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Abstract

Genome-wide association studies (GWAS) have been successful in identifying genetic vari-

ants associated with complex diseases. However, association analyses between genotypes

and phenotypes are not straightforward due to the complex relationships between genetic

and environmental factors. Moreover, multiple correlated phenotypes further complicate

such analyses. To resolve this complexity, we present an analysis using structural equation

modeling (SEM). Unlike current methods that focus only on identifying direct associations

between diseases and genetic variants such as single-nucleotide polymorphisms (SNPs),

our method introduces the effects of intermediate phenotypes, which are related pheno-

types distinct from the target, into the systematic genetic study of diseases. Moreover, we

consider multiple diseases simultaneously in a single model. The procedure can be summa-

rized in four steps: 1) selection of informative SNPs, 2) extraction of latent variables from the

selected SNPs, 3) investigation of the relationships among intermediate phenotypes and

diseases, and 4) construction of an SEM. As a result, a quantitative map can be drawn that

simultaneously shows the relationship among multiple SNPs, phenotypes, and diseases. In

this study, we considered two correlated diseases, hypertension and type 2 diabetes (T2D),

which are known to have a substantial overlap in their disease mechanism and have signifi-

cant public health implications. As intermediate phenotypes for these diseases, we consid-

ered three obesity-related phenotypes—subscapular skin fold thickness, body mass index,

and waist circumference—as traits representing subcutaneous adiposity, overall adiposity,

and abdominal adiposity, respectively. Using GWAS data collected from the Korea Associa-

tion Resource (KARE) project, we applied the proposed SEM process. Among 327,872

SNPs, 24 informative SNPs were selected in the first step (p<1.0E-05). Ten latent variables

were generated in step 2. After an exploratory analysis, we established a path diagram

among phenotypes and diseases in step 3. Finally, in step 4, we produced a quantitative

map with paths moving from specific SNPs to hypertension through intermediate pheno-

types and T2D. The resulting model had high goodness-of-fit measures (χ2 = 536.52, NFI =

0.997, CFI = 0.998, GFI = 0.995, AGFI = 0.993, RMSEA = 0.012).
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Introduction

Hypertension and type 2 diabetes (T2D) are two of the leading risk factors for atherosclerotic

cardiovascular disease, which is a major component of the global burden of disease [1–4].

These conditions often occur together, and recent studies showed that the presence of T2D

increased the risk of hypertension [5, 6]. Hypertension and T2D are thought to share common

pathways such as obesity, insulin resistance, inflammation, oxidative stress, and mental stress

[7]. In addition to lifestyle and environmental factors, genetic factors have also been explored

to understand the mechanisms of T2D and hypertension [7, 8]. Because obesity-related pheno-

types are thought to be a common pathophysiological element underlying T2D and hyperten-

sion, understanding the connections among these diseases and factors related to obesity is an

important aspect of the search for proper treatments of these diseases.

Genome-wide association studies (GWAS) have been successful in identifying genetic vari-

ants associated with complex diseases such as asthma, autism disorder, T2D, and hypertension

[9]. A typical approach of GWAS is to report significant single-nucleotide polymorphisms

(SNPs) affecting disease; in other words, such studies generally present single-SNP analyses.

However, association analyses between genotypes and traits are not straightforward due to the

complex relationships between genetic and environmental factors. Moreover, in the presence

of multiple correlated phenotypes and/or diseases, such analyses become more complicated.

Since a separate analysis of each phenotype or disease ignores dependencies among pheno-

types, a multivariate approach considering a joint analysis should be considered. Various

genomic studies have been conducted to understand hypertension and T2D individually [10,

11]. However, few studies have attempted to model the pathways underlying hypertension

through obesity-related traits and T2D [12].

Methodology for mediation to assess the importance of various paths and mechanisms has

expanded rapidly in the last few decades [13]. Mediation analysis has traditionally been dealt

with in the fields of social sciences and psychology, but more recently it has also been

addressed in the fields of epidemiology and health. Mediation processes are framed in terms of

intermediate variables, the mediator, that helps explain how or why an independent variable

influences an outcome. The mediator significantly accounts for variation in an outcome vari-

able [14]. In the context of mediation analysis, there are many advantages in using the struc-

tural equation model (SEM) framework [15]. SEM is a multivariate statistical method that

involves the estimation of parameters for a system of simultaneous equations [16]. It can be

used when extending a mediation process to multiple independent variables, mediators, or

outcomes.

