Block 2017). We will analyse directed relational

events, hence we will refer to the corresponding network statistics for the model

specification. In particular, we define the in-degree and out-degree statistics

(belonging to the first class); the inertia statistic (belonging to the second class); and

covariate-based nodal statistics (belonging to the first class) and matching statistics

(belonging to the second class). However, the reader is referred to Amati et al

(2019) for a list of effects.

The in-degree statistic (first row of Table 1) counts the number of incoming ties

to node i happened in the past; in its formulation x is the weighted and time-

dependent network and I½�� is the indicator function. The out-degree statistic (second

row of Table 1) counts the number of outgoing ties from node i happened in the

past. In the rate sub-model, defined in Equation (3), the in-degree statistic r1ði; yÞ
measures the tendency of a node i to send ties provided that i has a high number of

incoming ties and the out-degree statistic r2ði; yÞ measures the tendency of i to

receive ties given that i has a high number of outgoing ties. In the choice sub-model,

defined in Equation (5), the in-degree statistic s1ðj; yÞ measures the tendency to

create a tie i ! j when j has a high number of incoming ties and the out-degree

statistic s2ðj; yÞ measures the tendency to create a tie i ! j when j has a high number
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of outgoing ties. The inertia statistic, (third row of Table 1) can only be defined for

the choice sub-model as it represents a dyadic effect. It measures the tendency to

create a tie i ! j when the same tie happened before. In simple terms, it is the count

of events i ! j happened up to time t.
Model statistics may also be defined dependent upon exogenous covariates which

can be nodal, dyadic or higher order, i.e., the z objects described at the beginning of

Sect. 3. In the second last row of Table 1 we define a nodal attribute statistic

referring to the sender node in the context of the rate sub-model. It captures the

likeliness for a sender of getting active if they show such attribute.

The dyadic matching attribute statistic captures the tendency of both sender and

receiver to share the same nodal covariate value (last row of Table 1). In simple

terms, it equals one when both i and j have the same covariate.

5 Bayesian parameter estimation

The classical estimation method for DyNAMs is based on maximum likelihood

estimation by means of numerical optimization methods such as Fisher scoring or

Newton-Raphson procedure (Stadtfeld and Block 2017).

The Bayesian approach to complex statistical models consists of a coherent

inferential framework for the analysis of all the uncertainties by constructing a

fully-probabilistic interpretation of the model parameters via posterior distributions.

Expert information can be included so as to guarantee better accuracy in the

estimation by means of informative priors. As a result, Bayesian techniques in social

network analysis has proven to bring advantages in terms of estimation accuracy

compared to their classical counterparts (see, for example, Koskinen and Snijders

(2007); Caimo and Friel (2011)).

Table 1 Description of the directed network statistics used in our analysis

Statistic Sub-graph Sub-model

in-degree
P

k I½xki [ 0�
j

Rate/Choice

Out-degree
P

k I½xik [ 0�
i

Rate/Choice

Inertia s1ði; j; yÞ ¼ xij i j Choice

Nodal attribute r3ði; yÞ ¼ Izði;yÞ i Rate

Matching attribute s2ði; j; yÞ ¼ Izði;yÞ¼zðj;yÞ i j Choice
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Being DyNAMs a two-step process (Equation 2), their Bayesian estimation

procedure is carried out independently for each sub-model. In this paper the

estimation is based on a Monte Carlo algorithm sampling from the target posterior

of the parameters of the rate and choice sub-models b; h given the data y:

pðb; h j yÞ ¼ pðb; hÞ pðy j b; hÞR R
pðb; hÞ pðy j b; hÞ dbdh ;

where the numerator is the product between the prior pðb; hÞ and the DyNAM

likelihood pðy j b; hÞ and the denominator is the intractable marginal likelihood or

model evidence representing the probability of the data p(y). The DyNAM likeli-

hood can be written as the product of the two sub-model likelihoods defined in

Equations (4) and (6):

pðy j b; hÞ ¼ LlðbÞ � LðhÞ:

A Monte Carlo procedure (described in Algorithm 1) is adopted in order to carry out

inference for the target parameter posterior distribution.

