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ABSTRACT

Objective: Alzheimer’s disease (AD) is a severe neurodegenerative disorder and has become a global public

health problem. Intensive research has been conducted for AD. But the pathophysiology of AD is still not eluci-

dated. Disease comorbidity often associates diseases with overlapping patterns of genetic markers. This may

inform a common etiology and suggest essential protein targets. US Food and Drug Administration (FDA) Ad-

verse Event Reporting System (FAERS) collects large-scale postmarketing surveillance data that provide a

unique opportunity to investigate disease co-occurrence pattern. We aim to construct a heterogeneous network

that integrates disease comorbidity network (DCN) from FAERS with protein–protein interaction (PPI) to priori-

tize the AD risk genes using network-based ranking algorithm.

Materials and Methods: We built a DCN based on indication data from FAERS using association rule mining.

DCN was further integrated with PPI network. We used random walk with restart ranking algorithm to prioritize

AD risk genes.

Results: We evaluated the performance of our approach using AD risk genes curated from genetic association

studies. Our approach achieved an area under a receiver operating characteristic curve of 0.770. Top 500 ranked

genes achieved 5.53-fold enrichment for known AD risk genes as compared to random expectation. Pathway

enrichment analysis using top-ranked genes revealed that two novel pathways, ERBB and coagulation path-

ways, might be involved in AD pathogenesis.

Conclusion: We innovatively leveraged FAERS, a comprehensive data resource for FDA postmarket drug safety

surveillance, for large-scale AD comorbidity mining. This exploratory study demonstrated the potential of

disease-comorbidities mining from FAERS in AD genetics discovery.
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INTRODUCTION

Alzheimer’s disease (AD) is a debilitating neurodegenerative disor-

der characterized by the progressive loss of cholinergic neurons,

leading to the onset of severe behavioral, motor, and cognitive

impairments. An estimated 5.4 million Americans have AD. It is the

sixth leading cause of death in the United States and the fifth leading

cause of death in Americans age � 65 years. Between 2000 and

2013, deaths from AD increased 71%.1 Though intensive research

for AD has been conducted, the etiology of AD is still not eluci-

dated.
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Computational-based approaches have been widely used in dis-

ease gene discovery.2,3 Network-based disease algorithm utilizes dis-

ease relationship to prioritize candidate disease genes. The key for

network-based disease gene discovery is to construct disease rela-

tionship. Disease manifestation and electronic medical record

(EMR) have been used for this purpose. For example, we con-

structed a disease manifestation network (DMN) to predict novel

genes for Parkinson’s disease.4 Bagley et al. discovered new genes

for autoimmune disorder and neuropsychiatric disorder using

EMR.5 Disease comorbidity often associates diseases with overlap-

ping patterns of genetic markers5,6 and several comorbidity net-

works have also been built.7–9 Recently, a very interesting disease

trajectory relationship were also established based on EMR data on

6.2 million patients.10 However, these networks are biased towards

special population7 or single medical center9 and have not been used

in disease gene discovery.

FDA Adverse Event Reporting System (FAERS) contains adverse

event reports from manufacturers, consumers, and healthcare pro-

fessionals for all marketed drug and therapeutic biologic products,

which is a large-scale database that contains seven linked data files

representing patient demographics, drugs, indications, outcomes,

reactions, therapies, and reporting sources.11 FAERS data have been

intensively used in drug safety issue studies. But the other possible

usages have not been explored. We noticed that each case report in

indication data contains information for all used drugs and diseases

when drug adverse event occurs, which essentially reflects the co-

occurring diseases in an individual. Based on this observation, we

explore the possibility of FAERS in disease comorbidity study. Com-

pared with EMR, indication data of FAERS have several advan-

tages. First, all co-occurring diseases reported in FAERS are treated

by drugs, which helps to reduce the disease noise. Second, large scale

of FAERS makes data unbiased for specific diseases. Third, FAERS

provides a unified reporting system in whole population level, which

can avoid the potential bias of EMR toward specific population or

discrepancy across health care systems.12,13

In this study, we used association rule mining to explore this

large-scale data to construct a disease comorbidity network (DCN).