In this study, we present SEM-based approach to studying the associations between genetic

variants and phenotypes. In general, SEM is a confirmatory approach rather than an explor-

atory approach, in that the main focus of SEM is to verify that a model established by a

researcher beforehand is supported by the data [17], although it may sometimes seem explor-

atory since the model can be modified to improve its goodness-of-fit. SEM implies a functional

relationship expressed through a conceptual model, path diagram, and mathematical equa-

tions. Therefore, it is possible to express, through SEM, the causal relationships in a hypothe-

sized mediation process, the simultaneous nature of the indirect and direct effects, the dual

role the mediator plays as both a cause and an effect [15, 18]. Various types of models can be

used in SEM, including regression, path, confirmatory factor, and growth curve models [19].

SEM has been used in various fields, including genetic analysis [20, 21]. Procedures for

applying SEM after gene- and pathway-based analysis have been proposed [22]. Also, a

method for merging GWAS and gene regulatory networks (GRNs) using the SEM framework

has been attempted [23]. More recently, the GW-SEM method, which relies on a diagonally
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weighted least squares (DWLS) estimator, has been proposed to construct SEM on a genome-

level [24]. The SEM-based genome scan approach for metabolic syndrome has been carried

out [25]. Additionally, cross-sectional data analysis to provide a path diagram from genetic

variants to metabolic syndrome and disease has been studied. SNPs with significant associa-

tions with phenotypic traits were as exogenous predictors [8]. Meanwhile, the approaches to

analyzing longitudinal data with pedigrees have also been developed [26, 27]. However, there

are few studies that have applied SEM to analyze multiple SNPs, intermediate phenotypes, dis-

eases simultaneously.

In this respect, we suggest a procedure for constructing an SEM to investigate the relation-

ships of multiple SNPs and multiple intermediate phenotypes with respect to multiple diseases.

Unlike current methods that focus only on identifying direct associations between diseases

and SNPs, our method introduces the effects of intermediate phenotypes. We define interme-

diate phenotypes as disease-related phenotypes distinct from the target itself. Moreover, we

simultaneously consider multiple diseases in the model. As a result, we generated a quantita-

tive map simultaneously showing the relationships among multiple SNPs, phenotypes, and

diseases.

Our detailed goals were to answer the following research questions. First, do genetic charac-

teristics such as SNPs affect intermediate phenotypes and/or diseases? Second, is there any

commonality or similarity between the SNPs? Furthermore, if there is a genetic commonality,

can we consider their underlying component, by taking that commonality into account? How

do such components affect intermediate phenotypes and disease? Third, are there any associa-

tions or causal relationships between the intermediate phenotypes and diseases under consid-

eration? Fourth, is it possible to simultaneously consider the relationships of multiple SNPs,

intermediate phenotypes, and diseases? To answer these questions, we developed an SEM-

based procedure that introduced intermediate phenotypes to examine both direct and indirect

relationships. We applied this approach to Korean GWAS data. We considered two diseases

(hypertension and T2D) and three intermediate variables related to obesity (subscapular skin

fold thickness [SUB], body mass index [BMI], and waist circumference [WC]). Using Korean

GWAS data, we constructed a model with paths extending from genetic variants to hyperten-

sion through obesity-related intermediate phenotypes and T2D.

Materials and methods

SEM-based modeling procedure of multiple SNPs and multiple phenotypes

Consider an n×c data matrix A with three blocks for n samples: A = [X|Y|Z]. The first block X

contains data from n×p SNPs, Y is a block corresponding to n×q intermediate phenotypes,

and Z is a block corresponding to n×r diseases, where c = p+q+r. In order to investigate the

multiple phenotypes that reflect joint action of multiple SNPs, we developed an SEM-based

modeling procedure summarized in the following four steps. Fig 1 shows a summary of the

proposed procedure.