Given the separable nature of the two DyNAM sub-models the two sets of

parameters b and h can be estimated by two parallel MCMC procedures. A

convenient choice of the proposal distribution is a symmetric probability

distribution such as the normal distribution. This is the distribution that we use

for the example and application in Sect. 6 and Sect. 7 respectively.
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6 Example: social evolution data

The Social Evolution data source is a well-known relational dataset composed of 84

nodes representing students living in a U.S. student house. It can be retrieved from

the goldfish package (Stadtfeld and Hollway 2020) where a reduced observed time

span is displayed as opposed to the original in order to analyse, in line with Stadtfeld

et al (2017), a sequence of phone calls between students in a descriptive fashion. In

our example, we show how the uncertainty associated to the relational tendencies of

the dynamic event process can be analysed using the posterior distribution of the

parameters. The resulting interpretation of our Bayesian estimation approach is

straightforward and consistent with the results obtained by Stadtfeld et al (2017).

For this example, we introduce some of the statistics as described in Sect. 4 for both

the rate and choice sub-models. In spite of this, we refer to both the networks

available in the goldfish package, namely the phone call activity that includes the

communications between students over time, and the friendship network accounting

for the students’ social structure.

6.1 Model specification

We define a cumulative number of nine effects of which four influence the general

tendency of individuals to make phone calls, while the other five concern the

activity to direct them towards certain receivers. These effects are conveyed by

means of the model parameters.

The effects for the rate sub-model are:

– Intercept, describing how likely actors are to make phone calls. Namely, how the

baseline actor, with no outgoing or incoming calls, is incline to pick up the

phone and dial a number (conveyed by the b0 parameter).

– In-degree, capturing the tendency to assess whether having received phone calls

in the past increases or decreases how active is the sender (b1).

– Out-degree, which describes the tendency to get active in relation to having

made phone calls in the past (b2).

– Out-degree friendship, highlights the question of whether having more friends

increases or not the tendency to make a phone call (b3).

The statistics included in the choice sub-model are:

– In-degree and Out-degree effects conveyed by h1 and h2 respectively. In the

choice sub-model these effects focus on the receiver. Hence they are

respectively trying to answer the following questions: what is the tendency to

receive a phone call if the receiver got several calls in the past (in-degree, h1)?

What is the tendency to receive a phone call if the receiver made several calls in

the past (out-degree, h2)?

– Inertia (intercept in the choice sub-model) captures the tendency of students to

make calls mainly to those whom they called in the past (h3). Stadtfeld et al

(2017) model this behaviour by means of the out-degree. In fact, a negative

estimate value implies that individuals tend not to call those who have a lot of

123

Bayesian dynamic network actor models with application... 1473



outgoing calls but those whom they most likely called before. However, we

believe that using the inertia to capture this relational behaviour would result in a

more straightforward interpretation.

– Floor membership statistic models the tendency of individuals living on the

same floor to have a higher tendency to call each other. It is a matching statistic

as defined in the last row of Table 1 (h4).

– Inertia friendship statistic highlights the question of whether students tend to call

their friends (h5).

The estimation is accomplished by sampling from the target posteriors of the two

sub-models via the Metropolis-Hastings sampler (Algorithm 1). There are two

common choices for the b prior distributions of an exponential regression model

(like the DyNAM rate sub-model): one is uniform improper prior distribution, the

other is the normal distribution (Ibrahim et al 2014). In this example, we specify a

multivariate normal prior for the rate sub-model parameters reflecting our a priori

assumption of a small baseline hazard of observing a call event at any time point by

setting a negative prior mean for the intercept b0 which is likely to be compensated

by some of the other effects included in the model:

b ¼ b0; b1; b2; b3ð Þ�N

�10

0

0

0

2
6664

3
7775;