One of the advantages of this method is that it can flexibly detect

multiple disease comorbidities, which is common in clinic setting.14

DCN was further integrated with protein–protein interaction (PPI)

network. We used network and functional analysis to reveal the

novel genes and pathways for AD.

METHODS

Our overall methods are shown in Figure 1. First, we used associa-

tion rule mining to construct a DCN from FAERS; second, we con-

structed a heterogeneous network by integration of DCN with PPI

network; third, we used random walk with restart to prioritize AD

risk genes and evaluated the performance of our methods using de

novo prediction of validation gene set from AlzGene database; fourth,

we used AD as the seed to prioritize the new AD risk genes; finally,

we performed the pathway analysis using top-ranked genes to dis-

cover novel pathways that might be involved in AD pathogenesis.

Data
FAERS data were downloaded from US Food and Drug Administra-

tion (FDA), which contains 17 305 542 case reports for indications

from 2004 to 2017.11 Disease genetic data were extracted from On-

line Mendelian Inheritance in Man (OMIM). The OMIM catalog

contains 15 462 disease–gene associations for 8832 genes and 6018

diseases/traits.15 Protein–protein interaction were obtained from

STRING database, which contains 1 380 504 interactions for

17 860 genes.16 AlzGene database collects AD risk genes (679 genes)

that were derived from comprehensive genetic association studies.17

Construction of disease comorbidity network
Data processing

Indication files in FAERS from 2014 to 2017 were used in this study

to explore disease comorbidity patterns. After removing reports

with unknown indications, data contain 6 480 372 case reports and

represent 15 721 indications of drugs. Table 1 shows a sample indi-

cation data for one patient. We can see this patient was treated with

9 drugs for different diseases/symptoms.

Indications in FAERS are represented as Medical Dictionary for

Regulatory Activities (MedDRA) terms.18 In order to facilitate

downstream analysis, we mapped indication terms into Unified

Medical Language System (UMLS)19 using MetaMap (2016 V2 re-

lease).20 Considering these indications include not only diseases, but

also treatment procedures, etc., we constrained the mapping to 12

semantic types that are categorized as disorders in UMLS, including

Acquired Abnormality, Anatomical Abnormality, Cell or Molecular

Dysfunction, Congenital Abnormality, Disease or Syndrome, Exper-

imental Model of Disease, Finding, Injury or Poisoning, Mental or

Behavioral Dysfunction, Neoplastic Process, Pathologic Function,

and Sign or Symptom. Total 12 225 of 15 721 (77.76%) were

mapped. The clean data set contains 6211 disorders and 5 784 501

case reports.

We then summarized the data on patient level, that is, each row

represents co-occurring disorders in one patient. For example, the

patient in Table 1 has multiple diseases, including adenocarcinoma

of colon, back pain, prophylaxis of nausea and vomiting, hypothy-

roidism, and deep vein thrombosis, which will be constructed as one

record in our data set.

Disease comorbidity pattern calculation

We applied Frequent Pattern-growth (FP-growth) algorithm (imple-

mented in Weka)21,22 into this data to obtain disease co-occurrence

patterns. FP-growth is a widely used association rule mining algorithm

and the choice of support, and lift is a tradeoff between precision and

recall. We experimented with different combinations of support and

lift to evaluate the performance of comorbidity mining using manually

curated disease comorbidities related to obesity, multiple sclerosis,

and psoriasis. After experimentations, we used support >12 and lift

>1 and generated 20 101 rules, which are lists of patterns between

two sets of diseases, represented in the form fX ¼> Yg, for example,

{anxiety; diabetes mellitus; type 2 ¼> multiple sclerosis}.

Construct disease comorbidity network

We constructed an undirected and unweighted DCN based on these

rules. Nodes in DCN included all diseases in the rules and edges

were established between each pair of diseases in both sides. The

DCN contains 1538 diseases and 21 321 edges.

Evaluation of performance for AD comorbidity

We considered neighbor nodes of AD as its comorbidities and

obtained subcomorbidity network for AD. To test the performance

of DCN, we manually curated comorbidities of AD from literature,

then compared with comorbidities from DCN. Precision and recall

were computed correspondingly.
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Construction of a heterogeneous network by

integration of disease comorbidity network and

protein–protein interaction network
DCN was integrated with PPI by disease–gene association network

from OMIM. Diseases in both DCN and OMIM were mapped to

UMLS to enable the connection.