The first step was to select the preliminary informative SNPs. To avoid computational com-

plexity and multicollinearity due to the enormous scale of the SNPs in GWAS, non-contribut-

ing SNPs to each phenotype were excluded through a single-SNP analysis using regression or

logistic regression models. Since intermediate phenotypes and diseases are likely to be hetero-

geneous according to demographic factors such age and sex, analyses were conducted using

demographic factors as covariates. Instead, it is possible to choose the most significant SNP in

each linkage disequilibrium (LD) block. In this paper, a set of significant SNPs for each pheno-

type or disease will be called SNP block. Thus, q+r SNP blocks consisting of informative SNPs

are produced in this step.
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The second step was to explore the underlying nature of the factors, or latent variables of

the selected SNPs for each SNP block. We begin with theoretical assumption that there exists a

common latent construct among the significant SNPs. Fig 2 shows a conceptual framework for

the factor analysis. We assumed that SNPs having similar genetic functions or located near the

same gene are manifested by the underlying latent factors. In the exploratory factor analysis

steps, we performed a procedure of varimax rotation, which is one of the most common

method of orthogonal rotation, producing uncorrelated factors and simplified interpretation

[28]. In order to construct latent variables efficiently, SNPs with a very low communality were

excluded. Here, communality was considered to represent the variance of any SNP that was

shared with other SNPs via common factors.

The third step was to investigate the effect of intermediate phenotypes on diseases, or the

associations among all these phenotypic variables. This association analysis of multiple pheno-

types provided a conceptual framework for constructing an SEM structure in the following

step.

Fig 1. Summary of SEM-based modeling procedures for genomic data. Fij represents the jth factor loading for the ith SNP block.

X_i,k represents the kth SNP in the ith SNP block.

https://doi.org/10.1371/journal.pone.0217189.g001

Fig 2. Conceptual framework for exploratory factor analysis. Factor ij represents the jth latent variable for ith SNP block. SNP_ik

represents the kth SNP in ith SNP block.

https://doi.org/10.1371/journal.pone.0217189.g002
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In the final step, we applied SEM based on the previously constructed latent variables, or

joint SNPs, obtained from step 2. The SEM reflected the relationships between all SNPs, their

joint action or latent variables, intermediate phenotypes, disease, and morbidity. A typical pro-

cess for SEM was performed [13]. That is, after identification of the model, we estimated and

tested the model.

Because of the distribution issue of the indirect effect, several approaches have been sug-

gested to test the unstandardized indirect effect [29]. Bootstrapping approach uses the empiri-

cal distribution of the statistics to approximate the theoretical distribution of the statistics [30],

whereas PRODCLIN method is based on the distribution of a product for testing unstandard-

ized indirect effect [31]. An alternative approach is to use maximum likelihood estimate [32].

It is known that likelihood-based confidence interval should capture the asymmetry on the dis-

tribution of the indirect effect [29]. Each method has its pros and cons, but we used maximum

likelihood method in this study.

The model was modified if necessary. Finally, we identified the best SEM model with the

highest goodness-of-fit measure. While there are no golden rules for assessment of model fit,

reporting a variety of indices is necessary. Several fit indices including χ2, NFI, CFI, GFI and

RMSEA can be considered, where NFI is the normed fit index, CFI is the comparative fit

index, GFI is the goodness-of-fit index, AGFI is the adjusted goodness-of-fit index, and

RMSEA is the root mean square error of approximation [33]. In general, the smaller the χ2

value, the better the goodness-of-fit to the data. However, the χ2 statistic is sensitive to the sam-

ples size and it nearly tends to reject the model when the sample size is large [34]. The other

indices are independent of the sample sizes. Cut-offs indicating a good fit for each index are

NFI�0.95, CFI�0.95, GFI�0.95, AGFI�0.90, and RMSEA�0.07 [33].

GWAS data and phenotypic measurements

We analyzed the GWAS data set from the Korea Association Resource (KARE) project. This

project was initiated in 2007 in order to undertake a large-scale GWAS. The 10,038 partici-

pants were recruited from two community-based cohorts: Ansung, representing a mainly

rural community, and Ansan, representing an urban community [35]. After standard quality

control procedures for the subjects and SNPs, a total of 8,842 participants and 327,872 SNPs

remained. Of them, 4,183 (47.31%) were male and 4,659 (52.69%) were female, with a mean

age of 52.22 years (range, 39–70 years). The KARE data include demographic characteristics

such as area, sex, and age, as well as multiple phenotypes related to obesity, T2D, and hyperten-

sion that were identified based on a review of the participants’ medical records. Our research

interests focused on T2D and hypertension as mediated through obesity. Table 1 presents the

basic statistics for the data.