4 0 0 0

0 5 0 0

0 0 6 0

0 0 0 5

2
6664

3
7775

0
BBB@

1
CCCA:

The prior specification of the choice sub-model parameters (Equation 6) consists of

a multivariate normal prior reflecting our prior assumption of a positive inertia

friendship effect (positive prior mean for h5):

h ¼ h1; h2; h3; h4; h5ð Þ�N

0

0

0

0

2

2
6666664

3
7777775
;

4 0 0 0 0

0 4 0 0 0

0 0 4 0 0

0 0 0 4 0

0 0 0 0 5

2
6666664

3
7777775

0
BBBBBB@

1
CCCCCCA
:

6.2 Results

The covariance matrices of the multivariate normal proposal distribution used in

Algorithm 1 are defined as follows:

0:01 0 0 0

0 0:0007 0 0

0 0 0:0007 0

0 0 0 0:002

2
6664

3
7775
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for qðb0 j bðiÞÞ; and

0:03 0 0 0 0

0 0:05 0 0 0

0 0 0:1 0 0

0 0 0 0:1 0

0 0 0 0 0:7

2
6666664

3
7777775

for qðh0 j hðiÞÞ: The tuning of the parameters is performed so as to achieve an

average acceptance rate of 0.23 and 0.25 for the rate and choice sub-models

respectively (Gelman et al 1997).

In Table 2, the posterior parameter summaries are displayed. All the results are in

line with what Stadtfeld et al (2017) reported. The negative values corresponding to

the highest posterior density interval for the intercept b0 confirm that, at baseline, a

student who has not received or made phone calls in the past nor has friendship ties

with other students will hardly make a phone call. All the rate effects (b1, b2 and b3)

are positive signalling that the sender gets more active when they made and received

calls and if they have friendship connections. Stadtfeld et al (2017) did not include

the in-degree statistic in their models, however the positive effect estimate

associated to the parameter b1 has a straightforward interpretation as any effect

increasing the activity of the sender in the past increases their tendency to be active.

The results of the choice sub-model show that the inertia effect (h3) is positive,

representing the fact that students tend to call those whom they called in the past. In

particular, the inertia effect involving students with friendship links (h5) is the main

effect explaining the behaviour of the choice sub-model. The in-degree effect (h1),

not included in Stadtfeld et al (2017) and the out-degree effect (h2) and the floor

membership (h4) do not seem to be significant in explaining the receivers’

behaviour. It is important to notice that by introducing the inertia effect (h3), we

Table 2 Posterior parameter means and corresponding 95% credible intervals for the Bayesian DyNAM

analysis of the Social Evolution Data

Parameter Mean [95% credible interval]

DyNAM rate sub-model

b0 (intercept) �15:35 [�14:47;�16:20]

b1 in-degree 0.081 [0.071; 0.091]

b2 out-degree 0.018 [ 0.017;0.019]

b3 out-degree friendship 0.392 [0.357;0.434]

DyNAM choice sub-model

h1 in-degree -0.003 [-0.016; 0.010]

h2 out-degree 0.007 [-0.009; 0.021]

h3 inertia 0.276 [0.231; 0.324]

h4 floor membership 0.099 [-0.220 ; 0.412]

h5 inertia friendship 3.08 [2.760 ; 3.412]
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already partially account for the out-degree effect between students that tend to

communicate to each other frequently. This translates into a slightly different

interpretation of the overall degree based effects, which merely represents the

tendency of two students to contact other students (but not necessarily the same set

of receiving students) with an higher number of incoming and outgoing calls.

7 Application: South Korean COVID-19 patient movement data

The raw dataset has been processed in order to obtain a directed network of

movements of infected individuals inside South-Korea, where the nodes represent

the municipalities where the individuals are located when they get active and the

events consist of their movements between two different locations. The nodes

portrait, where possible, a division of South Korea at municipal level or at

district/country level given the peculiar municipal division of cities in South Korea.

The total number of nodes available in the dataset is 210 of which 27 are either only

sending or receiving municipalities. The total number of events occurring from

January 22, 2020, to March 25, 2020, is 8, 093 of which 3, 170 are no-loops events,

namely movements directed outside the senders’ municipality that cannot end in the

same municipality.