Prioritization of candidate genes for AD
We used random walk with restart to prioritize the AD candidate

gene. We used AD as the seed and prioritized genes according to

their scores, which represented the probability that each gene can be

reached from the seed at steady state. Assuming p0 is a seed vector,

the updated score vector pk at step k is defined:

pkþ1 ¼ 1� cð ÞMpk þ cp0; (1)

where c is the probability that the random walker restarts from the

seeds at each step, and M is the transition matrix of the entire het-

erogeneous network, which contains two intranetwork transition

matrices on the diagonal and two internetwork transition matrices

on the off-diagonal defined below:

M ¼
MD MDG

MT
DG MG

" #
; (2)

where D and G represent DCN and the genetic network, respec-

tively. The value of c was set to 0.5 according to de novo prediction

result below and loop stopped when pkþ1 � pkj j < 10�6, indicating

probability vector is stable.23

Evaluation of predicted genes for AD
To evaluate our methods, we obtained a validation gene set from

AlzGene database. Currently, there are 679 genes in this database,

which represented the largest AD risk gene set. We performed de

novo prediction to test how well our approach ranks these genes.

Specifically, we removed all edges between AD and its associated

Figure 1. Overview of our method. ARM: association rule mining; DCN: disease comorbidity network; PPI: protein–protein interaction.
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OMIM genes. Then, we used random walk with restart to prioritize

the AD risk genes in gene network. We evaluated the performance

of our algorithm from two aspects.

First, we split the whole ranked gene list into 36 bins with size of

500 genes and investigated the distribution of validation genes in

each bin. We then calculated the fold enrichment of validation genes

in the top 500 ranked genes. In order to calculate the statistical sig-

nificance of enrichment, we randomized all 17 860 genes for 1000

times to generate random rankings. We then counted the number of

AD risk genes in top 500 genes in each randomization to generate

the background distribution. The P-value and fold enrichment of

our ranking were calculated based on this distribution.

Second, we used different rank percentiles as thresholds to com-

pute a receiver operating characteristic curve (ROC curve) and preci-

sion-recall curve. Given a percentile, for example 5%, we considered

all genes that rank in top 5% are positive prediction (AD risk genes,

denoted as ADgenes) and the other 95% genes are negative prediction

(none-AD risk genes, denoted as nADgenes). True positive rate,

false positive rate, true negative rate, and false negative rate were

defined as following formulas, where AlzGene/nAlzGene are denoted

as genes in/not in AlzGene database separately.

True positive rate ¼ ADgenes 2 AlzGene

AlzGene
(3)

False positive rate ¼ ADgenes 2 nAlzGene

nAlzGene
(4)

True negative rate ¼ nADgenes 2 nAlzGene

nALzgene
(5)

False negative rate ¼ nADgenes 2 AlzGene

AlzGene
(6)

Once these values were calculated in each threshold, precision, re-

call, specificity, and sensitivity were computed following the stan-

dard definitions24 and ROC and precision-recall curve can be derived.

Comparison of DCN with randomized disease network
To further test the usefulness of DCN, we compared the perfor-

mance of DCN in predicting AD risk genes with that of randomized

disease network. To generate such networks, we kept all disease

nodes and total number of edges unchanged but edges were ran-

domly assigned between 2 nodes. We generated 1000 such net-

works. Then each network was integrated with protein–protein

network, and random walk with restart was used to prioritize AD

risk genes. We used 679 genes from AlzGene database as validation

gene set to compute the Area Under the ROC curve (AUC). P-value

of the AUC from real DCN was computed based on normal distribu-

tion of AUCs from 1000 randomized networks.

Functional analysis of candidate genes for AD
We used clusterProfiler (Version 3.4.4) (R package)25 to perform

gene ontology analysis and gene set enrichment analysis to under-

stand the functions of novel candidate genes we obtained from our

methods.

RESULTS

Disease comorbidity network capture known

comorbidities of Alzheimer’s disease
We extracted 20 101 comorbidity association rules from the indica-

tion data of FAERS across thirteen years. The comorbidity network

based on these rules contains 1538 nodes and 21 312 edges. To ob-

tain subcomorbidity network for AD, we considered all its neighbor

nodes as comorbidities of AD. Figure 2A shows the extracted co-

morbidity network of AD. Total 98 comorbidities were found in our

network, including five psychiatric disorders such as depression,

anxiety disorder etc., and many nonpsychiatric disorders, such as

hypertension, diabetes mellitus, type 2 etc.