We defined T2D using fasting blood glucose (FBG) or blood glucose after 120 minutes

(OGTT120), with criteria of FBG� 126 mg/dL, OGTT120� 200 mg/dL, or the use of antidia-

betic medication. Hypertension was defined as systolic blood pressure (SBP)� 140 mm Hg,

diastolic blood pressure (DBP)� 90 mm Hg, or the use of antihypertensive medication. As

intermediate phenotypes, we considered three traits related to obesity: BMI, WC, and SUB.

More specifically, BMI reflects overall body adiposity [36], whereas WC reflects abdominal

adiposity (for which visceral adipose tissue is largely responsible), and SUB reflects subcutane-

ous adiposity [36]. Height (cm), body weight (kg), and waist circumference (cm) were mea-

sured using standard methods in light clothes. BMI was calculated as the weight divided by the

square of height (kg/m2). SUB was measured using a caliper at a vertical fold taken 1 inch

below the lowest point of the shoulder blade (mm).

Structural equation modeling based on multiple SNPs and multiple phenotypes
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Hypertension was present in 2393 (27.06%) participants, and 836 (9.45%) of participants

had T2DM. The average (±SD) values of the obesity-related variables were 24.60 kg/m2 (±3.12

kg/m2) for BMI, 23.69 mm (± 10.96 mm) for SUB, and 82.7 cm (± 8.79 cm) for WC (Table 1).

We analyzed these data using the proposed procedure. From step 1 to step 3, statistical analyses

were done using SAS version 9.4 (SAS Corp., Cary, NC, USA). For the SEM analysis in step 4,

Lisrel version 9.1 (Scientific software international, Skokie, IL, USA) was used. The threshold

for statistical significance was set at α = 0.05, unless otherwise noted.

Results

Step 1: Associations between single SNPs and phenotypes

Among the 327,872 SNPs in the KARE dataset, we selected informative SNPs affecting inter-

mediate phenotypes and diseases. We conducted single-SNP analyses using simple linear

regression models and logistic regression models for intermediate phenotypes and diseases,

respectively. Sex, age, and area were used as covariates. The SNPs were regarded as statistically

significant when they showed a p-value less than 1.0E-05 in the single-SNP analysis. The obe-

sity-related phenotypes (BMI, SUB, and WC) were associated with 19 SNPs: 7 SNPs for BMI, 5

SNPs for SUB, and 7 SNPs for WC. For the dichotomous definition of T2D, a single SNP was

determined to be significant, with a p-value less than 1.0E-05. For the dichotomous definition

of hypertension, 4 SNPs were identified as significant. Finally, we selected 24 SNPs included in

one of the 5 SNP blocks. The five SNP blocks consisted of significant SNPs for Sub, BMI, WC,

T2D and Hypertension, respectively. Table 2 presents a list of the selected SNPs for each SNP

block.

Step 2: Construction of latent variables for SNPs

During factor analysis, we investigated the communality between SNPs constructing latent

variables. Excluded were three SNPs with very low communality (less than 0.3): rs17178527,

Table 1. Descriptive statistics of the KARE data.

Variables N (%) or mean±SD

Demographic variables Sex Male 4,183 (47.31%)

Female 4,659 (52.69%)

Area Ansung 4,205 (47.56%)

Ansan 4,637 (52.44%)

Age 52.22 (8.92)

Intermediate phenotypes Body mass index, kg/m2 24.60 ± 3.12

Subscapular skin fold thickness, mm 23.69 ± 10.96

Waist circumference, cm 82.67 ± 8.79

Diseases Hypertension Yes 2,393 (27.06%)

No 6,449 (72.94%)

T2D Yes 836 (9.45%)

No 8,006 (90.55%)

Disease component variables Systolic blood pressure 117.59 ± 18.28

Diastolic blood pressure 75.07 ± 11.56

Fasting blood glucose 87.66 ± 21.88

Blood glucose after 2 hours 126.76 ± 51.03

KARE, Korea Association Resource; T2D, type 2 diabetes.

https://doi.org/10.1371/journal.pone.0217189.t001
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which was related to BMI; rs16951883, which was related to SUB; and rs17092358, which was

related to WC.