It is important to notice that at the beginning of the pandemic the distribution of

the infected individuals in South Korea was not proportional to the distribution of

the population, i.e., the largest clusters were not necessarily localised in the largest

Table 3 Percentage of population, and cumulative proportion of out-going and in-coming movements for

each South Korea region

Region Population Out-going movements In-coming movements

Seoul 20.4% 46.2% 46.5%

Busan 7.3% 10.9% 11.1%

Incheon 5.2% 10.7% 10.6%

Gyeonggi-do 26.5% 6.5% 6.8%

Daegu 5.1% 5.7% 6.8%

Gyeongsangbuk-do 5.3% 5.4% 3.9%

Chungcheongnam-do 4.1% 4% 4%

Gyeongsangnam-do 6.8% 2.2% 2.1%

Gwangju 2.8% 1.7% 1.7%

Chungcheongbuk-do 3.1% 1.6% 1.7%

Ulsan 0.0% 1.5% 1.1%

Daejeon 2.9% 1.2% 1.4%

Gangwon-do 3.1% 1.0% 0.9%

Jeollanam-do 3.8% 0.6% 0.6%

Jeollabuk-do 3.7% 0.4% 0.4%

Sejong 0.0% 0.4% 0.0%
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municipalities and vice versa. This is clearly shown in Table 3 where the

municipalities within the Seoul region account for about 20% of the overall South

Korean population but they represent more than 45% of the overall movement

activity included in the dataset. On the other hand, in Gyeonggi-do, the most

populated area, municipalities are contributing for about the 6% of the movements.

Moreover, the identity of the infected patients moving between municipalities is

clearly not available so it is not possible to determine whether a movement from a

certain municipality to another was actually made by a patient living in one of the

two.

Figure 1 gives a graphical representation of all the events in the two months

period. On a first visual inspection of the overall relational event graph, it seems

clear that most of the patient movements start from or end to the municipalities of

Fig. 1 Graphical representation of all patient movements in South Korea, the red nodes represent the
municipalities from and to which they move, and the arrows the events between the nodes
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the largest cities, like Seoul, Incheon (see Fig. 2) and Daegu. Therefore, policies

focusing on widespread testing and public notice of movements of those infected in

these areas were particularly successful in the prevention of the virus diffusion.

7.1 Model specification

In our empirical analysis, we specify in the rate sub-model the general tendency of

cities to create a tie and hence of patients to move outside of it, whereas in the

choice sub-model we specify the propensity to select a given municipality as the

destination of a patient movement. Given the directed nature of the events of the

network under study, it is important to capture both tendencies described above to

enhance the interpretation of its relational dynamics. This is best achieved by means

of DyNAMs and their interdependence assumptions between the sub-models.

The effects, conveyed by the b parameters, characterizing the rate function of the

sender liðy; bÞ are:

– Intercept; modelling the baseline propensity of observing the movement of an

infected individual (conveyed by b0).

– In-degree effect; modelling how the propensity to move is affected by a high

number of incoming movements towards the sender municipality in the past

(b1).

– Out-degree effect; modelling how the propensity to move is affected by a high

number of outgoing movements from the sender municipality in the past (b2).

– Region effect; a nodal attribute equalling 1 when the sender municipality comes

from a certain region and 0 otherwise. It measures whether movements coming

from a municipality of a certain region have a tendency of moving inside or

Fig. 2 Patient movements within Seoul region and its surroundings
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outside that region. This effect has been used for Seoul (b3), Busan (b4), Incheon

(b5), and Daegu (b6).

As for the effects influencing the tendency to choose the destination of the

movement, namely the municipalities towards which a patient goes, we control for

three main effects (inertia, in-degree and out-degree). All these network statistics

are introduced for modelling both the overall network and for that part of the

network consisting of the ties within the major regions only. The latter are coded by

means of matching statistics counting the number of ties between senders and

receivers belonging to the same area. The effects, conveyed by the h parameters,

are:

– In-degree effect: patients tend to go to cities which had more incoming events in

the past (h1).