To test the performance of our network, we compared comor-

bidities of AD from DCN with known comorbidities of AD from lit-

erature. Comorbidities of AD include psychiatric disorder such as

depression, sleep disorder, bipolar disorder, and nonpsychiatric dis-

orders, such as cardiovascular diseases (ischemia damage, hyperten-

sion, etc.), diabetes mellitus (type 2), hypercholesterolemia,

hyperlipidemia, arthrosis, thyroid disease, osteoporosis, and glau-

coma.26,27 Based on these reports, the precision and recall of AD

comorbidities from our network are 66.3% and 91.7% separately.

Considering some unknown comorbidities have not been identified,

this result indicates that our network has good performance in cap-

ture disease comorbidities for AD.

DCN-based network rank algorithm prioritizes known

AD associated genes
We used 679 AD associated genes from AlzGene database as valida-

tion gene set to evaluate our approach. All connections between AD

and its associated genes reported in OMIM were removed and we

used AD as the seed to prioritize all genes using random walk with

restart. We’d like to emphasize that this de novo prediction high-

lighten the contribution of DCN in disease gene discovery for AD.

The top 500 genes in the ranking contain 93 validation genes, which

is 5.53 folds enrichment comparing with random ranking

(P ¼ 4:36 � 10�69) (Figure 3A). We also used ranking percentiles

as threshold to compute the ROC (Figure 3B) and precision-recall

curve (Figure 3C). Our approach achieved AUC of 0.770 and top-

ranked genes showed high precision.

To further demonstrate the usefulness of DCN, we generated

1000 randomized disease networks and used them to rank AD risk

genes. Distribution of AUCs computed from these networks

shows normal distribution with mean of 0.639 and variance of

0.0146 (Figure 3D). AUC (0.770) obtained from real DCN is

Table 1. Sample indication data for one patient

Primary_id Case_id Drug_seq Drug Indication

131970402 13197040 1 Trifluridine Adenocarcinoma

of colon

131970402 13197040 2 Irinotecan Adenocarcinoma

of colon

131970402 13197040 3 Bevacizumab Adenocarcinoma

of colon

131970402 13197040 4 Fentanyl Back pain

131970402 13197040 5 Acetaminophen Back pain

131970402 13197040 6 Ondansetron

hydrochloride

Prophylaxis of

nausea and

vomiting

131970402 13197040 7 Levothyroxine

sodium

Hypothyroidism

131970402 13197040 8 Rivaroxaban Deep vein

thrombosis

131970402 13197040 9 Dexamethasone Prophylaxis of

nausea and

vomiting

Note: Primary_id is used to link other data in FAERS. Case_id indicates patient.
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significantly better than that from randomized networks

(P ¼ 1:48 � 10�19).

DCN-based network rank algorithm prioritizes new AD

risk candidate genes
We used AD and AD associated genes reported in OMIM as seeds

to rank new AD associated genes. Table 2 lists the top 20 ranked

genes (see Supplementary Material for full ranked gene list).

We can see 14 genes that are not included in AlzGene database

have high rankings, such as UBC, PRDM10, EGFR, NOTCH1,

APLP1, and APLP2 etc. The roles of most of these genes in the AD

pathogenesis have been implicated or supported by recent studies.

For instance, UBC is a major ubiquitin protein and it is reported

that ubiquitin-proteasome system is impaired in AD patients28;

Notch1 activity is significantly altered in the brain of AD patients29;

EGFR gene plays a central role in neurometabolic aging and associ-

ates with AD.30,31 Hence, these highly ranked genes provide a start

point for further experimental investigation of their roles in AD

pathogenesis.