A separate factor analysis was performed for each SNP block to obtain latent variables.

Table 3 shows the factor loadings obtained by varimax rotation and variance explained for

each phenotype. By using factor loadings, the four SUB-related SNPs in the first SNP block

were constructed as two latent variables (hereafter, FACTOR11 and FACTOR12). The six

BMI-related SNPs were also constructed as two latent variables (hereafter, FACTOR21 and

FACTOR22), and the seven WC-related SNPs were composed of three latent variables, (here-

after, FACTOR31, FACTOR32, and FACTOR33). These latent variables may reflect the com-

mon joint action of SNPs on their respective phenotype. The latent variables for the SNPs

related to diabetes (hereafter, FACTOR41) and hypertension (hereafter, FACTOR51 and FAC-

TOR52) were also generated in a similar manner. The SNPs classified as corresponding to the

same latent variable are shown in square brackets. The two SNPs comprising FACTOR52 have

different signs, meaning that they were found to be related in different directions. Both FAC-

TOR11 and FACTOR21 consisted of SNPs from the FTO gene, which is known to be associ-

ated with fat mass and obesity. The SNPs comprising FACTOR51 were from ATP2B1, which

has been reported to be a hypertension-related gene [37].

Step 3. Investigation of the relationships among variables

We investigated the association among phenotypes by adjusting for the effect of covariates

including area, sex, and age. Partial correlation coefficients of the considered phenotypes are

presented in Table 4. All three intermediate phenotypes were directly correlated with each

other (r>0.547). For hypertension, BMI showed the largest correlation coefficient of the obe-

sity measures (r = 0.194), and WC showed the next largest correlation coefficient (r = 0.180).

For T2D, WC showed the largest correlation coefficient (r = 0.122), implying that central body

fat may be more closely associated with components of metabolic syndrome, such as T2D and

hypertension.

Before the main SEM analysis, we conducted a path analysis between the intermediate phe-

notypes and diseases to determine the most proper model. First, we set T2D as a risk factor for

Table 2. Significant SNPs for each phenotype through single-SNP analyses.

SNP Block Traits SNP p-value SNP Block Traits SNP p-value

1 Subscapular skin fold

(SUB)

rs17248901 1.92E-07 3 Waist Circumference rs4667458 4.72E-06

rs6561930 2.85E-07 rs11933222 9.15E-06

rs16951883 4.66E-07 rs17178527 2.71E-06

rs7193144 4.65E-06 rs17092358 6.21E-06

rs8050136 3.78E-06 rs2074356 7.95E-06

2 BMI rs527248 2.98E-06 rs17089409 7.07E-06

rs17178527 2.02E-08 rs17089410 5.67E-06

rs11000212 1.45E-06 4 T2D rs11131794 5.09E-06

rs7193144 3.30E-06 5 Hypertension rs17249754 3.15E-07

rs8050136 2.68E-06 rs7136259 4.03E-07

rs9926289 2.45E-06 rs2254613 6.75E-06

rs9939609 1.43E-06 rs1378942 8.02E-06

SNP, single-nucleotide polymorphism; T2D, type 2 diabetes.

https://doi.org/10.1371/journal.pone.0217189.t002
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hypertension according to recent studies [5, 6]. Second, we established the paths regarding

obesity indicators.

As mentioned earlier, we considered three obesity-related phenotypes to capture the vari-

ous dimensions of obesity including genetic influences on each obesity phenotype: WC reflects

abdominal adiposity, BMI reflects overall body adiposity; SUB reflects subcutaneous adiposity

[36]. WC is generally known to have a greater association with diabetes or hypertension than

the other two obesity indicators. Clinical evidences consistently suggested that the association

of insulin resistance (which is thought to be the key common pathway of T2D and hyperten-

sion) with WC was stronger than the corresponding associations of insulin resistance with

BMI or SUB [36, 38]. In our analysis, WC also showed the strongest correlation with T2D, and

BMI or SUB showed considerable correlation with WC. Therefore, we have established the

Table 3. Latent variable construction of multiple SNPs for each SNP block.