– Out-degree effect: patients tend to go to cities from where a high number of

movements originated in the past (h2).

– Inertia effect: if patients tend to replicate the same route, hence if they tend to

visit a location they visited in the past (h3).

– In-degree effect for the Seoul region (h4).

– Out-degree effect for the Seoul region (h5).

– Inertia effect for the Seoul region (h6).

– Inertia effect for the Busan region (h7).

– Inertia effect for the Incheon region (h8).

– Inertia effect for the Daegu region (h9).

As for the previous example, the estimation is accomplished by sampling from the

target posteriors of the two sub-models via the Metropolis-Hastings sampler

(Algorithm 1). The prior specification of the sub-model parameters (Equation 4, 6)

consists of multivariate normal priors:

b ¼ b0; b1;b2; b3; b4; b5; b6ð Þ�N

�4

0

0

4

4

4

4

2
666666666664

3
777777777775

;

2 0 0 0 0 0 0

0 4 0 0 0 0 0

0 0 4 0 0 0 0

0 0 0 2 0 0 0

0 0 0 0 2 0 0

0 0 0 0 0 2 0

0 0 0 0 0 0 2

2
666666666664

3
777777777775

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

:

The prior specification of the choice sub-model parameters (Equation 6) consists of

independent normal priors centered at 0 with a variance of 2:

h ¼ h1; h2; h3; h4; h5; h6; h7; h8; h9ð Þ�N 0; 2I9ð Þ;

where I9 is the 9 � 9 identity matrix.
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7.2 Results

The interpretation of the DyNAM posterior results (displayed in Table 4) can be

drawn separately for each sub-model as the two sub-models are conditionally

independent given the process state. The MCMC algorithm implemented in this

application made use of independent normal proposal distributions with standard

deviations of 0.1, 0.0018, 0.002, 0.15, 0.5, 0.5, 0.5 for the rate sub-model param-

eters b0; � � � ; b6 and of 0.0009, 0.0009, 0.01, 0.005, 0.007, 0.05, 0.4, 0.3, 0.7, for

the choice sub-model parameters h1; � � � ; h9 so as to reach an average acceptance

rate of about 0.21 for the rate sub-model and about 0.25 for the choice sub-model.

As the descriptive inspection suggests, the overall tendency to move between

municipality is strong, hence the time necessary for a patient to leave a municipality

to reach another one is 1= expðb0Þ � 16 minutes. The in-degree effect (b1) is

negative but with a small magnitude. The sender tendency of a municipality to

experience an out-going movement is slightly reduced when the municipality has a

high degree of in-coming movements in the past. The out-degree effect (b2) is

associated to a positive estimate, meaning that senders’ waiting time tends to reduce

if they got active in the past.

We also controlled for the membership effect associated to the region of the

sender municipality (b3,b4,b5,b6). The results show a positive tendency to observe

an outgoing movement event if the sender municipality belongs to one of the

Table 4 Posterior parameter means and corresponding 95% credible intervals for the Bayesian DyNAM

analysis of the South Korea COVID-19 patient movement data

Parameter Mean [95% credible interval]

DyNAM rate sub-model

b0 (intercept) -6.481 [-6.934; -5.798]

b1 in-degree -0.004 [-0.006; -0.002]

b2 out-degree 0.008 [ 0.005;0.011]

b3 Seoul membership 5.617 [4.927;6.075]

b4 Busan membership 5.541 [4.157;6.071]

b5 Incheon membership 5.602 [4.901;6.073]

b6 Daegu membership 5.532 [3.959;6.071]

DyNAM choice sub-model

h1 in-degree 0.099 [0.089; 0.108]

h2 out-degree -0.083 [-0.108;-0.074]

h3 inertia 0.658 [0.549;1.523]

h4 out-degree Seoul -0.063 [-0.075;-0.005]

h5 in-degree Seoul 0.062 [0.0489;0.084]

h6 inertia Seoul -0.281 [-1.173;-0.177]

h7 inertia Busan -3.14 [-5.642;-1.430]

h8 inertia Incheon 0.119 [-0.246;0.233]

h9 inertia Daegu -0.186 [-0.842;-0.020]
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controlled regions. This result is in line with our preliminary descriptive analysis, as

the majority of events generate within such areas. The similar magnitude of these

parameters indicates that the size of the sending municipalities does not signal an

impact on the tendency to move from it. Even if varying in size, the regions have

similar trends in terms of the sender effect.