Pathway analysis of top-ranked novel AD candidate

genes
To further investigate the function of the top-ranked AD risk genes,

we performed gene ontology analysis using these genes. Figure 4A

lists the top 10 enriched GO biological process terms.32 AD is char-

acterized by disruption of calcium homeostasis, mitochondrial oxi-

dative stress, impaired energy metabolism and abnormal glucose

regulation, and ultimately neuronal cell death.33 Expectedly, several

biological processes, such as cellular response to oxidative stress and

neuron death are enriched in our analysis. Interestingly, we found a

new pathway, ERBB signaling pathway, is also significantly

enriched in our analysis. Indeed, Mei et al. reported that ERBB sig-

naling pathway is involved in nervous system development and dis-

ruption of ERBB is associated with nervous disorders.34

We also performed gene set enrichment using Molecular Signa-

tures Database (MSigDB) Hallmark pathways. MSigDB is a collec-

tion of annotated gene sets widely used in gene set enrichment

analysis.35 There are 8 major gene set collections in MSigDB, and

we used Hallmark gene set since it reduces noise and redundancy

and provides a better delineated biological process.35 Figure 4B lists

the top 10 enriched Hallmark pathways. APOPTOSIS, NOTCH,

TNFA, and HYPOXIA are well defined AD pathways.36–39 WNT, a

recently identified AD pathway,40 is also ranked high in our analy-

sis. Interestingly, we found that coagulation pathway is also signifi-

cantly enriched (fold enrich ¼ 3.97, P¼ .0002). A recent report

detected the interactions of b-amyloid peptide with fibrinogen and

coagulation factor XII,41 which provides preliminary evidence that

coagulation system might be involved in AD pathogenesis.

CONCLUSIONS AND DISCUSSION

Alzheimer’s disease is complicated disease and its etiology is still not

elucidated. Traditional in vitro- and in vivo-based experimental

methods will continue to discover disease mechanisms, we propose

a new framework to prioritize the AD risk genes by integration of

DCN with PPI. We demonstrated that this framework can efficiently
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currence of diseases. (B) Precision and recall for AD comorbidities from DCN.
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prioritize known AD risk genes, suggesting that the usefulness of

our network in AD disease genetic analysis. We also predicted novel

AD risk genes and pathways that have preliminary literature sup-

port. Further intensive experiment-based evidence needs to be per-

formed to confirm our findings.

FAERS data have been considered as a largely uncurated and

unstandardized database. A recent study reported that average 16

different names were given for each active drug ingredient and

FAERS is biased towards serious or life-threatening outcomes.42

The data redundancy and bias may lead to wrong interpretation

for drug-adverse event association.43 However, these problems

don’t affect the investigation of disease co-occurrence pattern

from indication data since we only focus on the co-occurring

diseases in individual patients, which is reported as standard

MedDRA terms.

One variability of DCN that is constructed using association rule

mining is that we need to assign thresholds for support and lift.

High thresholds will only identify very common comorbidities,

which lead to poor recall for specific disease. On the contrary, low

thresholds will identify very rare co-occurring diseases, which may

not be real comorbidity disease and lead to poor precision. There-

fore, these two values need to be carefully tuned to achieve a balance

of precision and recall. However, two reasons make the evaluation

difficult. One is that no comprehensive gold standard database for

disease comorbidity is available. Another is that disease comorbidity

is a dynamic concept that number of disease comorbidities for a spe-

cific disease changes over time. In this study, we manually curated

disease comorbidities from literature or disease organizations for

several diseases, including obesity, multiple sclerosis, and psoriasis.

Then we used them as criteria to optimize the thresholds. Though it

is not comprehensive, it is demonstrated that optimized DCN has

good performance in terms of AD comorbidity as well as its risk

gene discovery.

Systems approaches to study disease phenotypes can facilitate

disease mechanism understanding. We in this study demonstrated

that disease-comorbidity relationships mined from FAERS have po-

tential in AD genetics prediction. In our future studies, we will inte-

grate disease-comorbidity associations mined from FAERS with

other disease phenotypic relationships (eg disease-manifestation)

from other data resources (eg UMLS, biomedical literature), disease

genetics and PPI for AD genetic discovery. We have recently used

disease-manifestation relationships extracted from UMLS to con-

struct a DMN network and have developed a combined phenome

and genome-driven network approach for disease genetics predic-

tion.44 We previously developed novel natural language processing

techniques to extract large number of disease-phenotypic relation-

ships from over 21 million published biomedical literature records

and demonstrated the high potential of integrating the high-level

disease-phenotypic relationships with lower-level genetic and ge-

nomic data in both disease genetics understanding and drug

discovery.45–48

Modeling heterogeneous and complex relationships among tens

of thousands biomedical entities extracted from different data

resources (eg FAERS, biomedical literature) is a challenging task.