SNP Block Related phenotype SNP label Gene Factor i1� Factor i2� Factor i3� Variance Explained

1 Subscapular skin fold

(SUB)

rs8050136 FTO 0.999 -0.001 86.5%

rs7193144 FTO 0.999 -0.003

rs17248901 NBPF21P 0.004 0.855

rs6561930 LOC100131027 -0.008 0.855

2 BMI rs9926289 FTO 0.9982 -0.0057 83.3%

rs9939609 FTO 0.9976 -0.0061

rs7193144 FTO 0.9973 -0.0072

rs8050136 FTO 0.9972 -0.0062

rs11000212 DDIT4 -0.0032 0.7127

rs527248 SEC16B -0.0058 0.7115

3 Waist circumference

(WC)

rs17089409 - 0.9993 -0.0034 0.0014 67.2%

rs17089410 - 0.9993 -0.0026 0.0010

rs17178527 AK097143 -0.0174 0.7114 0.1418

rs11933222 - 0.0128 0.7038 -0.1477

rs2074356 FLJ30092 0.0046 0.1069 0.7118

rs4667458 - -0.0025 -0.1083 0.6794

4 T2D rs11131794 Intergenic 1.0000 100%

5 Hypertension rs7136259 ATP2B1 0.9849 0.0150 73.7%

rs17249754 ATP2B1 0.9848 0.0141

rs1378942 CSK -0.0172 0.7589

rs2254613 MBIP -0.0344 -0.6558

�Factor ij represents the jth latent variable for ith SNP block. SNPs with high factor loading for each latent variable are shown in the same square brackets.

SNP, single-nucleotide polymorphism; BMI, body mass index; T2D, type 2 diabetes.

https://doi.org/10.1371/journal.pone.0217189.t003

Table 4. Partial correlation coefficients among obesity-related phenotypes for T2D and hypertension (n = 8792).

Subscapular skin fold BMI WC T2D

BMI 0.634���

WC 0.547��� 0.824���

T2D 0.121��� 0.107��� 0.122���

Hypertension 0.135��� 0.194��� 0.180��� 0.102���

��� p<0.0001

T2D, type 2 diabetes; BMI, body mass index; WC, waist circumference.

https://doi.org/10.1371/journal.pone.0217189.t004
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ordered paths to maximize the clinical relevance, where WC directly affects the diseases, and

BMI or SUB affect diseases through WC. We considered the paths in which BMI or SUB

directly affect T2D or hypertension independently of WC.

As a result, we established the path from obesity to T2D and hypertension that is shown in

Fig 3. It displays the coefficient estimates of the path analysis, which indicate the strength of

the effect of the independent variable on the dependent variable. Paths with solid lines indicate

that effects were statistically significant (p<0.05), whereas two paths with dotted lines showed

statistically insignificant effects.

Step 4: Structural equation model of multiple SNPs and multiple

phenotypes

The SEM was constructed based on the joint action of the multiple SNPs and multiple inter-

mediate phenotypes identified in the previous steps. By developing an SEM, we reflected the

relationships between all SNPs, their joint action or latent variables, obesity-related pheno-

types, and their possible morbidity (i.e., their effect on diseases). In hypothesized model con-

struction, we assumed that the error terms were uncorrelated, which was an important

assumption for causal inference in performing mediation analysis. Model coefficients of SEM

were estimated by maximum likelihood method using the sample covariance matrix of KARE

data, with sex, age, and area as covariates, yielding consistent and efficient estimates. The fit of

the hypothesized SEM was improved by allowing measurement errors correlated for

rs9926289 and rs9939609, rs7193144 and rs8050136, rs7193144 and rs7193144, rs8050136 and

rs8050136. Model diagnosis confirmed that the maximum likelihood estimation method was

appropriate. Under the proposed SEM, we considered the causal relationships among endoge-

nous latent variables of WC and BMI. Correlations between latent variables for each pheno-

type were not large enough to cause multicollinearity between latent variables.

Through the modification process, we identified the best SEM model based on various

goodness-of-fit measures (χ2 = 536.52, NFI = 0.997, CFI = 0.998, GFI = 0.995, AGFI = 0.993,

RMSEA = 0.012). These indices indicated that the resulting SEM should have high goodness-

of-fit.