For the choice sub-model, we observe opposite tendencies for the in-degree and

out-degree effects (h1, h2) with respect to the ones observed in the rate sub-model,

and a strong positive parameter value for the inertia (h3Þ. This means that

municipalities that have a high incoming number of ties are more likely to be

receivers and those with a high number of outgoing ties are less likely to be

receivers, implying that movements between municipalities are directed and

unidirectional, and therefore not cyclic. The parameter associated to the inertia

effect (h3) has an high positive value meaning that routes performed by infected

subjects tend to be frequent over time. We also included the same kind of effects as

the ones described above but weighted by the matching covariate-based statistic for

the Seoul region (h4, h5, h6). We observe that the only parameter behaving in an

opposite way with respect to the whole country parameters is the inertia (h6) that is

negative. We can therefore say that movements within the Seoul region still show

non-cyclical patterns, in fact, the infected individuals movements’ propensity was

higher towards receiving municipalities of the Seoul area and lower towards sending

municipalities. The negative Seoul inertia effect instead points out that movements

between municipalities located in that region lack regularity hence presenting a

more sparse behavior. To put it in other words, sending and receiving municipalities

patterns do not replicate over time. Therefore, we may infer that the spread of the

virus within the Seoul region was more random and rather harder to be depicted.

Moreover, apart from the Incheon inertia effect (h8) whose 95% credible interval

includes 0, the inertia effects within Busan (h7) and Daegu (h9) are negative. The

negative sign of such inertia parameters decreases the tendency to replicate past

movements, hence we can conclude that patients movement patterns within the

largest South Korean regions are irregular and noisy.

8 Conclusions

In this paper we proposed a Bayesian estimation approach for dynamic network

actor models in order to analyse the relational dynamics of the COVID-19 patient

movements in South Korea at the beginning of 2020.

Our results provided strong evidence to the fact that: the baseline tendency of

infected patients to leave a municipality is sparse but frequent; the largest regions

have a higher tendency to generate events suggesting that outgoing movements from

them should be deterred especially at early stages in order to reduce the spread of

the disease; new movement events tend to be created from highly active departing

municipalities regardless of their population size; at country level, movement events

tend to be directed consistently towards the same municipalities and popular

destinations. Patient movements within the Seoul region are significant but more

random than in the rest of the country given the absence of clear patterns in the
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sequence of the movement events. Moreover, region-based effects in highly density

populated regions are random suggesting harder prevention schemes.

Although Bayesian inference has been recently proposed for most statistical

network models (see, for example, Koskinen and Snijders (2007); Caimo and Friel

(2011); DuBois et al (2013)), to our knowledge, this is the first fully probabilistic

approach developed for dynamic network actor models.

The Bayesian framework is particularly advantageous in this context as it allows

the researcher to include their knowledge about network effects via prior

specification and draw conclusions based on posterior estimates of the parameters

associated to those effects.

The Bayesian estimation procedure, carried out by a Metropolis-Hastings

algorithm, delivered samples from the posterior distribution of the model

parameters for both the DyNAM rate and choice sub-models. These yielded

interesting insights about the dynamics of the relational process involved in the

South Korea COVID-19 patient movement data as they captured important effects

of the sender and receiver structure of the network.

Further work still needs to be done in order to develop a comprehensive Bayesian

approach for DyNAMs. One of the most important future directions consists in

developing efficient model choice procedures for the selection of the main network

effects to include in the DyNAM sub-models and making practical goodness of fit

tests using posterior predictive distributions.
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