Recently, we developed a novel a context-sensitive network (CSN)

approach to model the complex, heterogeneous, and context-

specific interactions among tens of thousands of biomedical enti-

ties, including diseases, disease phenotypes, drugs, drug pheno-

types, and genes.49 Compared to existing biomedical networks

where the relationships among entities are often modeled by pair-

wise similarity (similarity-based network or SBN), CSNs preserve

the context information on how biomedical entities are connected.

Our recent study showed that CSN-based approach for disease ge-

netics prediction had significantly better performance than SBN-

based approach.49 In future studies, we will use the CSN frame-

work to model the context-specific (eg comorbidity, manifesta-

tion, risk/causal) relationships among diseases and other

biomedical entities and integrate disease phenotypes with disease

genetics and genomics data for disease genetics prediction and

drug discovery.

Large-scale disease comorbidity relationships offer unique op-

portunities to understand shared genetic mechanisms underlying a

disease and its comorbidities, for example, AD and its associated

neuropsychiatric symptoms (eg anxiety, depression), AD, and type 2

diabetes. By integrating disease comorbidities and vast amounts of

genetics, genomic and pathway data, we can understand how dis-

ease comorbidity occur, for example by directly sharing common

disease genes or indirectly coregulated by high-level biological mech-

anisms such as cellular pathways.50

A

B C

D

Figure 3. Evaluation of DCN-based AD risk gene prediction. (A) Distribution of

validation gene set from AlzGene database in gene ranking. (B) ROC curve for

de novo prediction of AD risk genes. (C) Precision-recall curve for de novo

prediction of AD risk genes. (D) Distribution of AUCs generated from 1000

randomized disease networks.
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In summary, we demonstrated that we innovatively leveraged

FAERS, a comprehensive data resource for FDA postmarket drug

safety surveillance, for large-scale AD comorbidity mining. This

early stage exploratory study demonstrated the potential of disease-

comorbidities mining from FAERS in AD genetics discovery.
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Table 2. Top 20 ranked new AD risk genes

Rank Gene_symbol Gene_name Location Type

1 UBCa Ubiquitin C Cytoplasm Enzyme

2 NOTCH1a Notch 1 Plasma Membrane Transcription regulator

3 EGFRa Epidermal growth factor receptor Plasma Membrane Kinase

4 ALB Albumin Extracellular Space Transporter

5 APLP2a Amyloid beta precursor like protein 2 Cytoplasm Other

6 APLP1a Amyloid beta precursor like protein 1 Extracellular Space Other

7 CPa Ceruloplasmin Extracellular Space Enzyme

8 PRDM10a PR/SET domain 10 Nucleus Transcription regulator

9 APBA2a Amyloid beta precursor protein binding family A member 2 Cytoplasm Transporter

10 NAE1a NEDD8 activating enzyme E1 subunit 1 Cytoplasm Enzyme

11 NCSTN Nicastrin Plasma Membrane Peptidase

12 SHC1a SHC adaptor protein 1 Cytoplasm OTHER

13 KAT5a Lysine acetyltransferase 5 Nucleus Transcription regulator

14 TSPOa Translocator protein Cytoplasm Transmembrane receptor

15 BACE1 Beta-secretase 1 Cytoplasm Peptidase

16 APBA3a Amyloid beta precursor protein binding family A member 3 Cytoplasm Transporter

17 BLMH Bleomycin hydrolase Cytoplasm Peptidase

18 GEN1a GEN1, Holliday junction 50 flap endonuclease Cytoplasm Enzyme

19 APBA1 Amyloid beta precursor protein binding family A member 1 Cytoplasm Transporter

20 TP53 Tumor protein p53 Nucleus Transcription regulator

aNew AD risk genes that are not included in AlzGene database.

A

B

Figure 4. Functional analysis of top-ranked AD risk genes. (A) Top ten

enriched biological process terms of gene ontology. (B) Top ten enriched

Hallmark pathways of MSigDB using gene set enrichment.
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