Fig 3. Path diagram and direct effect estimates from the path analysis of phenotypes. Solid lines indicate that

effects were statistically significant (p<0.05), whereas dotted lines present statistically insignificant effects.

https://doi.org/10.1371/journal.pone.0217189.g003
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Fig 4 and Table 5 show the standardized effects of the final SEM. In the analysis of causal

relationships among intermediate phenotypes and diseases, subcutaneous adiposity showed a

direct, statistically significant relationship for overall adiposity (b = 0.632, t = 76.25), abdomi-

nal adiposity (b = 0.041, t = 5.23) and T2D (b = 0.085, t = 6.25), but statistical significance was

not reached for hypertension (b = 0.01, t = 0.285). Overall adiposity directly affected abdomi-

nal adiposity (b = 0.797, t = 101.79), T2D (b = -0.024, t = -2.10), and hypertension (b = 0.140,

t = 4.59). Abdominal adiposity directly affected T2D (b = 0.097, t = 4.61) and hypertension

(b = 0.052, t = 7.44). Solid lines in Fig 4 indicate that effects were statistically significant

(p<0.05), whereas dotted lines present statistically insignificant effects.

In contrast, in the analysis of genetic factors, information from 17 SNPs was used to predict

T2D and information from 21 SNPs was used to predict hypertension. FACTOR11 and FAC-

TOR12, which were latent variables consisting of SUB-related SNPs, showed significant direct

effects on subcutaneous adiposity. They also had significant indirect effects on overall adipos-

ity, abdominal adiposity, T2D, and hypertension. Similarly, the latent variables from the SNPs

related to BMI (FACTOR21 and FACTOR22) affected overall adiposity directly and affected

abdominal adiposity indirectly. FACTOR21 also significantly affected T2D and hypertension

indirectly. Of the latent variables from the SNPs related to WC, FACTOR31 and FACTOR33

showed significant relationships with abdominal adiposity and T2D, but FACTOR32 did not.

Of the WC-related latent variables, only FACTOR33 showed significance for hypertension.

One of the latent variables from the hypertension-related SNPs (FACTOR52) was significantly

associated with hypertension, but the other (FACTOR51) was not. However, although FAC-

TOR51 consisted of SNPs that had significant individual effects on hypertension in the single-

SNP analysis, the latent variables were no longer significant when the various factors were con-

sidered together.

Integrating these observations, T2D was found to be significantly affected by subcutaneous

adiposity, overall adiposity, and abdominal adiposity, and all the latent variables from the

Fig 4. Path diagram and direct effect estimates of the final SEM. Factor ij represents the jth latent variable for ith SNP block. Solid

lines indicate that effects were statistically significant (p<0.05), whereas dotted lines present statistically insignificant effects.

https://doi.org/10.1371/journal.pone.0217189.g004
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Table 5. Direct, indirect, and total effects of the final SEM.

Endogenous variables Exogenous variables Direct effect Indirect effect Total effect

Estimate SE Estimate SE Estimate SE

Subcutaneous adiposity FACTOR11 0.049��� 0.011 0.049��� 0.011

FACTOR12 0.057��� 0.011 0.057��� 0.011

Overall adiposity FACTOR11 0.031��� 0.007 0.031��� 0.007

FACTOR12 0.036��� 0.007 0.036��� 0.007

FACTOR21 0.041�� 0.021 0.040�� 0.021

FACTOR22 0.284��� 0.055 0.284��� 0.055

Subcutaneous adiposity 0.632��� 0.008 0.632��� 0.008

Abdominal adiposity FACTOR11 0.027��� 0.006 0.027��� 0.006

FACTOR12 0.031��� 0.006 0.031��� 0.006

FACTOR21 0.032�� 0.016 0.032�� 0.016

FACTOR22 0.226��� 0.044 0.226��� 0.044

FACTOR31 0.014��� 0.006 0.014��� 0.006

FACTOR32 -0.010 0.006 -0.010 0.006

FACTOR33 -0.019��� 0.006 -0.019��� 0.006

Subcutaneous adiposity 0.041��� 0.008 0.503��� 0.008 0.544��� 0.009

Overall adiposity 0.797��� 0.008 0.797��� 0.008

T2D FACTOR11 0.006��� 0.001 0.006��� 0.001

FACTOR12 0.007��� 0.001 0.007��� 0.001

FACTOR21 0.002� 0.001 0.002� 0.001

FACTOR22 0.015��� 0.005 0.015��� 0.005

FACTOR31 0.001�� 0.001 0.001�� 0.001

FACTOR32 -0.001 0.001 -0.001 0.001

FACTOR33 -0.002��� 0.001 -0.002��� 0.001

FACTOR41 0.049��� 0.011 0.049��� 0.011

Subcutaneous adiposity 0.085��� 0.014 0.038��� 0.009 0.123��� 0.011

Overall adiposity -0.024� 0.020 0.077��� 0.015 0.053��� 0.014

Abdominal adiposity 0.097��� 0.019 0.097��� 0.019

Hypertension FACTOR11 0.007��� 0.002 0.007��� 0.002

FACTOR12 0.008��� 0.002 0.008��� 0.002

FACTOR21 0.008� 0.004 0.008� 0.004

FACTOR22 0.053��� 0.013 0.053��� 0.013

FACTOR31 0.001� 0.000 0.001� 0.000

FACTOR32 -0.001 0.000 -0.001 0.000

FACTOR33 -0.001��� 0.001 -0.001��� 0.001

FACTOR41 0.004��� 0.001 0.004��� 0.001

FACTOR51 0.039 0.068 0.039 0.068

FACTOR52 0.384��� 0.162 0.384��� 0.162

Subcutaneous adiposity 0.005 0.020 0.127��� 0.017 0.132��� 0.011

Overall adiposity 0.140��� 0.031 0.046��� 0.015 0.186��� 0.027

Abdominal adiposity 0.052��� 0.011 0.008��� 0.002 0.060��� 0.018

T2D 0.079��� 0.011 0.079��� 0.011

� p< 0.10

�� p< 0.05

��� p<0.01

SEM, structural equation model; SE, standard error; T2D, type 2 diabetes.

https://doi.org/10.1371/journal.pone.0217189.t005
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SNPs except FACTOR32. The largest direct effect on T2D came from abdominal adiposity

(b = 0.097, t = 5.21). However, including indirect effects, subcutaneous adiposity had the larg-

est total effect (b = 0.123, t = 11.60). Meanwhile, hypertension was directly and indirectly asso-

ciated with overall adiposity, abdominal adiposity, and T2D. Subcutaneous adiposity

significantly affected hypertension indirectly, but not directly. The largest effect on hyperten-

sion was obtained for FACTOR52 (b = 0.384, t = 2.37), and overall adiposity showed the sec-

ond largest direct effect (b = 0.186, t = 6.88). The results were similar when only direct effects

were considered.

Discussion

Hypertension and T2D are important public health concerns, as the prevalence of each is

increasing worldwide [39, 40]. The coexistence of hypertension and T2D dramatically

increases the risk (2- to 4-fold) of cardiovascular disease and all-cause death [4]. Although

studies have investigated the effects of obesity-related factors on T2D and hypertension sepa-

rately, few studies have investigated the pathways underlying hypertension through obesity-

related traits.

In this study, we aimed to improve our understanding of the pathways underlying hyper-

tension and T2D driven by genetic variants and obesity-related traits by conducting a multi-

variate analysis. In order to achieve these goals, we developed an analytical process consisting

of four steps that yielded successful results. In step 1, we investigated GWAS variants that

affected intermediate phenotypes and disease, the first research goal. In step 2, we found com-

munalities or similarities among SNPs for each phenotype, the second research goal. Step 3,

the path analysis of multiple intermediate phenotypes and diseases, suggested plausible associ-

ations among traits, the third research goal. Step 4 enabled us to achieve our final research goal

through an SEM analysis of the associations among multiple SNPs, multiple phenotypes, and

multiple diseases. Conclusively we developed a quantitative map simultaneously showing the

relationships among GWAS variants, intermediate phenotypes, T2D, and hypertension.

This analysis provides insights into the mechanisms underlying T2D and hypertension.

Our findings highlight the importance of subcutaneous adiposity and abdominal adiposity, as

well as latent variables from SNPs, as driving elements of T2D in the Korean population. The

impacts of latent variables of the SNPs, overall adiposity, abdominal adiposity, and T2D on

hypertension were also confirmed. The resulting model had high goodness-of-fit measures.
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